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Abstract

It is safe to say that almost all practical inverse problems are plagued
by nonuniqueness. Regularization and other techniques for picking a par-
ticular solution fitting the data are useful for construction, but not usu-
ally for inference: the “true” model may bear little or no resemblance
to the particular model the technique constructs. “Confidence set infer-
ence” or “strict bounds” works by looking at properties shared by all a
priors acceptable models that fit the data adequately; s.e. it constructs
confidence intervals for functionals of the unknown model. Constructing
the confidence intervals involves solving certain infinite-dimensional con-
strained optimization problems in the model space. The usual way of
solving these problems approximates the infinite-dimensional problems in
a finite-dimensional subspace of the model space, so that the resulting
problem can be solved by computer. Clearly, this can produce confidence
intervals that are too short. This report uses Lagrangian duality to show
how some of these optimization problems may be solved on a computer
to get confidence intervals of the correct length.
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1 Introduction

Please see Backus [2], Cuer [3], Lang [5], and Stark [10] for other approaches to
the same or similar problems. Here we treat only linear inverse problems, where
we know a priori that the unknown model z¢ lies in a cone or a ball, and we wish
to make inferences about a linear functional of 9. The model for the experiment
is that we observe n data §;, j = 1,---,n that are linearly independent linear



functionals f} of zo, plus additive noise €;. We assume that the joint probability
distribution of the noise terms is known, and that all components of the noise
have mean zero. In vector form: ‘

§ =f*[zo]+e (1)

The model z¢ belongs to the real linear vector space X; the functionals f;
belong to its algebraic dual space X*. We know a priori that z¢o € C, where
C is a special convex subset of X: either C = X (no special prior information);
C = P, a convex cone with vertex at the origin; or C = B, a ball in some norm
in the space X, which will then be assumed to be a Banach space. In the first
two cases, no topology on X is needed. Examples of the constraint zo € P
occur in gravimetry, resistivity and magnetotellurics, and seismology; as mass
density, electrical conductivity, and seismic velocities must all be nonnegative.
The constraint 2o € B may also arise in these fields if an upper bound on
the unknown is available (density is less than that of neutronium, velocity less
than the speed of light); it also arises naturally in geomagnetism where one
may use a priori bounds on the energy stored in the main field, or the rate of
dissipation of energy in the core (see Backus [2]). The first examples involve
infinity-norm bounds, the last a quadratic norm. We wish to find a confidence
interval for h*[z¢)], a linear functional of z¢, using the prior information z¢ € C
and our knowledge of the probability distribution of the errors. That is, for
fixed & € (0,1), we wish to find u_, u; such that

pllu—s ] 3 h%[20]} 2 1 - o,

where p{-} is the probability that the event in braces occurs.
Let £ be a 1 — a confidence region for €. Then p{§ — f*[zo] EZE} > 1—a.
Let

D={zeX:6-f*[zo) € E}.

Then we also have
p{Ddz0} >1-aq,

and since zg € C,

p{CND3zo}>1-c. (2)
Let
- = inf hA*[x
# zeCnD [=]
and

b+ = sup h*[z]
zeCnD

then u_, uy satisfy 1. It remains to choose £ and solve the resulting optimiza-
tion problems.



It has been traditional to choose = to be a ball in some norm in R"; often
an infinity norm. Backus [2] advocates a “slab,” the region between parallel
hyperplanes in R®. In the case C = X, it is well known that the only linear
functionals that can be bounded by the data are linear combinations of the
data functionals f} (for example, [1]). As we have assumed that the f; are
linearly independent, there exists at most one representation of h* as a linear
combination of {f}}7-,. Say

h*=X-f* =) \fr
i=1

It is intuitively clear that in this case, if the distribution of errors is symmetric
and unimodal, the optimal choice of confidence regions = to get the narrowest
possible confidence interval for h*[zo] is

E={BeR":|A-B|<x} (3

for an appropriate choice of x which may be computed from the known distri-
bution of €. This is the “slab” (not his terminology) of Backus. This choice
allows D to be unbounded in every direction other than h*; it concentrates all
the statistical power of the data in the relevant direction.

For other sorts of prior information, the optimal choice of sets = to get
the shortest confidence intervals in expectation seem to be unsolved problems.
In this report, we will use slabs as the confidence regions in data space. The
orientation of the slab will be given by the vector v, which need bear no relation
to h*. In [10] I develop results for general balls in I, norms, for other functionals,
and for slightly more general prior information.

2 Primal Approaches

We specialize to the minimization problem only since 4 can be found by min-
imizing —h* (also a linear functional). For = as in 3,

D={zeX:|y-(f'[z] - 6)| < x}.
Define g* = v -f* and ( = v- 6. Then
D={zeX:|g*[z]- ¢ < x} (4

In case C = X, it is well known that the only linear functionals with nontrivial
confidence intervals are of the form h* = Ag*, A € R. In case C=P or C =B,
the traditional means of solving the primal problem

pu— = inf Hz]

zeCnD



is to discretize the problem by approximating z in a finite-dimensional subspace
of X. Given {z;}7.; C X, let X be the subspace spanned by {z;}7=,. Then
z € X can be written Y_,_, Bjzj, and z € DN X if |¢- B — ¢| < X, Where
the m-vector ¢ has elements ¢ = ¢*[zi] and B8 = (By,--+, Bm). Similarly,
h*[z] = n - B, where n is the m-vector with components n; = h*[z;]. One
completes the picture by expressing z € C in terms of the coefficients §;. In
my experience, it appears to be possible to pick the {zx} so that this is not too
difficult. The result is a finite-dimensional optimization problem:

h_ = min . n: B
{B:3, BrzreCnDnX}

It is clear that since the minimization is over the more restrictive set CNDNX,
fi- > p_ (and correspondingly fiy < p;), and thus the resulting confidence
interval may be too short to achieve the nominal coverage probability. We turn
now to another method of solution.

3 Lagrangian Duality

See the excellent book by Luenberger [6]. If (A) there exists z; € C such that
|g*[z1] — ¢|] < x, and (B) p— > —o0, Lagrangian duality says

K- = max zigé{h‘[z] +A(lg*[z] - < — x)}- (5)

Note that condition (A) can be verified empirically by finding a feasable point
for the discretized primal problem; condition (B) can be verified algebraically,
as we see below. We now trace the implications of Lagrangian duality for the
various choices of C.

31 C=X
We have
n- = sup{inf (h*[z]+ A(lg*[z] - ¢| — X))}
A>0 zeX
= sup{—Ax+ inf max[(h* 4+ Ag*)[z] — A, (h* — Ag*)[z] + A(]}.

A>0 zeX
Name the second term 7:

T= i:t(':ma.x [(h* + Ag*)[z] = A(, (B* — Ag*)[z] + A(]. (6)
For h* = £)g*,

= in)f( max [£A(, £2Ag* [z] F A¢] = £A(.
z€



If h* # Ag* and h* # —Ag*, write
h* = e* £+ Ag*,
where €* # 0 and the sign will be fixed presently. Then
< inf((e“ [z] £ Ag*[z] + Alg*[z]] + AQ).
z€
Pick the sign so that there exists y € X with both e*[y] < 0 and +g*[y] < 0

(this is possible since both functionals are nonzero). Then

7 < inf (e*[z] + A¢) = —oc.
:I:GX

Thus

p. = sup —Ax £ X¢
A>0
h* = £Ag*

AC—Ax k* =Ag", A€R.

It

The only functionals one may make inferences about in this case are multiples
of h*. Note that since ¢g* is a nonzero linear functional, there always exists
z; such that g*[z;] = ¢, so condition (A) is met. We now have no optimiza-
tion to perform at all, just the (easy) infinite-dimensional constraint that h* is
proportional to g*.

3.2 C=P

The algebra leads us to consider 7 (equation 6) again, but for C = P. Let P®
be the conjugate cone of P in X*:

P® = {z* € X*: z*[z] > 0, Vz € P}.
Then if h* + Ag* € P9,
T= ingmax[(h‘ + Ag*)[z] = A¢, (R* — Ag*)[z] + A(] = FAE,
z€
while if h* + Ag* & P® and h* — Ag* ¢ P®, then using the convexity of P it is
easy to show that there exists y € P such that (h* & Ag*)[y] < 0 for both choices

of sign. Since P is a cone with vertex at the origin, y € P implies By € P, 8 > 0,
and so

= zigg max [(h* + Ag*)[z] — A(, (A* — Ag*)[z] + X(] = —oo.



We conclude that

B- = max {=-AxF A
A>0
h* + A\g* € P®
= max —|Alx = A¢ 7
,\:h*+)\g"eP°{ |Al } ()

Here we have a one-dimensional optimization problem, with the infinite-dimensional
constraint on A that h* + Ag* € P®. In applications, this usually amounts to
something like requiring that the sum of a function and a multiple of another

is nonnegative everywhere. This sort of constraint can readily be imposed since
the two functions are known, and so their continuity properties can be exploited

to impose the constraint conservatively using only values on a finite grid.

3.3 C=B

Here X is normed; we will assume it is a Banach space and that the functionals
h* and f} (and thus g*) are continuous. Let B be the ball with radius v. For
this problem, we find

T = jngmu[(h* +2g%)[z] - A, (A" = Ag™)[z] + A(]

> max [ inf (A + 3g")le] = X}, ing (5" ~ 20"l + 26)]
z z€
max [-u]|h* + Ag [l = AG, —vlA* — Ag*[| + Ac]

g,

p- 2 max{-Ax + max[—y||h* + Ag*|| - A{, —v||A* — Ag*|| + A(]}
= max{—|Alx — v||h* + Ag*|| - AC}. (8)
reR

We shall see that there exists y € B such that

h*[y]+ Mg*[y] - ¢| = o
and thus equality holds in 8.
Define y; such that —y, is aligned with h* + Ag*, and ||y4+|| = v. Define y_
such that —y_ is aligned with A* — Ag*, and ||ly_|| = v. Then
(" +Ag™)[y+] = A = —v||h* + Ag*|| - AC,

and
(h* = Ag*)[y-1+ A = —v||h* = Ag*|| + X¢.



A bit of algebra shows that if o0 = —v||h* + Ag*|| — A(, then (h* + Ag*)[y4] -
A > (h* — Ag*)[y+] + A¢, and yy4 is the required vector. On the other hand, if
o = —v||h* = Ag*|| + A(, then (B* — Ag*)[y-]+ AC > (R* + Ag*)[y-] — A(, and
y— is the required vector. O

Note that in this problem, the dual is the unconstrained maximization of a
concave function of A—the infinite-dimensional constrained optimization prob-
lem is certainly simplified. However, the evaluation of ||h* — Ag*|| can involve
infinite-dimensional operations such as summation of series or integration. For-
tunately, the summation or integration involves the known vectors h* and g¢*,
and so their properties can be used to bound the accuracy of a truncated sum,
or of numerical quadrature. There are many error bounds one may use, depend-
ing on how much information about the functionals is incorporated. The error
bounds are convex functions of A. If one of these error bounds is subtracted from
the original objective function, and the difference is maximized numerically, the
result is a rigorous lower bound on pu_.

4 Discretizing the Dual Problem

We will look at an example of discretizing the dual problem for the case C = B
related to the “ideal bodies” problem in gravimetry [7, 8, 9]. We make n noisy
observations §; of the vertical component of gravity at the points {r'}};-'=1 at

a height 3 above Earth’s surface. Let E denote the region of R® occupied by
Earth, and zo(7) be the mass density of Earth as a function of position #. Then

6j=f;[301+€j9 Jj=1,--n

where

f* [z] / g (1'_1 .’E(f')ds"

Here 7 is the vertical unit vector in Rs. We shall assume that we know a priori
that the density is bounded below by zero and above by v(7). We assume the
joint distribution of the noise components is known. We wish to find a 99%
confidence interval for the mass in the region D C FE, which is given by the
linear functional h*:

h‘[z]:/ElD(r"')z(f')daf".

Here 1p(7) = {1, ¥ € D; 0, otherwise}. This problem may be reduced to the
form in section 3.3 as follows. We pose the problem in the Banach space L®(E)
of bounded functions on the domain F, with the “sup” norm

llz|l = sup |=(7).
7€E



Let '(7) = }v(F). Pick v € R" (for example, let v = argmin, g~ ||h* —
E;-'zl p; f;|l, or an approximation to it). Let x be such that p{~-€ < x} = 0.99.
Then the optimization problem we must solve has the form:

pe = inf h*[z].
€L ||| <1
|v-f*z] —v- 8| < x

By defining g* = 4 -£* and { = + - (6 — £*[2']); and renorming the space to take
into account the weight ;1,-, we reduce the optimization problem to the canonical
form

- = inf h*[z].
ll=ll < 1
lg*[=] - ¢l < x

A common approach to solving this problem is to divide E into m regions and
approximate X by the m-dimensional subspace of functions that are constant
in each of the regions; the resulting discretized problem can be solved by linear
programming (see [9, 4]). The linear programming solution will almost certainly
be larger than the true solution to the original infinite-dimensional problem.
Similarly, the value for 4 determined by the finite-dimensional approximation
may be too small. In either case the confidence interval may not be large enough
to have 99% coverage probability.

Instead, we use duality to get a different finite (one) dimensional problem.
The solution is given in equation 8 to be

max{—[Alx = A{ — ||A* + Ag*|[}

which is the maximization of a one-dimensional convex function. In practice, it
is necessary to approximate numerically the integral

. gh (=7
m=agll= [ o) - 23 et
I I= | [o® -2 vt

However, since {f}}?_, and 1p are known functions, their continuity properties
can be used to determine the maximum possible error in the quadrature. As
noted in section 3.3, the maximum quadrature error is a convex function of A
(and depends on the quadrature scheme). If the error bound is subtracted from
—|Alx = A{ —||h* — Ag*||, where the norm is to be approximated by quadrature,
and the difference, which is a concave function of A, is maximized numerically,
the resulting number yields a confidence interval of at least the correct length.
Note that the dual space of X is the (non-separable) space of finitely additive
finite signed measures, elements of which would, in general, be rather difficult to
approximate even with a countable number of approximating functions. Fortu-
nately, in the dual approach, we need only consider particular known elements
of the dual space. This is true for C = X and C = P as well.

i=1



5 Conclusion

A common approach to computing confidence intervals for functionals of a model
in linear inverse problems involves approximating the infinite-dimensional model
space with a finite-dimensional subspace. The result can be confidence inter-
vals that are too short. Duality provides a tool to formulate finite-dimensional
problems that exactly solve the original infinite-dimensional problems. These
finite-dimensional problems may have infinite-dimensional constraints, or in-
volve integration or some such infinite-dimensional operation. However, the
functions that are involved in the dual problem are known, and so the accuracy
of methods to approximate the infinite-dimensional part of the dual problem can
be calculated or bounded explicitly. The result is that one may construct con-
fidence intervals for functionals that, under the assumptions of the observation
model, are certain have their nominal coverage probability.
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