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ABSTRACT

The probability integral transform and its conditional version pro-
vide us with means of assessing the performance of statistical forecast-
ing systems. The distributional characteristics of the residuals are con-
sidered under both the assumed sampling model and the probability
model induced by the forecasting system. The CPIT can also serve as a
tool to generate predictive distributions.



1. Introduction

The generic forecasting system, under our consideration, attaches a predictive dis-
tribution to each quantity in an ordered sequence of continuous random variables, A,,
A,, ... It does so successively for each of them individually. And, at each stage, it
makes use of the data up to that instance, i.e. the history of the process so far as well
as any relevant covariate information. This we refer to as B; . It generates thus dis-
tributions of the form P(a;,|B;) .

Weather forecasting provides a typical instance of this situation: predictive distri-
butions for future temperatures are elicited on the basis of records up to date as well as
information required by the model embodying the forecaster’s understanding of the
underlying process. Another example: in the context of software reliability, one is
interested in predictive distributions for successive interfailure times of a particular
computer program. In both cases, when the next outcome is known, the prediction
will be assessed. This new piece of information about the process (i.e. this outcome
plus values of the covariables for the next predictand) will then be added to the data-
base for producing subsequent ones.

Generally, such forecasting systems (SFS) consist of a parametric family of distri-
butions, call it P = {Py, 0 € ®) (O denoting a finite dimensional parameter space),
together with a prediction rule. The latter serves in disposing of the parameter, thus
yielding at each stage a probability forecasting system (PFS). This elimination can be
achieved by substituting an estimate based on B; [ i.e. P; (a,1B;) ] or, in a Bayesian

framework, by integrating it with respect to some prior distribution [i.e.
Ie Py(a;,, |B;) n(@1B;) d ], or also, when a fiducial argument is used, by pivotal inver-

sion (Dawid, 1984).

If they are to be taken into account in the validation procedure, both the sequential
and probabilistic elements of the forecasting process will greatly restrict us in the
choice of suitable tools. Moreover, these should aim at judging the entire distributions
rather than assessing some of their specific characteristics (as opposed to criteria like
the mean squared error of prediction). It is also hoped that they will come close to
depending solely on the observations at hand (thus excluding mathematical constructs
part of the SFS). The search for an appropriate test, further complicated by the heavy
dependence between forecast distributions, will lead to the probability integral
transform (PIT).

Rosenblatt (1952) defines the latter as the transformation leading to residuals
(m)_ .
u=(u,...,uy) :



u, = Prob(A, <a) =FQa)
u, = Prob (A, < a,|A,=a) = F(a,la)

L]

u, =Prob(A, < a,1A,=a,,...,A, ,=a, ) = F(a,1a®")
where F, denotes the joint distribution function of A® = (A,,A,,...,A,).

This multivariate transformation and its conditional version (the CPIT, condition-
ing on sufficient statistics) indeed produce independent residuals expressed exclusively
in terms of observables with a reference distribution unrelated to the realizations or the
forecaster’s assumed model (section 2). Furthermore, the CPIT provides us with yet
another means of constructing forecasts (section 3). In the presence of group structure,
this prediction rule is in fact identical to the Bayesian rule with a right-invariant prior
distribution.

2. Some Diagnostics for Predictive Performance

Predictive performance can be viewed from two different perspectives. Firstly, in
the spirit of the Bayesian philosophy, one can investigate how the residuals would
behave under the overall probability model used by the forecaster. On the other hand,
one would also like to know the distribution of these statistical constructs under the
assumption that the data is actually generated from a member of the parametric family
P.

2.1 Assessing Predictive Performance from the Forecaster’s Viewpoint

Let F, represent the joint distribution (assumed absolutely continuous) of A®
under the fully-specified probability model arisen from the forecaster’s SFS :

a an
F,(a;...,a,) = J' ce I P,(a, ...,a) da,...da,

—o0

P,(a, 12®Y) . P,(a® ")
P,(a,12®Y) . P, ,(a®™")
Py(2,12%") . P (3, 12™7) ... Pya,la). P(a)

where P.(a,,a,...,a,)

Proposition 1 (Rosenblatt, 1952)

f A® is indeed an  F,—distributed = random  vector, then
U™ = (F(A), F{(A,lA),..., F(A,|A®")) are independently uniformly distributed on
[0,1] .

With this result in hand, the data will be declared inconsistent with the PFS under
study whenever relevant test statistics evidence departures from the hypotheses of
independence and uniformity. One is indeed not only interested in detecting



significant deviations from uniformity (which indicate that, on the whole, the shape of
distributions included into P does not fit reality), but also in testing whether one has
suitably captured in the postulated family of distributions, the correlation structure
between successive outcomes. In the context of criteria for evaluating probabilistic
forecasts, uniformity implies calibration (the lack of it being easily remedied by
recalibration (Dawid, 1984)), whereas independence, involving a deeper understanding
of the underlying mechanism and an ability to process past information, is related to
resolution and complete calibration (Dawid, 1986).

The evaluation is thus carried out under the induced PFS, i.e. for instance, in the
context of a Bayesian SFS, it is performed relatively to the model jePQn(Q) d9 and in

the case of a plug-in (Dawid, 1984) under the PFS generatedby regarding 6, , as the
true parameter at instance n . Under a particular distribution Py of the sampling
model, however, the residuals U,,U,,... will no longer exhibit uniformity nor indepen-
dence, even if the A;’s are independent and identically distributed (David & Johnson,
1948). Indeed, their probability law then formally reflects the original density.
Nonetheless, their marginal and joint distributions are independent of the unknown
parameters whenever these specify scale and location.

Example 1: Suppose A™ has a multivariate normal distribution with mean y, and
variance-covariance matrix X, , both = (u,..,n,) and Z,=(sy (i,j=1,..,n) being
specified :

U, =FA) =D [iﬁl-]

(o)

Az_uz—gn' (al—l"q)

(Gzz o )

U,=F,A,la)=D

F.(A, |_a(n—1)) [0} Ay -, — (gnn_l) 2;n (_('H)-un-)
(G- @2 5% 2)

where (62') =(6y; Op; - * - Oany) and @ denotes the standard normal distribution func-
tion.

Example 2: Consider the PFS constructed from the exponential model with parameter
0 by substituting at each stage the maximum likelihood estimate of the parameter, i.e.
A~E(0) independently for i=1,...,n , then P(A;=3,1a%") =6, e Sui%  with 6, ,=a"
Then & -4 ~ Ufo,1] independent .



2.2 Evaluation with respect to Sampling Models

For the exponential family of distributions, by conditioning on sufficient statistics,
the CPIT circumvents the problem described by David & Johnson (1948) and leads to
results, similar to those enunciated in Proposition 1, under the sampling distribution for
finite samples. Further, in the case of group-structural models, we can also achieve
such exact assessments without having recourse to this conditioning.

A. Group-structural Models

Specify a generic structural model by regarding the parameter as an unknown
transformation acting on some unobservable error variable i.e.

A=(Apsz .. ')=(90E1,90E2, ST ) Ee oE

where 0 belongs to a well-defined group of transformations, G say, and {E;} have a
known sampling distribution P, independent of 6 , the element of the parameter space
O characterizing the distribution of a single observable. By assumption, any g in G
induces a transformation § on the parameter space © and the collection G of all such
g not only has a group structure but is also both exactly transitive on © and iso-
morphic to G. Consequently, by fixing a reference element in © , any 9 is uniquely
characterized by a single g in G (which we called 6 in the previous model definition):
let ¢ denote this reference element, 8 =0o¢ for some © in G, identified with some
member of G, 6 say. Under the further assumption that G is exact on the sample
space, the isomorphism can be extended to the latter and A® can be expressed as
NA™ o {A™) where n(A™) is an equivariant function and {(A®) is the (reference)
maximal invariant statistic which labels the orbit of A® under G ie. {goa®:ge G}.
The model can now be reformulated as

nA®) = enE™)
{A®) = (E™)
with 0, NE™) e G . In the sequel, denote N(A®) by T, , nE™) by H, .
The fiducial predictive distribution is then arrived at via the predictive pivot
Via = Tl 0o Ay, = H' 0By,
which is obtained by eliminating the parameter 6 from
A,,=00E,,, and T,=0H,
After inverting the pivotal quantity, the future outcome
Apa = (GHL) 0 Ey,

is assigned the sampling distribution of the variable on the right of the equality, condi-
tional on t, and {(@™). This structural predictive distribution can be viewed as a poste-
rior distribution based on the structural distribution of 6 (i.e. that of 6 1t,,{@™)) as



prior and the sampling distribution of A,, given t, and {@®) (i.e. that of
Ap, 11,.6@™),08). As A,,=T,0V,, , this sampling distribution is dependent on the
unknown value of H, . Since, in this framework, the distribution of H, conditional on
{@®) is not adjusted after observing (t,,{@™)) , it is perfectly legitimate to transfer to
V,., the sampling distribution of H;'o E,,, . Furthermore, the ancillary statistic can be
discarded whenever T, is adequate for A,,, with respect to A® . Clearly,
(H,,E,.,) 1l {(A®) implies

(1) H, 1L {A®™) ie. T,=6H, Il LA™ | @
and (2) E, LA™ I H, ie. Ay, =00E,, Il (&A™ | 0,T,

Example 3: If P consists of a family of location models, the structural equation is
given by

A =0+E; i=1,...

where E; denotes an unobervable random variable with a known sampling distribution
(independent of the parameter 6 ), and thus defines a pivotal quantity. This model can
also be reexpressed as

T, =0+ nE™)
LA™) = LE™)

where the fixed joint distribution of (ME™),{E™)) is independent of the parameter
value. Also, this family of models allows

(A, Ay = (0,A-A,,...,A,-A) , N(A,...,A,) = A,
(A, Ay = (A-ALLAA,, .. AR , M(A,,...,A,) = A,

from which it transpires that { is essentially unique while n is not (Dawid & Guttman,
1981). Let fg(e) denote the density of the unobservable E;, then with respect to the

original model, conditionally on 6
£4(a;10) = fg(a; — 6)
whereas the reduced model implies
frae(C@™18) = £ (C@™)
and £yt 18@™)0) = £ oy pon(ta = 818@™)
The predictive pivot is obtained by substituting for 6 using
A,=0+H,

in an expression involving the future event:



Ap, - Kn = E,, - Hp
i.e. Anﬂ = K1‘1 + Eﬂ+l - Hn

Crucially, the sampling distribution of the E,,, — H, given the ancillary remains valid
even when knowing A, .

Applying the PIT to the fiducial predictive distribution is in fact equivalent to con-
sidering the value of the fiducial distribution function. And, this leads to tests of con-
sistency of the realizations with the forecaster’s model under the sampling distibution.

Proposition 2

Letting P,(.) denote the structural predictive distribution conditional on the first i-1
observations, {P;(A; < a),i=1,...,n} are independent uniformly distributed random vari-
ables on [0,1] under Py.

Proof : The structural residuals can indeed be equated to those based on the pivots, i.e.
Pi(Ai < ai) = Pi(Vi < Vi)

provided V; is, for each value of T, , a monotonic increasing function of A; (a
similar argument would apply were V; monotonic decreasing). As mentioned before,
the structural distribution of V; is obtained by conditioning on {E%") = {(@@*") under
P, :
P(V; S v) = Py(Vi < v; | LE) = L@™))

which is independent in form and distribution of the parameter. These residuals will
automatically be ii.d. U[0,1]-distributed if the right-hand side is expressible as
P(V;<v; | v&Y), which is the case when ({E®?), V;) is equivalent to {E®D)
(repeated application of this fact would thus lead to the desired result). One must
therefore show that the former is also maximal invariant. V; being a pivotal quantity

and {E®) an ancillary statistic, it certainly is invariant . Now consider any invariant
function Z(E®) . Then

Z(ED) = Z(H{} o ED)
=Z(H 0 E*V,H} 0 E)
= Z(LEH), V)
since Z(H: o E®Y) is invariant (and hence a function of {E)) .

In view of the equivalence relationship between the structural predictive distribu-
tion and that constructed via Bayes’theorem applied to a right-invariant prior (Hora &
Buehler, 1967), the residuals derived from the latter will also be independent uniforms
on [0,1].

Example 1 (continued): Suppose now that p, =, ... ,p) , I, = (o) with o3 =0 and
for i#j g;; = 0 (i,j=1....,n), both p and o being unknown. From a structural viewpoint



A;=p+6E; with E ~ N(O,1)
First, eliminate p between
-1)*6'(A,, —-p) ~N@©O,1) and o'(A,—p

%
Since these are independent, o"(l—%) (A, -A,,) ~ N(0,1) . Now, substitute for ¢
from

n-1

~ -~ 2
o ?Z.';(Ai A ~ %2,
The last two expressions being independent,

n-2)(A, - A,,)

n-1 R:3 ~ b
n < \2
oy 2 - K,)°)

The fiducial predictive distribution is thus

1

A, | a®) ~
" (n—-2)*

n-1 %
{in—x + (% E(a'l - Eu-l)z) tn—z}

Example 2 (continued): Exprcssing the observables in terms of a structural model
A;=0"-E  whereE;~E() fori=1,..,n

the sufficient statistic becomes

n n
To= ZA; = 60" 2F
=1

i=1
Eliminating 6 between

u,,=0-T,, and p,=0-A,

T An+ 1=y (u,, +p,)=Z
Since u,, ~T@®-1,1) , p,~TQ,1) and wu,, llp, ,» Z ~PBm1,1) and hence
T, A+ 1 ~Par(1,n-1) . The fiducial predictive distribution is therefore shown to be

n-1 n-1
Ay | 2™ ~ (Za) Par(i,n-1) - Za,
=1 =1

B. The Conditional Probability Integral Transform

For absolutely continuous distribution functions, by conditioning on sufficient
statistics, it is possible to avoid the problem referred to earlier, due to the reliance on
estimates for the parameters, and achieve exact independence (O’Reilly & Quesen-
berry, 1973). Assume that the sample A ,A,,...,A, is defined on the probability space
(R“,Bn,P;) and that Py belongs to a class P of univariate distributions with absolutely



continuous distribution functions. Let

Fi(a,,...3,) =Py(A < a,..,A,<2,IT,) ae(l,..,n}

where T, : R">R% (k,€ (1,...n}) is a minimal sufficient statistic for the family P.
Assuming that F,(a) is almost surely absolutely continuous, given t, , then
F,(A) ~ U[0,1] (ie(l,.,a}). As this distribution does not involve T, , F,(A) is thus
independent of the sufficient statistic. Moreover, since

F,,(aj la,..,a;,) =Pg(A; < 3 I Ty =t,,A,=a,,..,A;,=3;,) as.,
the next result follows immediately from Proposition 1 .

Corollary 3

Provided En(a,,...,aa) is dominated by the o—dimensional Lebesgue measure,
F.(A),F,(A,1A),...,F (A | A,,...A, )

are o independent uniformly distributed random variables on [0,1] under Py .

The maximum value of o such that F,(a,,...,a,) is absolutely continuous, called
the absolute continuity rank of P with respect to T, is in general a function of n .
For the exponential family of distributions, it is of the form n-c where c is the
number of components in the vector of minimally sufficient statistics, i.e. the number
of constraints imposed on the sample space when one is conditioning on any particular
value of T, .

Clearly, in general, each variable in the above corollary involves (A,,...,A,) ; con-
sequently, any additional information would change the form of previous residuals.
However, as apparent in the following proposition, expressions suitable for a truly
sequential assessment can be achieved by considering the sequence backwards and
imposing further restrictions on the underlying process. Assuringly; tackling the
sequence in reverse order leads to similar results: for
j € {n-1,...,n-a} F,,(Aj | Ag,..., A, ) defines a set of « ii.d. U[0,1] random variables.

Proposition 4  (O’Reilly & Quesenberry, 1973)
Provided

(1) double transitivity holds, i.e. for each n > 1, given A,,, , there exists a one-to-
one relationship between T, and T,,,

(2) for each j 2 1, T; is adequate for A; with respect to (Ajyse04y) , Le.
Aj Ll (Ajy A | T,

-ﬁn—u-rl(An-aﬂ) LR i;n(A-n)

generate o i.id. U[0,1] random variables.



Note that now each residual is expressed solely in terms of the data at hand at that
particular time. Condition (1) entails that the information included in T, and A, is
equivalent to that in T,,, and A,, . On the other hand, (2) requires the future to
depend on the present only through the sufficient statistic (Dawid, 1979). This is cer-
tainly the case when the observations are independent and, is true more generally
whenever each distribution Py for (A;,...,A,) , in the class P , has a density of the
form h(a) fg(t;,a;,,...,a,) (Takada, 1981) .

In an obvious way, all preceding statements generalize to multivariate classes of
distributions. Letting A,,...,A, denote k-dimensional vectors and o the absolute con-
tinuity rank of P with respect to T, , the vector of minimally sufficient statistics,

Fa(A), Fo(A, 1A), .. ., Fy(AJA,,....A, )
are iid. U[0,1]. If T, is doubly transitive and
A .u.( J-O-l’ 9__.n) I IJ i’j

not only are I?J (Ap (i=1,..,k and j=n-o+l,...,n) independently uniformly distributed
but l-:] (Al Ajj,....Agy;) also defines a set of ka iid. U[0,1] random variables.

Example 1 (continued) : Let
(-2)* (A; - A.)

= = A
(2 E;(Aj -&)

i i
F, ()= Pu,c(Pi <p | Za;, ZA})
= =
= Pu,c(Pi <p)
= Gi,(py)

where G, denotes the distribution function of the t-dlstnbutmn w1th k degrees of free-

dom. Hence, since the minimally sufficient statistics ZA and ZA’ are doubly transi-
j=1 =

tive, F; (A) ~ U[0,1] independent fori=3,..,n.

Example 2 (continued) : T,= ZA

i=1

Fo(a) = Po(A,T;! < a,t;! | Ty=t,) = Po(A, T;' < a,t;Y)

at;! .
n n-2
\[ T e W @
=1-(1-2,")™

—i+1

Consequently, (i Aj)_ (Zl‘, Aj) ~ U[0,1] independent fori=2,...,n.
Fl =



It should be noted that, unless it has been accounted for in the formulation of the
model, any systematic ordering of the observations would jeopardize the above
distribution-theoretic results described above and the validity of any test performed on
the residuals (these being based on the assumption that they are i.i.d. variables).
Furthermore, this multivariate transformation lacks invariance under permutation of the
observations: a different labelling would lead to other values for {F;:i=n-a+1,..,n} .
To remedy this defect, O’Reilly & Stephens (1982) consider the distribution of the
ordered sample, given the minimal sufficient statistics. However, when the data are
generated sequentially, this lack of invariance is somewhat of a side-issue: one is con-
strained to the order of realization.

The above theory vitally relies on the availability of minimal sufficient statistics of
fixed size. For non-regular families, where the range features among the parameters,
though such statistics exist, the conditional distributions are not absolutely continuous.
For example, if A,,...,A, ~U[0,0] , then T, is given by max {A,,..,A,} and F,(A,)
cannot be absolutely continuous as the corresponding density allocates a probability
mass of 1/n to the event A, =T, , a null set under Lebesgue measure (double transi-
tivity does not hold in this particular instance: T, cannot be recovered from T,,, and
A,,, when these are equal). One is therefore restricted to the Koopman-Darmois fam-
ily of densities, the largest class, for which such statistics exist, leading to absolutely
continuous distribution functions. At each stage, one is limited to consider at most o
residuals. Hence, one would wish this number to be an increasing function of n ,
which is certainly the case for this family.

3. C.P.1.T.- Based Prediction Rule

As mentioned before, the predictive distributions P(A;1a®") are constructed from
a parametric family of joint distributions for (A ,A,,...) , P, via a statistical procedure
so that the predictions are expressed solely in terms of past data. The residuals emerg-
ing from the C.P.L.T. , when coupled to a fiducial argument, can also serve as a way
of eliminating the parameter. This, however, may only be carried out in the somewhat
restrictive case where the absolutely continuous distribution function belongs to a
parametric family with doubly transitive and adequate minimal sufficient statistics.
{F.(A,)} are indeed pivotal quantities: their distribution is independent of the parame-
ters. From a fiducial view-point, fn(An) is now regarded as a random variable in A
with a®" fixed. The predictive density is then produced by differentiating with respect
to A, ,ie

n(‘ \ﬂ aﬂ l al 9oec a‘ﬂ—l) a I (an) I (n-l)
) -a_(n—l)

10



Letting f,(a,) denote the density corresponding to F,,(a,,)

a,
ie. Fy(a) = J’ f(z) dz, ,

the C.P.LT. method thus generates a predictive density of the form

2,
Fa) + % hmi [?I ?.,(z,.)]zndzn

For structural models within this class (i.e., for scalar observables, the gamma-
scale and normal models), this in fact produces the same results as the usual fiducial
distributions. Indeed, the predictive pivot V,,, is assigned the known sampling distri-
bution of H,' o E,,, and is independent of ancillaries (in the dependent case, provided
T, is adequate for A,,, with respect to A®™, which is the very condition for applying
the C.P.L.T. usefully in a sequential situation). Hence, a structural forecast distribution
is transferred to A,,, by regarding the sampling distribution of H;'o E,,, still valid
when assuming T, to be known. On the other hand, the C.P.I.T. gives a distribution
for A,,, conditional on T,,. Now, provided the conditions of Proposition 4 hold,
T.' o A,,, is a function of A,,, and T, , which is clearly one-to-one in A, for fixed
Taa - SO, equivalently, one can consider the distribution of V,, given T,, . Hence,
the C.P.LT. attaches to V,, its conditional distribution and, given T, , induces a
predictive distribution for A,,, . Therefore, the two approaches will agree so long as
V... is independent of T, , which is established in the following proposition.

Proposition 5 (Seillier, 1986)
le J-I- Tn+l

Proof : The family P={Py3:0 € G} (where we tacitly identify 6 with 8 and G with © )
brought about by the structural model, is G-equivariant, G being a group : forg € G,
if A; has a distribution in P so does goA;

goA;=go0(00E)
= (g9) o E;
and gb € G. Now, V,, , a function of A,,...,A,,,, is invariant under G : forallge G
go Vo, =(ETY) o (go A,
= (g6H,)" o ((26) o Ey,,)
= (H;20)"(g0)) o E,,,
=H;' o E,,
=V,

n+l

11



By virtue of the fact that P is G-equivariant, T,,, , the minimal sufficient statistic
based on (A,,...,A,,,), is found to be G-equivariant i.e. if t,,@™?) =t,,®™") then, for
any ge G, t,,,(g0a®") = t,,,(20b™") (using lemma 2.2 of Dawid (1982)). In fact, G
acts transitively on T, i.e. for any two values of the sufficient statistic t,, andt,,,
one can find an element of G, h say, which transforms one into the other : let

ty, = Ohy,, and t;m = phy,,
then 0t = Wl i€ o = OH
G being a group, 6u' € G . Hence there is a unique orbit, implying that any G-

invariant statistic must be constant. After considering theorem 3.4 in (Dawid, 1982),
we can conclude that

Vou LT, | U
U being a maximal G-invariant function of T,,, , and therefore

le -u- Tml

Moreover, the fiducial predictive distribution is equivalent to the Bayes posterior distri-
bution obtained from the G-invariant prior (Hora & Buehler, 1967), and hence so is
that generated by the C.P.LT. Implicit in structural prediction is the construction of a
prior distribution for the parameters which we elicit not via some prior distributional
information but by considering the group structure of the parameter space. By con-
trast, with the C.P.1.T.-based rule, we merely assume the existence of sufficient statis-
tics (with the gamma-shape family as a typical example).

4. Discussion

In the context of sequential probability forecasts, by generating ancillaries for exa-
mining whether these were derived from a model consistent with the data, the P.I.T.
and its conditional version provide a means of evaluating predictive ability which is
independent in form and distribution of both the forecaster’s model and that underlying
the process. As a result, they can help not only in assessing models used for prediction
purposes but also in selecting them prequentially (Dawid, 1984) i.e. with regards to
their ability to produce sensible probabilistic forecasts and not to their goodness of fit
to past realizations (as a safeguard against the danger of overparametrization, for
instance).

Among their attractive features, they are naturally suited to sequential situations
(i.e., at any particular time, they do not refer to yet unknown quantities) and yield
independent residuals with the same distribution whatever the underlying F . These
transforms also bypass any problem which arises from the lack of independence among
the data and the forecasting distributions. Unlike most criteria commonly used to
measure the suitability of posited models, they do not focus on a single characteristic

12



of the predictive distribution (such as its mean, median or mode) and thus allow us to
check the adequacy of the whole distribution. Moreover, by applying such tests to
subsequences of the residuals, one could investigate further the nature of the assumed
‘relationship between the events and correct it if need be.

It should be stressed that, whilst for situations where the C.P.I.T. is suitable, the
residuals are independent uniform random variables under the sampling distribution,
the test based on the P.LT. is performed under the probability model induced by the
statistical forecasting system. For structural models, however, its application to the
fiducial SFS, produces the same result under the sampling distribution, given the ancil-
lary statistics. The domain of validity of results under the sampling model therefore
extends beyond the exponential family as T, is no longer required to be sufficient,
when one is conditioning on ancillaries. With respect to structural models within the
range of application of the C.P.I.T. (e.g., in one-dimensional sample spaces, the normal
and gamma-scale families), in view of the equivalence relationship between the predic-
tive distributions constructed from the C.P.LT., the fiducial argument and Bayes’
theorem in association with a right-invariant prior, the residuals calculated by any one
of these methods will also be regarded as i.i.d. uniform quantities by the others as well
as under the sampling distribution. While we established this equivalence by showing
that the C.P.L.T. when coupled to a fiducial argument yields the same transformed vari-
able as the usual pivotal argument and using a well-known identity (Hora & Buehler,
1967), O’Reilly and Villegas (1987) proved directly that the C.P.LLT. and its bayesian
counterpart, the predictive probability integral transform, lead to the same residuals.

Summarizing, the PIT provides us with a means of constructing tests of predictive
performance under the assumption that probability model induced by the SFS is con-
sistent with the data. Further, the transformed variables will also be independent uni-
forms under the sampling model in the presence of appropriate group structure (condi-
tionally on ancillary statistics). This will also be the case asymptotically in the more
general situation where prequential consistency (Dawid, 1984) holds. For the natural
exponential family, one can also obtain residuals with the same properties under the
sampling model , when conditioning on sufficient statistics. On the other hand, as a
tool to generate forecasts, the C.P.IT. gives rise for structural models to the same
predictive density, and hence the same tests as the usual fiducial method and therefore
the Bayesian rule with a right-invariant prior.
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