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Let Xl’ . ’XM’YI’ e ,YN be random variables each ranging over [0,1]
and set X=(Xl, - ’XM) and Y=(Y1, - ,YN). Suppose X and Y have a
joint density function and let f denote the conditional density function of Y

M+N . Consider the

given X. It is assumed that ¢ = log f is bounded on [0, 1]
approximation ¢* to ¢ having the form of a specified sum of functions of at
most d of the variables Xpsee s XypYise-ady plus a normalizing function of
x and, subject to this form, chosen to maximize the expected conditional log-
likelihood. Let p be a suitably defined lower bound to the smoothness of ¢*.
Consider a random sample of size n from the joint distribution of X and Y.
Maximum likelihood and sums of products of polynomial splines are used to
construct estimates of ¢* and its components having the optimal L2 rate of

convergence n P /(2p+d)
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1. Introduction. Consider discrete random variables Xl’ ces Y1 ,...,Y, that

w N
range over finite sets %, ,... &y, ¥],. .., J) respectively. Set =%, x - - - X%, and
y=y1x ‘e xj/N. Also, set X = (Xl’ R ’XM) and Y= (Yl’ - ,YN), and let fX,Y
denote the joint probability function of the $-valued random vector X and the %‘valued
random vector Y. It is assumed that fX,Y is positive on #x % Let f denote the
conditional probability function of Y given X and set ¢ = log f. Suppose, for simplicity,
that M =2 and N =1. Then we can write

M) @0lxp ) = @oxy X) + 0300+ 9130/ X + P30 1%)) + @130/ 12y, 2x)).

The right side of (1) is referred to as the saturated log-linear model for ¢ or as its
ANOVA decomposition. In order to obtain a unique such decomposition, suitable
constraints have to be imposed on the components P3» 913> Po3 and ?123 that involve y.

In practice, unsaturated submodels would commonly be employed in such contexts.
Let d be the maximum number of variables that are allowed in any component involving
y. In the context of (1), d =1 if and only if the conditional probability function of Y does
not depend on X and X, or, equivalently, if and only if (X 1’ X2) and Y are independent;
if d =2, then
(2) ‘P(.YIXI, x2) = ‘P()(xl,x2) + ‘P3(}’) + ‘P13()’|xl) + ¢23(Y|xz)-

Given a random sample of size n from the joint distribution of X and Y, we can use
finite parameter conditional maximum likelihood to come up with an estimate @ of . In
particular, in the context of (1) we get that
B §0lxp xp) = §olxys X + $30) + By301x)) + B30/ 1x9) + Py 93071y 1),

In order to obtain a unique such ANOVA decomposition, we need to impose suitable
constraints on the components ¢3, ¢13, ¢23 and ¢1 23 Examination of these componénts
can give insight into the shape of ¢ and hopefully of ¢ as well.

In the context of (2) we get that
“) bO1x(5 %) = Gglxys Xp) + $30) + P30 |xp) + By301x)).

If we do not know that ¢ has the form given by (2), we can think of @ as an estimate of

the corresponding best theoretical approximation

&) (P*(ylxl’xz) = (pa(xl’xZ) + ¢§(Y) + ¢i3()’|x1) + ¢§3()’|x2)-



to @, where best means having maximum expected conditional log-likelihood subject to
the indicated form.

Fineberg (1975) states that "There remain a variety of unsolved problems in the
analysis of multidimensional contingency tables, solutions to which would be an
enormous help to those dealing with observational studies." He then goes on to list five
such problems, of which the first is "the development of methods for the analysis of
mixtures of continuous and categorical data, especially in situations where there are both
continuous and discrete response variables."

XY Y

1,..., M, 1,...,N
are a mixture of discrete and continuous random variables. In order to employ finite

Observe that equations such as (1)—<5) are applicable when X

parameter conditional maximum likelihood estimation in this context, we can associate
the continuous variables with polynomial splines. From a methodological viewpoint, an
attractive approach would be to use adaptive model selection techniques as in MARS
[Friedman (1990, 1991)]. In the interest of mathematical tractability, however, in this
paper we will treat nonadaptively selected models. Given the observed values of
X 12 ,XN, these models have the form of a multiparameter exponential family. We
will further restrict attention to continuous random variables X 1o Xy YooYy
that each range over a compact interval. Without further loss of generality, we can
assume that each of these variables ranges over [0, 1].

It is then natural to conjecture that (under suitable conditions) the integrated squared
error of @ as an estimate of the corresponding best approximation ¢* and the integrated
squared error of each component of @ as an estimate of the corresponding component of
¢* should approach zero as n —+«. Suppose the components of ¢* all have p derivatives.
In light of Stone (1982, 1985, 1986, 1991a, 1991b, 1991c, 1991d) and Hasminskii and
Ibragimov (1990), it is natural to conjecture that these integrated squared errors should
converge to zero at the optimal rate n—?‘p /(2p+d) and hence that choosing d<M + N
should mitigate the "curse of dimensionality." The main purpose of the present paper is
to verify the latter conjecture and thereby to provide theoretical motivation for the use of

polynomial spline estimation as a building block in modelling conditional distributions



involving random variables some or all of which are continuous.

2. Statement of Results. Set .3 =]0, l]M and 7=[0, l]N . Given a function A on
ZXx ¥y and given xe%, set c(x;h)=Ilog ] yexp(h(y] x))dy, if c(x;h) <~, then
exp(h(y|x) — c(x; h)) is a density function on . Given a subset s of {1,...,M + N}, let
H p denote the space of functions on.# x ¥ that only depend on the variables

xl,le sn{l,...,M} and yl_M,le sn{M+1,... ,M+N}.

Let d’o be a nonempty collection of subsets of {1,...,M +N}. It is assumed that
{1,...,M}c o/O. It is also assumed that c#’o is hierarchical; that is, that if s is a member
of “ and r is a subset of s then r is a member of & Let Jb’o denote the collection of
functions of the form A=Y e Joh . with hs €H p for se JO and such that ¢(x; h) < « for
xXeZ)}.

Suppose X and Y have a joint density function fX,Y’

CoNDITION 1. The function log fy y is bounded on.% x ¥

Let fx denote the density function of X, and let f denote the conditional density
function of Y given X. Then fX Y(x, y)= fx(x)f(y| x) for xe % and ye % Set ¢ =logf.
The expected conditional log-likelihood function A(h), h € ¥y, is defined by

Ath) =j U [h(y | x) - c(x; WAy | x)dy]fx<x)dx.
LY
The first two parts of the following theorem will be proven in Section 3; the third part,

which is contained in the information inequality, is a consequence of Jensen's inequality.

THEOREM 1. Suppose that Condition 1 holds. Then there is a function h* € Ja’o such
that A(h*) = max he J{()A(h)' The function ¢*=h*—c(-;h*) is essentially uniquely
determined. If ¢ = h— c(- ; h) for some h ¢ Ja’o, then @* = @ almost everywhere.

Set
Chy, hy) = jj Uyhl(ﬂ Ry | WAy |9

and ||h||2 = (h, h) for square integrable functions hys hy, hon % x ¥. For s € &, let Jtﬁ



denote the space of square integrable functions in /%’  and set
a?g= {he o‘&ﬂs: h ;Jff_forrcswithr#s}.
(Here h 1 J{ﬁ means that (h, k) =0forke J{Z.)

Set = {s¢ ofO: sn{M+1,... M+N}#0} and d= max . #(s) It is assumed
that d > 1. Let &2 denote the direct sum of th, s € . Then each h € #?2 can be written in
an essentially unique manner in the form 4 = Zs h= ) el Where h e Jfo for se o
[see Lemma 1 of Stone (1991a)].

Suppose the function ¢* in Theorem 1 is square integrable. Then it can be written in
an essentially unique manner as ¢* = Zs (p; —c(- ;Zsfp;) with (p; € th forse o

Let 0<B<1. A function h on Fx ¥ is said to satisfy a Holder condition with
exponent f3 if there is a positive number B such that

| iy | %) = h(ygy | %) | <B(|x—xolﬁ+ Iy—yOIB3, xg-xeZFandy,,ye ¥,
here |x| = (x% +xM)1/2 is the Euclidean norm of x = (xl, . ,xM) and |y| is the
Euclidean norm of y. Given an (M + N)-tuple a = (oc1 e Oy N) of nonnegative

integers, set [a] = o+t oy and let D% denote the differentiable operator defined

by

D% a[a]

a (04 o :
M+1 M+N

Let m be a nonnegative integer and setp =m + ﬁ. It is assumed that p > d/2.

3x13x

ConprITION 2. The function ¢* is bounded and, for s € of and [¢f] = m, the function
(p; on.g x ¥is m-times continuously differentiable and Daqp; satisfies a Holder condition

with exponent S.

Let (Xl’ Yl)’ - ’(Xn’ Yn) be a random sample of size n from the distribution
having density function fX Y and let -, - >n denote the semi-inner product defined by
_ -1
(hl’ h2>n =n Zihl(YiIXi)hz(Yi|Xi).
The corresponding seminorm is given by ||h||3 = (h, h).
Let K =K be a positive integer and let /,, 1 <k <K, denote the subintervals of

[0, 1] deﬁnedby =[k-1)/K, k/K) for1<k<Kandl =[1-1/K,1]fork=K. Letm



and g be fixed integers such that m>0 and m > gq. Let 2 =2 n denote the space of
functions g on [0, 1] such that

(1) the restriction of g to / A is a polynomial of degree m (or less) for 1 £k < K;
and, if g 20,

(ii) g is g-times continuously differentiable on [0, 1].
Let Bj’ 1 <j<J, denote the usual basis of @ consisting of B-splines [see de Boor (1978)].
Then, in particular, BjZO on [0,1] for 1<j<J and Zij= 1 on [0, 1]. Observe that
K<J<(m+ 1)K. It is assumed that J > 2.

Given a subset s of {1,...,M+N}, let 4 P denote the space spanned by the
functions g on.Z x ¥ of the form

8010 =lhesnir, . B8P esniie1, . .. wen810 L1
where x=(x1,..., M}’ y=(yl,...,yN) and gle.ﬂ for /e 5. Then ys has dimension
T#9)_ser
j’g ={ge ?s: g1, 7r for every proper subset r of s}, s¢€ o.

(Here g L, f’_ means that (g, h)n =0forhe 7r')

Sety():y{l, M and 4 = {1 g: g € fgforse ¢’}. The space

y0+y = {):'sed’ogs: g€ fsforse o)"o}

is said to be identifiable (relative to the random sample of size n) if the only function
g€ 70 + y such that g(Yl.IXi) =0 for 1<i < nis the zero function; otherwise, 70 + f is
said to be nonidentifiable. Suppose y0+ # is identifiable. Then (-, -)n is an inner
product on ¥+ % and ||-|| is a norm on o+ ¢ thatis, [ig|| >0 for every nonzero
function g € f o f Moreover [see Lemma 2 of Stone (1991a)], y is the direct sum of
fg, se€ o, that is, each ge § can be written uniquely in the form g=% <85 where

g€ ygforse .
ConprTion 3. 722 = o(n)~ %) for some 5> 0.

It follows from Theorem 1 of Stone (1991a) that if Conditions 1 and 3 hold, then
P(j o* y is nonidentifiable) = o(1).



We refer to the model corresponding to the assumption that
Ay|x) =exp(g(y|x)-c(x;8))., xeZFandye 7,
as a multivariate log-spline conditional model. The corresponding conditional log-
likelihood function /(g), g € ¥, is defined by
Ig) = L;[8(Y;| X)) — c(X;5 )]

If ge ¥ and I(g) = max geyl(g)’ then ¢=g—c(-;2) is referred to as the maximum
conditional likelihood estimate of ¢* and f =exp(®) is referred to as the maximum
conditional likelihood estimate of f* = exp(¢*). If ?0 + ¢ is identifiable and § exists,
then =% < (IJS —c(-;X s(b ), Where ¢s € 72 is uniquely determined for s € /. According
to Lemma 9 in Section 4, if Conditions 1 and 3 hold, then @ exists except on an event
whose probability tends to zero with 7.

The rate of convergence of ¢ to ¢* is given in the next result, which will be proven

in Section 4.

THEOREM 2. Suppose Conditions 1-3 hold. Then
¢, - o5l = Op[f_p + ﬁa/n], se,

SO
1= ¢"ll=0p [P+ im].
Observe that if Condition 3 holds with J ~ nY/ZP*® then p > dp2.
COROLLARY 1. Suppose Conditions 1 and 2 hold and that J ~ n/%P+®_Tpen
o, - @Il =0pn P/ P+D), se o,
SO
19~ 97l = 0ptn P3P+ Dy,

The L2 rate of convergence in Corollary 1 does not depend on M + N. It is clear [see
Stone (1982) and Hasminskii and Ibragimov (1990)] with d =M + N that this rate is
optimal. When d =M + N, it is possible to use the tensor product extension of de Boor

(1976) to obtain the pointwise and L_ rates of convergence of ¢ to ¢" [see Stone (1989,



1990, 1991d) and Koo (1988)]. Stone (1991d) contains a more extensive theory when
M =N =1. The analog of Theorem 2 for interactive spline regression was obtained in
Stone (1991a), the analog for generalized interactive models was obtained in Stone
(1991b), and the analog for multivariate log-spline models was obtained in Stone
(1991c).

The density function of X and the joint density function of X and Y can be
estimated as in Stone (1991c), from which we can obtain an alternative estimate of the
conditional density function of Y given X. Some conceptual advantages of the approach
of the present paper over this alternative approach are discussed in Stone (1991d). An
additional advantage of the present approach when N =1, m =1 and d 2 2 is the absence

of the need for numerical integration in solving the maximum likelihood equations.

3. Proof of Theorem 1. Let h1 and h2 be in d?o. For t € [0, 1], set
KOy |x) = (1= Dhy(y]%) + thy(y|®), xeFandye
Cx;n) = c(x;h(t)), Xe %, and
f (I)(y |x) = exp(h(t)(yl x)-c(x;1), xeZandye ¥.
Then h(t) € J{O. Also, C(x;1)) is a continuous function of ¢ and its second derivative is
given by
(6) i = 0= 012 Dy | x)dy

(0 2
~[]. tryy10- iy 11Oy 10y
4

for 0 <t <1. (Observe that the right side of (6) can be written as a variance. It follows by
a standard argument in the context of one parameter exponential families or that of
moment generating functions that the various integrals appearing in (6) are finite.) We
conclude from (6) that C(x; -) is convex on [0, 1] and that it is strictly convex unless
h2(- Ix)— hy(: |x) is essentially constant on %. Observe that

€)) A(h(t)) =(1- t)A(hl) + tA(h2) + Jg[(l - De(x; hl) + te(x; h2) -C(x; 1] fx(x)dx.

The first part of Theorem 1 will now be verified. It follows from Condition 1 and



the information inequality that

Am=[ Uyh(yl Ry Iy e~ |t e

< jj Il Josf 1101 Ry |z <, he

and hence that the numbers A(h), h € 7%y, have a finite least upper bound L. Let [A|
denote the Lebesgue measure of a subset A of & x %. Choose hk € Jfo for k21 such that
A(hk) -L as k-« Set fk(ylx) = cxp(hk(y|x) - c(x;hk)) for xe.% and ye 9. Since
fk(- ;X) s a density function on ¥ for x € .3,
[{(x,y) e Ex ¥ hk(ylx) - c(x;hk) 2B} | <exp(-B), BeR
It follows from the inequality
f
log flg < flf -1

that
8) limB_m limsupk_ml {((x,y) e ZEx V- Ihk(ylx) - c(x;hk)l >B}| =0.
It is a straightforward consequence of (6)—(8), Lemma 1 of Stone (1991b), and the
definition of L that there is a function h* J?’O such that hk -c(- ;hk) -+ h*—c(-;h*) in
measure as k - . Necessarily, A(h*) = L = max he J{oA(h)'

In order to verify that A* — c(- ; h*) is essentially uniquely determined, suppose hI
and A

2
for almost all x € %, hi(y| X) — h’i(y | x) is essentially constant in 7 and hence that

[A5(y %) — c(x; h3)] - [A](y|X) — c(x; h]]

is essentially constant in y. Since

are in J{O and that A(hi) =L and A(hi) = L. It then follows from (6) and (7) that,

Iyexp[hi(ylx) - c(x; h’i)]dy =] and fyexp[hi(yl x) —c(x; h’i)]dy =1,
the constant difference must equal zero. Therefore h’i -c(- ;h’i) = hi -c(- ;hi) almost

everywhere on.g X ¥.
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4. Proof of Theorem 2. Throughout this section it is assumed that Conditions 1-3
hold. Let ||| , = sup, o ye j/l h(y|x)| denote the L  norm of a function h on.% x ¥.

LEMMA 1. Let T be a positive constant. Then there are positive numbers M 1 and M2
such that
— M lh=c(- b - @°]* < AGh) - Ag*) S = Myllh - (- 3 ) — ||
Jor all he 7%, such that |h—c(C-sm) <T.

PrROOF. Given h e %0 with ||h - c(: ;|| < T and given ¢ € [0, 1], set

KOy)x) = (1-Dp*(y|x) + th(y|x), xeFandye ¥,
and C(x; 1) = cx: KP), x € %. Then

d () _
4 Ak )|t=0_0

and hence, by (7),

&

1 1
A(h) - A(@®) =J (-0 L nkDyas = —J (1-1)U C”(x.;t)fx(x)dx] dr.
0 dt 0 Z
Thus, by (6), there is a positive number M 1 such that
A(h) - A(¢*) 2 —Mluh —c(-3h) - (p"'||2, he JJO with ||h—c(-; B)|| < T.
By another application of (6), in order to complete the proof of the lemma, it suffices to

show that if h, € & and ||k, — c(- ; h})|| , < T for k 2 1, then there is an £ > O such that
2
[ []. ity -t - oy 1y o] “ax
Ry
-9 [[ toin-cxin)- o107 ¢10dy)dx, k> 1
F-Y
This result is easily established under the additional assumption that
timin,,, [ [[ U100 - ctxi) - 0y 101%7*(y | iy x> 0.
Yy

(Note for a given he JZO and xe.Z that if h(y|x)—c(x;h) — ¢*(y|x) is essentially

constant in y, then this constant equals zero.) Otherwise, we can assume that

1 . —m* 2 * -
llmk-»OJ;gU S0 -ty o'y Iy ] dx =0.
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Then there is a bounded function R such that

1= [z[‘:j/exp(hk(ﬂ x) —c(x;h k))dy] dx

=[ [ expthyim - cxip - 7"y x0f(y] iy | dx
sy

=1t uvcgUky[hk(y' x) - c(x; h) - ¢*(y| x]f"(ylx)dy] dx

. o 2.,
+uj FOIOMh10~ txih) = ¢ 1YY (v |%)dy)dx

which yields the desired result. o
The next result is Lemma 3 in Stone (1991b).
LEMMA 2. There is a positive number My such that lell,, < M3/ d/2||g|| forge g.

According to a simplification of the argument used in Section 3 to prove Theorem

. . * N s . .

1, there is a function g€ % such that A(gn) = rmnge ?A(g). The function ¢, =
g”"l -c(-; g;‘l) is uniquely determined. (Actually, (p; depends on J rather than n, but we are
mainly thinking of J as depending on n.) If ¥ o # is identifiable, then g;‘l =3 < (p;‘ls with
(p; €y (s) being uniquely determined for s € . The proof of the next result is essentially

the same as that of Lemma 3 of Stone (1991c¢).

Lemma 3. |[¢ - 912 = 00 ™%P) and |3, - 9", = OU 2 7P).

LEMMA 4. Suppose § o* % is identifiable, and let G)n = gn —c(- ;gn), where

8,=L. P, cFwithp, ey 2 being uniquely determined for s € . If
o * 2 _ —2p d
1@, — @LI" = 0p " +J"/n),
then
~” . 12 - —2p d
19,5 = @l =0pU ™ +J7/n), seo.

PROOF. Let(-,:) 0 denote the inner product corresponding to Lebesgue measure on

Zx 9, let |||y denote the corresponding norm, and let ¥ ©) genote the space of

functions in ¥ sy ¥ that are orthogonal to %, relative to the inner product (-, )O.
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Then @, =h —c(-:k ) and @7 = b* - c(- %), where &, € 3. Now

I, = (- 3 ) - 2 = cC- s Mg = Op 2P + 1 %m),

2
-~ . 3 i _ _2p d
un o010 IOl — (e )=t w1 "dx=0p ™ + 1%,

Also, | yﬁn()'l -)dy is in fo on the one hand and it is orthogonal to 70 on the other

hand. Thus | yﬁn(y| -)dy = 0. Similarly, ] yh;(yl -)dy = 0. Therefore,

J‘z[c(x; b)) - c(xi i 2dx = 0,0~ +7%m),

s ||k, - B2 12 = 0p P + I %n) and hence [, — h||* = 0572 +1%m).
Seta =h -, ¢ yoanda;l=h;—g‘;le % Then
- . 2 _ -2p , ,d
18, -8, +a,—a,|"=0pJ ™ +J"/n).
Thus, by Lemma 7 of Stone (1991a),
~ . = 2 -2 d
12, - &5 +a,-al;=0p~P +1%nm).
Since &n - a; € f 0 and gn - g;‘l L f o Ve conclude that
~ .2 _ -2p  ,d
&, — &,ll;, =0pU " +J"/n).
Thus, by Lemma 8 of Stone (1991a),
~ . 12 _ -—2p d
18,5- @5l =0p0 ™7 +1%m), sed.
The desired conclusion now follows from another application of Lemma 7 of Stone

(1991a). o
LEMMASS. [|l@p - (p;"2 = OP(J_2P + Jd/n) forse o

PROOF. Suppose ¥ o* # is identifiable, and let gn denote the orthogonal projection
of ¢* onto ¥ relative to L Then §n = Zs ‘P;zs’ where ‘p;zs €y g is uniquely determined for
s € . Set ('i)n = gn —c(-3 gn). It follows from Theorem 3 in Stone (1991a) that

~ 2 _ -2p , ,d
(11) 1@, — 95" =0pU " +J%/n), sed,
and hence from Lemma 2 that

19, - 9"l = 0p 2 +1%m).
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Thus, by Lemma 3,
- w2 _ —2p d
18, - @,I" = 0p ™ +J%n).
Consequently, by Lemma 4,
(12) 18, - 0, )2 =0p0 2P +1%m), seo.

The desired result follows from (11) and (12). o

Let T h 2 1, be positive numbers such that Jd ‘tzn =0(1) and Jdlog n= o(m.'zn ). The
next result follows from Lemma 2 and Bernstein's inequality (see the proof of Lemma 5
in Stone (1990)].

LEMMA 6. Givena >0 and € >0, there is a 8> 0 such that, for n sufficiently large,

ig)- @}
Pl|——- A@- A

forallge g with ||g—c(-;8) - ¢}| < at,.

2 etzn ] <2exp(— é'n‘:zn)

We define the "diameter" of a set B of functions on.g x ¥ as

sup{lig, - 8¢l 81,8, € B}

The proof of the next result is essentially the same as that of Lemma 8 of Stone (1991b).

LEMMA 7. Givena >0 and 6 > 0, there is a positive constant M 4 such that

(g—c(58):g¢ gand lg-c(-;8) - gl < ar,)
can be covered by O(exp(M 4J dlog n)) subsets each having diameter at most 61'2n .

LEMMA 8. Let a > 0. Then, except on an event whose probability tends to zero with

n, 1g) <K@} for all g« F such that g~ c(-38) - @3] =z,

PROOF. This result follows from Lemma 1, with ¢* replaced by (p""l and J{O replaced

by ¥, Lemmas 6 and 7, and the inequality
g,) - I(g))
l_n—l Sllgy—cC-:8) -8 —c(-:8 )l 81:87€ F- 0
LEMMA 9. The maximum likelihood estimate of ¢ of the form @ =g — c(-;2) with
g€ % exists and is unique except on an event whose probability tends to zero with n.

Moreover, || - @y ll,, = op(D).
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Proor. It follows from Lemma 8 and the concavity of A(g) as a function of g that

1§ - @}l = 0p(,) and hence from Lemma 2 that ||¢ - ¢} ]| = oP(Jdlztn) =op(1).0

For s e o/, let /s denote the collection of ordered #(s)-tuples jl’ le s, with
Jj€ {1,...,J) for les. Then #5) =J*5)_ For je Fo let st denote the function on
& X ¥ given by

B(y|x) = | B; &p B; 01y

] il
lesn{1,... .M} J1 ¥ (lesn{M+1,... M+N} I
for x = (x1 e ,xM) eZandy= (y1 - ,yN) € 7. Then the functions st, je fs’ which

are nonnegative and have sum one, form a basis of ¥ 5
SetK=Y% < #(F s)‘ Given a K-dimensional (column) vector 8 having entries st, seef
andje Fp set

g(|:0= L 6.B. sed,
s jefssj 5j

gC-|-;0)=2g(]:6),
A}

CC3 @ =cC-ig(- |36 =1og |_expletyl-; Oy,
Y
and
fG|-;6) =exp(g(-|-;0)-C(- ;).

Then the conditional log-likelihood function can be written as

(0 = Zlogf(Yi | xi; 0= Z_[g(YiIXl-; 6 - C(Xi; 0].

i i
Let
_d
$(0) = 551(6)

denote the score at 0; that is, the K-dimensional vector having entries
9 1) = :
10 =3 (B, 1 X) - [ By IX)Ay|X,: Oy
5] i v
Let

7
@

be the K x K matrix having entries
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P
(13) gg—gg— 1O = - B_. (y|X)B_ . (y|X)Ay|X.; Ody
117 S1da 214 Uy S I S51)2 i i

- Ufs 5 O1X)AY X5 6rdy] Uylejz(yIX,-)f(yIXi;G)] dy).

Set®={0¢ R 8(: |-;0) € ygforse ).
Let 6" be given by @) =1 ¢} ~C(-;6"), where ¢} =g (-|-;6"¢ 72 for se o.
Let O denote the maximum likelihood estimate of 6, so that =1 5 (i)s —C(- ;6), where
(bs = gs(- | - Q)€ 72 for s € f. Then 6" and @ are in ©. The maximum likelihood equa-

tion S(é) =0 can be written as

1 )
JOZ?TS(" +1(0- 0*))dr = - S(6").

Thus it can be written as D(é— 6") = —S(6"), where D is the K x K matrix given by

1 R
D=| —I(6+16-6)ar
J 00606

Let | | denote the Euclidean norm on RE. It follows from the maximum likelihood

equation that

(14) 0- 6)'DB- 6") = — (6- 6*)'s(6").
We claim that
(15) |5(6"|% = 0p(n)

and that (for some positive constant M 5)
(16) 8- 0)'D®O- )< Mg~ |0- |
except on an event whose probability tends to zero with n. It follows from (14) —(16) that

0-0|=0 (JZd/n) and hence that
P

an 185 @32 =0p0%m), se o,
and
(18) 1o- 1% = 0 m.

Theorem 7 follows from (17), (18) and Lemmas 3 and 5.
To verify (15) note that

E[st(le)] = J.Z[Jyst(Y| XAy|x; 9')dY]fX(X)dx, sesandje £
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Consequently,
E|S@)|%=nE I varB, Y1) <L % E[B> {(Y1X0] =0,
S Je £ S je £
so (15) holds.

Finally, (16) will be verified. It follows from (13) that

2
as 5L Cal (@8——2[[ 82y |X,; DAy | X;; O)dy - [j 891X DAy |X;: 0y |

for 8,0 ¢ IRK By Condition 2, the inequality p >d/2, and Lemmas 3 and 9, there is a
positive constant T such that
(20) lim __ P(|@yll,,<Tand [[9],<T)=1.

It follows from (19) and (20) that there is an €> 0O such that, except on an event whose

probability tends to zero with n,
t 2 2
o'mos-es|[ Puix:ddy- || soixzoa] ] e
it 4 v

Consequently [see Lemma 7 of Stone (1991a) and its proof], there is an £> 0 such that,

for € > 0, except on an event whose probability tends to zero with n,
2
1) 5'Dé< - en{EU g2(y|X; 5)dy] - E[U sy |X &d)'] ]
Y A4
- elEU g2(y|X; &dy]} , O€ |RK;
/4 +

hercz+=zforz>0andz+=0forzs0.
Suppose that 8¢ ©. Then g(- | - ; ) 1, 9 thatis,

(22) Z g(Yl.|Xl.; b)h(Xi) =0, he ?O’
i

Chooose & > 0. It follows from (22) and Lemma 7 in Stone (1991a) that, except on an

event whose probability tends to zero with n,

(23)  |ER(Y|X; §KQ0]| < &yBlg (Y|X: 8 VEh"(X), S¢ Oand he g,
Set h(x;&:fyg(y|x;& for xe % and 8¢ ©. Then h(-;ﬁ)eyo for 6e¢ ©. By

Schwarz's inequality,

@4) | E([(Y|X; &) — h(X; B} | < vE([Z(Y|X;8) — h(X; 8)]°) JEIHZ(X),
se®andhe g,
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It follows from (23) and (24) that, except on an event whose probability tends to zero

with n,

|ELACK: H1O0N| < eyl (Y 1X: ) + VE(LgCY|X: 8) - X 81%) | VETA7 O,
6eOandhe y o
Choosing h = h(-; d), we conclude that, except on an event whose probability tends to

zero with n,

VEUR(X; 8] < £,/EIg“(Y | X; ) + VE([g(Y | X; &) - h(X; B}, B¢ ©.

Consequently, except on an event whose probability tends to zero with n,

2
(25) E([g(Y|X; & - h(X; 81°) 2 S=E pie’(v| X §), 5¢ ©.
It follows from Condition 1, (21) and (25) that there is an £> 0 such that, except on an

event whose probability tends to zero with n,

26) 5'Dé< —EnJ J g2(y|x: S)dydx, &e ©.
Y

According to Lemma 6 of Stone (1991a), there is an € > 0 such that, except on an

event whose probability tends to zero with n,
27 J J g2(y| x; &)dydx > EEJ J g?(y| x; &dydx, O¢e O.
Y S'EB Y

It follows from the basic properties of B-splines and repeated use of (viii) on page 155 of
de Boor (1978) that, for some € > 0,

J J g?(y|x;&dydx2d_#(s)28§-, seof’and8eIRK
Y j ]

and hence

(28) ZJ J g?(y|x;&dydx2£l_d|8|2, se KK
s°FBY

Equation (16) follows from (26)~(28) applied to = 60— 6. This completes the proof of

Theorem 2.
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