Go to main content

PDF

Description

The inverse first passage time problem asks whether, for a Brownian motion $B$ and a nonnegative random variable $\zeta$, there exists a time-varying barrier $b$ such that $\mathbb{P}\{B_s > b(s), \, 0 \le s \le t\} = \mathbb{P}\{\zeta > t\}$. We study a "smoothed" version of this problem and ask whether there is a "barrier" $b$ such that $\mathbb{E}[\exp(-\lambda \int_0^t \psi(B_s - b(s)) \, ds)] = \mathbb{P}\{\zeta > t\}$, where $\lambda$ is a killing rate parameter and $\psi: \mathbb{R} \to [0,1]$ is a non-increasing function. We prove that if $\psi$ is suitably smooth, the function $t \mapsto \mathbb{P}\{\zeta > t\}$ is twice continuously differentiable, and the condition $0 < -\frac{d \log \mathbb{P}\{\zeta > t\}}{dt} < \lambda$ holds for the hazard rate of $\zeta$, then there exists a unique continuously differentiable function $b$ solving the smoothed problem. We show how this result leads to flexible models of default for which it is possible to compute expected values of contingent claims.

Details

Files

Statistics

from
to
Export
Download Full History
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS