Go to main content

PDF

Description

This paper considers estimating a covariance matrix of p variables from n oberservations by either banding the sample covariance matrix or estimating a banded version of the inverse of the covariance. We show that these estimates are consistent in the operator norm as long as (log p)^2/n converges to 0, and obtain explicit rates. The results are uniform over some fairly natural well-conditioned families of covariance matices. We also introduce an analogue of the Gaussian white noise model and show that if the population covariance is embeddable in that model and well-conditioned then the banded approximations produce consistent estimates of eigenvalues and associated eigenvectors of the covariance matrix. The results can be extended to smooth versions of banding and to non-Gaussian distributions with sufficient short tails. A resampling approach is proposed for choosing the banding parameter in practice. This approach is illustrated numerically on both simulated and real data.

Details

Files

Statistics

from
to
Export
Download Full History
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS