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Abstract

The performance of Bayes' estimates are studied, under

an assumption of conditional exchangeability. More exactly,

for each subject in a data set, let E be a vector of binary

covariates and let Tq be a binary response variable, with

P{Iq=1 }= f(E). Here, f is an unknown function, to be

estimated from the data; the subjects are independent, and

the E's are iid uniform. Define a prior distribution on f as

XkWk'Rk/XkWk, where 1k is uniform on the set of f which only

depend on the first k covariates. And Wk>0 for infinitely

many k. Bayes' estimates are consistent at all f if wk

decreases rapidly as k increase. Otherwise, the estimates

are inconsistent at f=1/2.

Research partially supported by NSF Grant DMS 86-00235

2Research partially supported by NSF Grant DMS 86-01634
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1. Introduction

This paper is a modification of Diaconis and Freedman

(1991); hereafter, DF91. To state the issue in a specific

context, consider a clinical trial. Each subject has a

response variable r, and covariates E. The response

variable is 1 or 0, corresponding to success or failure. For

instance, q=1 if the subject survives to the end of the study

period, else q=0. The covariates are a sequence of O's and

l's. In DF91, we required the subjects to satisfy a

"balance" condition. Here, we require the subjects to

be independent and identically distributed. To begin

with, we assume:

(1) Given the covariates, the response variables

are independent across subjects and P{q=l = f(i).

The function f is assumed to be measurable from the space

of sequences of O's and l's to the closed unit interval [0,1].

This function is an infinite-dimensional parameter, to

be estimated from the data by Bayesian methods. There is a

fairly conventional prior distribution which is "nested" or

"hierarchical". Begin with a prior lk supported on the class

of functions f that depend only on the first k covariates, so

Ek+l,Ek 2 ,.. do not matter in (1). Then treat k as an

unknown "hyper-parameter", putting prior weight wk on k.

Thus, our prior is of the form
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c co
(2a) Et = Xk wkitk/X Wk

k=0 k=0

where

co
(2b) Wk>O for infinitely many k and k=OWk < co*

The question is whether the Bayes' estimates are consistent:

do the posterior distributions pile up around the true f?

co
As in DF91, we let C={O,1} ; so xcC has

co ~~~~~~~co
co

coordinates X1,X2....which are 0 or 1. Write A

0~~~~~~~~~~~~~~~~~~
for the uniform measure on C,c i.e., Lebesgue measure.

With respect to A , the coordinates are independent,

and A {xj=1}=1/2. By definition, the parameter space

e is the set of measurable functions from C to [0,1];

functions which are equal a.e. are identified. Put

the L2 metric on the parameter space. A typical

neighborhood N(f,6,e) of f is defined by (3):

(3) If fee and 6,e>O, let N(f,8,e) be the set of hee with

co
A {x:xeC and Ih(x)-f(x)I.e} . 1-s.

If t is a prior probability on e, the posterior

probability En on e is the conditional law of f given the

data; this will be computed explicitly in section 2. The

prior Et is "consistent at f" if E1n{N(f,j,e)}-+1 almost surely

as n-*.
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At stage n, there are n subjects, indexed by i=1, ... ,n.

Each subject i has a response variable Th=rl(i), and an

infinite sequence of covariates

i(i) Ele(i), 62(i),..
We assume

(4) The {(i) are independent and have a common uniform

distribution.

This replaces the balance condition in DF91.

Let Ck be the set of strings of O's and l's of

length k. The prior Uk is defined by the joint distribution

it assigns to 2k parameters, :SeCk. Here, e is the

probability of success for subjects whose first k covariates

are given by s. A little more formally, nk concentrates

on ekCe, the set of functions f which depend only on the

first k covariates. If fEek, then e (f) is the value of

f(x) when xeC , sECk, and xj=sj for 1.j.k. See (6) in DF91.

The "k are assumed to be "r-uniform" in the sense of

(7) in DF91. The definition is a bit technical. To review

briefly, for SeCk, the 8 are independent with respect to 'k;
5

each 8 has a density y on [0,1]; these y fall in the class r1.

In particular, yEr are uniformly bounded above by B<w, and

below by b>O. Let g =fe'y (O)dO. By assumption, the g

all lie in a finite subset F of (0,1), given a priori.

Furthermore, for all large k, for all sCCk, g =g (x) for

all x with XJ=sJ for 1<j<k. And g depends only on finitely

many covariates.
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This completes the definition of r-uniformity. The main

theorems of this paper can now be stated.

(5) Theorem. Suppose (1) and (4). Suppose too

the nIk are r-uniform, the prior 11 is hierarchical in

the sense of (2), and f%g . Then E is consistent.

(6) Theorem. Suppose (1) and (4). Suppose too the Itk are

r-uniform, the prior i is hierarchical in of (2), and fag0,.

Let I be the smallest k with Wk>O. Write exp(x)=e
x

a) Suppose k=nWk < exp1--(log 2)n2 -6on2 for all

large n, for some So>O. Then E is consistent at f.

b) Suppose Ek=nWk > exp -1(log 2)n2 +6on2 for

infinitely many n, for some So>O. Then i is

inconsistent at f.

The critical rate is different here and in DF91;

see theorems (8) and (9) there. The 8o in the statement

of theorem 6 is a fixed quantity.
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2. Computing the posterior

Let n be an underlying probability space, on which the

response variables i(i) and covariates Ej(i) are defined.

Recall that fee maps C to [0,1]. For fEe, let Pf be the

probability on n which makes the response variables and

covariates distributed so that (1) and (4) hold. The

dependence between the data at stage n and stage n+1

is simple: there is one extra subject with covariate

sequence E(n+1). The joint distribution across n's

will matter for some of the arguments here, as opposed

to DF91.

Let

r ~~~~~~~00
(2.1) fk (x)=E{f Ix1,**Xk}=J f(xla....xk,y)A (dy)

C
co

and write fk(S) for fk(X) when SECk and X1=S1,...,Xk=Sk.

For now, fix n and k. For SECk, let N be the number of
5

subjects i=l,...,n such that Ej(i)=sj for j=l,...,k. In other

words, N is the number of subjects i=l,...,n whose first k
5

covariates are given by s. Of course, N is random; that

is the new technical difficulty. Let X be the number of

successes among subjects whose covariate sequence begins with

s. More formally, T1(i) is the response for subject i, and

(2.2) X = ___ {T1(i): Ej(i)=sj for i=1, ... ,n}.
S5 =
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Write bin(m,p) for the binomial distribution with m

trials and success probability p.

(2.3) Lemma. Assume (4). With respect to P :

a) [N :SECk] is distributed like the result of dropping

n balls at random into 2 k cells.

b) Given (N :SECk}, the random variables X are

independent as s ranges over Ck, each being

bin[Ns,fk(S)]-

As usual, 'k can extended to a probability on exl, by the

formula

Jk(AXB) = iA Pf{B}lk{df}.

In this formula, A is a measurable subset of e and B is a

measurable subset of D. The proofs of (2.3-4) are omitted

as routine. In (2.4) and similar contexts, 'k is viewed as

a probability on exQ.

(2.4) Lemma. Suppose tk is r-uniform. With respect

to nk, the N have the ball-dropping distribution

given by (2.3). Given (N : SECk the pairs (e ,X J are

independent as s ranges over Ck. The parameter e has

density yeEr. Given N and e, the number of successes

Xs is bin(Ns, s).
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For yer, m=O,1,2,..., and j=O,1,...,m, let

(2.5a) 'Y(Mi,j,I) e( - (,ZY

where the normalizing constant is

1 , .

(2.5b) C(m,j,y) = I (1-e)m y(e)dO.
0

In particular, ¢(O,O,y)=1 and y(O,O,I=y(-.

Let kn be the posterior distribution of f, computed

relative to ¶k, given the data from a design of order n.

(2.6) Lemma. Suppose 1k is r-uniform. According to

to the posterior nk,n the success probabilities e are

independent as s ranges over Ck, and e has density

y (N ,X ,-) with respect to Lebesgue measure on [0,1].

To compute the posterior relative to a, the 1k-predictive

probability of the data is needed. To set up the notation,

recall the normalizing constant + from (2.5b). Let

(2.7) pk,n 4sECk(Ns,XstYsy

If N =0, the corresponding factor in Pk is taken as 1.

By (2.4), Pk is the 1k-predictive probability of the

data, given {N }.
5
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Turn now to the posterior n , computed relative to a.n
Informally, the "theory index" k in (2) is a parameter,

which has a posterior distribution relative to a. Let

(2.8) wk wkpk .

Now, ik{data}f/{data} = w /_ w , So
k,n k=O k,n

(2.9) n (k) =w w n
n k,n k=O k,,n

(2.10) Lemma. Suppose i is hierarchical in the sense of (2),

and the itk are r-uniform. Given the data from a design
of order n, the posterior is

00 ~ C ~

n 7k=Owk,n k,n k=0 k,n

The proof is omitted as routine. Of course, an can

be written as

TE (k) kTXk=O n k,n
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3. Some estimates

(3.1) Lemma. Let O.p.l. Let X be bin(m,p) and Y=(X-mp) 2/m.

If m=O, or m>O but p=O or 1, let Y=O. Then

a) P{X < mp - JM] < exp[- x] for all x>O.

[2]
b) P[X . MP + Jix) < exp[1-x] for all x>O.

2~~

C) Y is stochastically bounded by X2 + 2log 2.
2

Proof. Suppose m>O and O<p<l. Claim a) follows from

Bernstein's inequality. For example, use (4) in Freedman

(1973) to see that

P{X . mp - J } < exp[- 2x] < exp[-2]

To get claim b), write q=1-p, and observe that X . mp + S

iff (m-X) < mq - J . Now use a). For c),

P{Y2x} < 2exp[-x]. L

(3.2) Lemma. Suppose the random variable E has a Laplace

transform for h<ho, where ho is positive. Let X be the class

of random variables Y for which E[[Y-EY]J)<E(Ej] for j.2.

There are positive, finite a2 and hi, depending only on i,

such that

d~il__ E M_ EfY + y < exp(-y2/2cy2m)

provided the Yi 's are independent, YjEC for all i,

and O<y.him.

Note. This lemma is set up to give one-sided bounds.

In some cases, of course, it can also be applied to {-Y}.
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Then a lower bound can be obtained the same way, with a

slightly smaller a. More detailed results can be obtained by

matching variances or Esscher tilting, but these refinements

will not be needed here. See (Feller, 1966, sec. XVI.6) and

(no moments xxxx).

Proof. Assume without real loss of generality that EY=O.
hY Co

Let y (h)=E{e }=i+X 2E{Yj}hJ/j!. The sum is bounded

above by

XD hJE{fE}/j! < - 2h2 for O<h.h'.j=2 ~~~~2

Here, a2 is a suitable positive, finite number, slightly

larger than the second moment of E. For O<h.h',

4 (h) < 1+-2 h
Y 2

and

log 4 (h) < - h
Y 2

The constants a 2 and h' depend on E, not Y or h.

We are assuming that E{Yj}=O. Chebychev's inequality

can be applied to bound P{eh(Yi+.+Ym)>ehY}.

log P{Yl+...+Ym 2 y}

< -hy + m log 4y(h)

1< 2 2< -hy +-mah.2

Put h=y/a2m. We require h.h', i.e., y<h'a2m: set hi=h'a2. a
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(3.3) Lemma. Suppose Jul is stochastically smaller than V.

Then IU-EUI is stochastically smaller than V+EV.

(3.4) Corollary. Let ni be non-negative integers, and O<pi<l.

Let Xi be independent bin(ni,pi) and Yi=(Xi-nipi) 2/n . There

are universal positive constants 02 and hi such that

m 21Yl, > pi(1-p")+ y < exp(-y2/2a m)

provided O<y<hlm.

Proof. Combine (3.1-3). D

(3.5) Lemma. Let NA be Pois(A), i.e., Poisson with parameter

A. If N =0, let log(Nx)=O. Let z>O.

a) p{T; (log NA- logA) . z} < eXP[-z2] for all z>O.

b) P{ (log N logA) < -z} < exp (--2[(l e ) /C]2

provided O<z<e.. If E=1/2, an upper bound is exp(-z2/4).

Proof. This follows from Bernstein's inequality:

see (4) in Freedman (1973). Some auxiliary calculations

are needed to estimate the function in (9) of that paper.

We claim

(3.6) u-+(e -1)2/u2e is strictly convex, with a minimum

at u=O.
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ru/2 .u/2 2

Indeed, the function in (3.6) is 1(e/ -e )/u] , which

is readily expanded in even powers of u, with positive

coefficients.

(3.7) A[eZ/
k
-1] /eZ I5 > z2 for A>O and z>O.

-u
(3.8) u-+(l-e )/u is strictly decreasing for u>O.

(3.9) A[l-e >] z [(1-e )/e] for O<z<ef5. D

(3.10) Corollary. Let N'=N if N >Ae /, else let N'=Ae 12

2.
Let Z (logN=j- logA) . Then Z is stochastically smaller

2
than 4 log 2 + 2X2

(3.11) Corollary. There are finite positive constants a2 and

hi such that

piaM(Z- E[Z1f) | y) < 2exp(-y21 2M)

provided the Zi are independent, each Z1 is distributed

as Z in (3.10)Q, and O<y.hlm.

(3.12) Lemma. limA- Eflog NJl/logA = limAWEflog NA /logA = 1.

Note. As Ak-*, the law of Z tends to the standard normal.

The bound in (3.5b) can be improved, but there is mass

P{NA=O}=e at z=-JxlogA; no upper bound of the form

exp(_-Z2) can be valid for large A.
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Results (3.13-16) are familiar, but are included for ease

of reference. The elementary proof of (3.13) is omitted.

(3.13) Lemma. Let f be a convex function. Let a,b>O and

let the random variable X take values -a or b and
ab

E[Xab=O. Then E[f(Xab) increases with b for fixed a;

likewise, Eff(Xab)I increases with a for fixed b.

(3.14) Lemma. Let f be a convex function. Fix A, B and [L

with -w<A<ji<B<w. Let X be the class of random variables X

such that A.X.B and E(X]=I1. Let EEK take only the values

A, B and E{[]=p. Then Eff(X)) < Eff(QJ}.

Proof. Assume without loss of generality that p=O. The

extreme X have two-point distributions and (3.13) applies. 2

(3.15) Corollary. Let f be convex and increasing. Fix L and

£ positive and finite. Let X be the class of random variables

X such that IXI<L and E{X)<-e. Let ECK take only the values

±L and EfE]=-e. Then Eff(X)J . Eff(Q)J.

(3.16) Lemma. Define X as in (3.15). There is a p with O<p<l,

depending only on L and e, such that: for independent XjEK

and y>O,

PfX.m Xi 2 y for some m < py.
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Proof. Define E as in (3.15). De Moivre solved the

gambler's ruin problem by finding the unique r>1 with E{rI} = 1.

Continuing his argument, let S(m) = X. Xi. Then rS(m) is

an expectation-decreasing martingale, which can be stopped

at the crossing time; take p=l/r. L

Remark. Lemma (3.16) is easily extended to partial sums

of variables Xi such that the conditional law of Xi

given the past falls in K. See HTGIYM, p164.

Lemmas (3.17-18) are elementary, and proofs are omitted.

(3.17) Lemma. Let j be a nonnegative integer, and x be

a positive real number. Let fj(x) = X..x'/i!. Then
=3

fj (x) /xJ is continuous, convex, and strictly increasing

on (O,o), with a limit of l/j! as x decreases to 0.

(3.18) Lemma. Let m be a positive integer and O<p<l. Let X

be bin(m,p), and let j be a nonnegative integer.

1 j
a) P{X=j] < -- (mp).

b) PfX.j] < f.(mp).
3

(3.19) Lemma. Assume (4). Fix c>5/3. Almost surely, for

all sufficiently n, for all k > c log2n , there are no SECk

with N >4.
s
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Proof. By (2.3a), N is bin(n,1/2k). Write A=n/2 k
5

E{N }. So A<1/n . By (3.17) and (3.18), P{N .4} < CA4,
S S

where C is a suitable positive constant (a bit larger than 1/4!).

The expected number of s with N >4 is then smaller than
s

C2 kA4=CnA3<C/n3c. The chance of having at least one box

with N .4 is also smaller than C/n , by Chebychev's
s

inequality. Since 3c>5, the Borel Cantelli lemma implies

that for all sufficiently large n, for k the least integer

exceeding c log2n, there are no SECk with N 23. Finally,

for n fixed, I{s:seCk and N >4}1 is decreasing as k increases. L

Note: We write ISI for the cardinality of a set S.

(3.20) Lemma. Assume (4) . Fix c>7/4. Almost surely, for

all sufficently large n, for all k > c log2n,

(i) there are no SECk with N >4, and

(ii) there is at most one SECk with N =3.

Proof. (i) follows from (3.19), since 7/4>5/3. For

(ii), let Qk be the event that N =3 for two or more sECk.

Thus,
Qk = U{N =3 and Nt=31s,tECk and s;t}

and

P{Qk} = [2 fN =3 and Nt=3}.

Now P {N =3} < A3 /6 by (3.18a). Given {N =3}, N is
f S S t

bin[n-3,1/(2 -1)], so

P{Nt=31N =3} < 4- ] 3< A3/6.
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Thus

P{Qk} < 22kA6 = l2A4 S 1/(72 nc)
72 72 /

The balance of the argument is omitted, as similar to (3.19). L

(3.21) Lemma. Assume (4). Fix c>3. Almost surely, for

all sufficently large n, for all k > c log2n, there are

no SECk with N 22.
5

Proof. Only the minimal k needs to be considered. Now

P f{N .2}<CA2 by (3.17-18), so the expected number of sECkf 5
with N .2 is at most C2kA2 = Cn2/2k < C/(nc). Since

s

c>3, the Borel Cantelli lemma completes the proof. L

Lemmas 3.19-21 involve the dependence structure of the

ball-dropping process, as k and n vary. The next result does

not. Consider dropping n balls at random into b boxes, where

n is much smaller than b: in the case of interest, b is of

order n2/log n. Let A=n/b, the expected number of balls in

each box.

(3.22) Definition. Let IMI be the number of multiply-

occupied boxes, and T the total number of balls in the set

of multiply-occupied boxes. Let Sn = T-IMI, with So=O. Let

pj be the conditional probability that ball j drops into a

previously- occupied box, given the results of dropping the

first j-l balls.
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Clearly, SnSn-1, where the bound is sharp; n-Sn is

the number of occupied cells; Si=O; and for n>2, Sn=
n

Xj,

where Xi is 1 if ball j drops into a previously-occupied box;

else, Xj is 0. Recall pJ from (3.21). Of course, pj is

itself a random variable, and

(3.23) pj= (j-1-Sj-l)/b.

(3.24) Lemma. Let p.=n(n-1)/2b.

a) If 0<8<1, then Pr{Sn>(1+)p4Q < exp(-_62 1/4).

b) Suppose 0<8<1, and n/b<E/2. Then

Pr[Sn<(1-o5)Vl < exp(_6211/8J.

Proof. Claim a) is Bernstein's inequality: see e.g.

(4) in Freedman (1973), noting that Xn Pj . L.

Claim b) is similar. Indeed,

Pr{Sr . - + E nPJ} < exp(-_62/8).

Clearly, t - (nSn/b) . n. pp because Sj increasesj=1po
with j. So

{Sn S (1-2)V
nSn

C Sn S + E n

48 nSn
Furthermore, Sn . (1--)p - - iff Sn . Oc, where

2 b

1
2

a=-> (1-=).
n1+-
b

Therefore, {Sn .(1-8)[1} C {Sn < o}.
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Note. The argument shows Sn to be stochastically smaller

than E n Yj, where the Yj are independent 0-1 valued

random variables, and Pr{Yj=l} = (j-1)/b.

(3.25) Lemma. Fix j.O. Let N be Poisson, but conditioned to

be j or more. Then NA is stochastically increasing with A.

A
Proof. Let f.(A) = XkA /k!. If i>j, we claim that

fi(A)/fj(A) increases with A. This comes down to showing

(3.26) fj1(A)/f1(A) > fj'(A)/fj(A).

However,

f (A) = Ai + f1(A).

So (3.26) in turn reduces to

ck-j co k-i(3.27) x *A /k! > Ek Ai (i-1)!/k!,
k=j k=i

which holds term by term. D

*** monotone likelihood ratio ***
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4, The proof of theorem 5

This is proved like (8) in DF91; only the main points

are given. Zones are defined in terms of positive integers

K; to be chosen later.

Early zone: 0 k S Kl.

Lower midzone: Ki . k . log2log n + K2.

Upper midzone: 10g2log n + K2 . k . log2n - K3.

Endzone: log2n - K3 S k . log2n + K4.

High zone: log2n + K4 . k.

The endzone and high zone have negligible posterior mass;

the early zone is negligible too, unless f=fk for some k.

Almost surely, for all large n, for all k in the midzone,
A

for most SECk, N is large and the MLE p = X /N is close

to fk(S). Of course, the latter tends to f: see (2.1).

Finally, the posterior piles up around the MLE, by Diaconis

and Freedman (1990). We turn to details; lemmas (4.2-4) do

most of the work for the midzone.

(4.1) Let A=n/2k, so E{N }=A.
5

(4.2) Lemma. Assume (1) and (4). Fix any positive integer K.

Almost surely [Pf], for all sufficiently large n, for all k with

O . k . log2log n + K and all seCk:

a) N >n/2 >n/[2 log n].

b) | s-fk(S) < [2Ilog n]AW.
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Proof. Claim a). By (2.3a), N is bin(n,l/2k). Abbreviate

C=1/2 . By Bernstein's inequality (3.1a),

P{N SA/2} < exp(-A2/8n) S exp[-Cn/ (log n) 2].

The number of strings SECk with 0 . k . log2log n + K is

log2log n + K 2k 2K+1
k=O

and
co ~~~~~~~~~2

_-1 (log n) exp[-Cn/(log n) J < co.

The Borel-Cantelli lemma completes the proof of a).

The proof of b) is similar. Indeed, by (3.1),

PJIX -N f (s)> T 2J log n < 2exp(-2 log n) 2/nfis s k os~ /n._

(4.3) Lemma. Assume (1) and (4) . Fix any large, finite M

and small, positive 8. There are positive integers K2, K3

(depending on M,.) such that: Almost surely [Pf], for all suffi-

ciently large n, for all k with log2log n + K2 . k S log2n - K3,

for all but 62k strings sECk, N >M.
5

Proof. The argument is by Poissonization. For now,

fix k. Let N be iid Pois(A) as s varies over Ck.

Thus, {N } is distributed as {N }, given that { N =n}.

The conditioning event has probability asymptotic to 1/ fE.

Choose K3 so large that Pr{Pois(2 )<M} < 6/2. The chance

that 82k or more of the SECk have N S M is bounded above by

exp(_822k/8). This follows from Bernstein's inequality (3.1b);
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also see (3.25). Now 2 22 2log n. Choose K2 so large that

C = 2K262/8 > 1.5. There are fewer than log2n theories k to

consider, and

E (log2n) J/nC < .

The Borel-Cantelli lemma completes the proof. L

(4.4) Lemma. Assume (1) and (4). Fix 6, E positive but

small. There are positive integers K2, K3 such that: almost

surely [Pf], for all sufficiently large n, for all k with

log2log n + K2 < k < log2n - K3, for all but 62k+1 strings SeCk,
A

lps-fk(SJ1<F-.
Proof. By Chebychev's inequality, if X is bin(m,p), then

P{IX-mpI.em} < 1/(4e2m). Choose M finite but so large that

1/(4Ep2M) < 6/2. By (4.3), apart from 62k strings SECk, N >M.
S

Given {N }, the X are independent bin[N ,fk(s)] random

variables. Bernstein's inequality-- with no Poissonization

needed-- completes the argument, as in (4.3): There are

another 62k exceptional strings, and setting them aside,

I S-fk(s)I<e.

The early zone: k<Kl

Let

1 L
(4.5) L =log p =1log 4(N ,X ,I )

k,n n k,n n ~SECk S S S
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We also need the entropy function:

H(p) = p log p + (1-p)log(1-p)

= 0

for O<p<1

for p=O or 1.

(4.7) Lemma. Suppose (1) and (4). Suppose the 1k are

r-uniform. Fix k. Then

lim L J=fH(fk)dA
n-.co k,n

Proof.

is finite.

strong law:

(4.2b). By

almost surely [Pf1.

This like (4.12) in DF91. Since k is fixed, Ck

We have N - n/2 k almost surely by the ordinary
s

see (2.3a). And ps-fk(s) by the strong law or

(3.2-3c) in DF91,

1 1

-1og4o(N I,X I' -+ -H[fk(S)) a.s.

n 2

The endzone: log2n - K3 < k < log2n + K4

(4.8) Lemma. Suppose (1) and (4). Suppose the Ik are

r-uniform. Fix any positive integers K3, K4. There is a

positive p<1, a finite positive constant A, and a small

positive (all depending on K3, K4) such that, for all n,

for all k with log2n - K3 < k < log2n + K4,

P{L f'H(fkJdc -8} < npn

Proof. The argument proceeds by Poissonization, as in

(4.3). For the moment, fix k. Recall that A=n/2k.

(4. 6)
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(4.9a) Let N be iid Pois(A) for SECk.

* * *
(4.9b) Given {N }, let the X be independent bin[N ,fk (s).

Let

*rlX N X
(4.9c) Y = log (1-o) s s (O)d.

It suffices to prove

(4.10) Pr SECkyS 2H(fk)_S < p

* *
Choose L with 2<L <o. We claim:

(4.11a) E{YsINs} sH( ());

(4.11b) there is a positive E (which depends on L but not k or n)
* * * * * *

such that E{Y |N } < NsH(fk(s)) - eNs on {2NsL }.

These results follow from (3.8) in DF91. Thus,

* * *

E{Ys} S AH(fk(s)) - ePr{2.N .L }.

-K4 K3**
Because 2 S A 2, Pr{2.N SL }/A is bounded above and

below. There is a small positive e', which does not depend

on k or n, such that

* r,I1
(4.12) E{ } H(f(s)) - elJA[H(k()
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We can now use Bernstein's inequality (3.2). Indeed,

by the definition of r-uniformity, y 2 b > 0; see (7)

in DF91. And

* *
-N + log b < Y < 0,

by (3.3d) in DF91. Furthermore, the Y are independent.

We take m=2k, E=Pois(2 ) + 2 log b + 2 , y=e''n, where

e'' is fixed with 0 < e'' < min {et, hi/2 3}, so e''<e' and

y<hlm. See (3.3) to motivate the definition of i. Then

(4.13) Pr~{XYsECky - ECkEgYs + e n} < rn

where r=exp(-Cn/m) and C-s"2/2a2. But n/m=n/2k.2.

We take p=exp(-C2 4 ). Combine (4.12-13):

(4.14) Pr{ X0Y5 fI(f,k) -f + ,,} < n

We take 6=e'-e''>O. This proves (4.10). D

(4.15) Corollary. Suppose (1) and (4). Suppose the '1k are

r-uniform. Fix positive integers K3, K4. There is a small

positive 6 (depending on K3, K4) such that, almost surely,

for all sufficiently large n, for all k with log2n - K3 < k .

log2n + K4,

Lk < fH(fk)dA - S.

This completes our discussion of the endzone.
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The high zone: log2n + K4 < k

Let

(4.16) H(p,I) = p logO + (1-p)log(i-e).

The relative entropy function H is left undefined at the

corners p=e=O or 1, where it has singularities.

Let SESk iff sECk and N =1: the "S" is for "singly-

occupied." Let

(4.17) S n= EESklog+(NstXsls)
In other words, Sk represents the sum defining Lk,n
extended only over the singly-occupied s. Since 0<+<1,

L .S /n.
k,n k,n

From the definition of r-uniformity, given as (7) in

DF91, g is the mean of y ; if k>kl and SECk, gs=g(s), the

function gO being constant on each s in Ck.

(4.18) Lemma. Suppose (1) and (4). Suppose the 'k are

r-uniform. For any positive 6, there is a positive p<1

and a positive integer K4 (both depending on 6) and a finite

positive constant A such that for all n and all ko10g2n+K4,

pf{Sk,n > n[e jH(fk'gc)dA + 6 < nf 1k
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Proof. The argument is by Poissonization. Define N ,
5

* *
X , and Y as in (4.9). It suffices to prove
5 5

(4.19) PrXsckYS n[ee H(fkg )dA ++ < p k

* * *
where Y =Y when N =1, and Y =0 elsewhere. Now, for N =1,

* *

Ys = X log gs + (1-X )log(1-g
s

* *
= X log gc(s) + (1-Xs)log(1-g (s)).

In particular,

E{YsINs=1} = H[fk (S) ,g0(s)]-

5A5

Since Pr{N*=1 = Ae and k=n/2
(4.20) E f XYI = AeH[fk(S)Xg(s)]

LsE-Ck J sE-Ck s)g()

-A
= ne-fH[fk(s),g (s)].

The function g is bounded between b, B, with O<b<B<1,

again by definition. So the random variables Y are

uniformly bounded, say by C. We use Bernstein's inequality

(3.2) with E=2C, y=nS, m=2k:

(4.21) PrLSECk s nre FH(fk,g )dA + 1< exp C n22 ]

The condition yShlm is satisfied if K4 is large enough.

This proves (4.19), with p=exp(-2/2o2). Li



27

(4.22) Lemma. Suppose (1) and (4). Suppose the '1k are

r-uniform, and f5Og . There is a small positive S

and a large positive integer K4 such that, almost surely [Pf)I
for all sufficiently large n, for all k with log2n + K4 < k,

Lkn< fH(f)dA - 6.

Proof. L n S n/n, and Sk n decreases with increasing k.

(Eventually, Sk stabilizes.) The reason is that Sk, the set

of singly-occupied cells, increases with k. Thus, it suffices

to consider the least k . log2n + K4. We must show that

almost surely, for all sufficiently large n, for the least

k 2 log2n+K4,

(4.23) Sk /n < fH(f)dA - 6.

We choose S>O so small that fH(f,g )dA < fH(f)dA - 4(.

Now fk-*f, so for K4 large and k210g2n+K4,

fH(fk,g0)dAk< fH(fg)dAco + 8.

But A=n/2 k<1/2 ;4 H is negative; for K4 large,

fH(f ,g)dA + < e + +

< fH(f,g )dACo + 36 < fH(f)dA - 8.

Now (4.18) proves (4.23), because

ECo J n2/2kp x C J n/2 <
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Discussion. For this part of the argument, we

do not need that F, the set of prior means, is finite; we do

need b.y<B. We also do not need that gk=g for all large k;

uniform convergence would be enough, or even convergence in

measure. Finally, we do not need that g is finitary,

continuous, etc.

We fix 8>0 and choose K4 large to control the high zone,

by an entropy rate argument. For any choice of K3,K4, the

endzone goes away. We choose K3,K2 large to control the

upper midzone, in the sense of showing that nk will be

close to fk and hence f: see (4.3-4). This may be

inefficient, because the upper midzone is probably

irrelevant. For any K2, we get consistency in the lower

midzone by (4.2); and likewise for the early zone,

if f=fk. Details are omitted, because they parallel DF91.

This concludes our discussion of theorem 5.



29

5. The proof of theorem 6

The argument is more delicate; the rate of convergence

of gk to gc matters, and so does the behavior of g . We

assume that

(5.1) fk=f=P for all k; and gk=g=p for k > ki.

The high zone splits:

Early high zone:

log2n + K4 . k . 2 log2n - log2log n - K5.

Middle high zone:

2 log2n - log2log n - K5 < k < 2 log2n - log2log n + K6.

Late high zone:

2 log2n - log2log n + K6 . k . 3.1 log2n.

Very late high zone:

3.1 log2n . k.

We now give some heuristics for the early zone, lower

midzone, and upper midzone, that is, for kJ1log2n-K3:

A 1

(5.2a) log p [N H(p ) log NJ
k,n SE=Ck 5 5 2 5

and



30

(5.2b) E N H(p ) nH(p) + T + H'(p)Q

where

(5.3a) T = H (p) Xn (m-P)
n 1=iP

and

A

(5.3b) Qk,n xE CkNs(pS-P) 2.

Furthermore,

E log N * 2klog(n/2k)

(The expression n/2 k represents the number of observations

per parameter.) To sum up,

log p nH(p) + T - 2 log(n/2 ).
k,n n 2

The class of theories k with klog2n-K3 is dominated by

the smallest k with positive prior weight, namely, theory Q.

(In the upper midzone, another nuisance term appears in the

expansion; but the argument goes through anyway.) The endzone

goes away by previous arguments. The early and middle high

zones can also eliminated.

The late and very late high zones remain, and the

the term in 2k log(n/2 k) drops out:

log Pk n nH(p) + Tn@



31

Therefore, late theories compete-- on entropy grounds--

with theory 2. It is the rate of decay of the theory

weights Wk which decides the issue. The competitive late

zone starts more or less at k=210g2n, when there are 1/n data

points per parameter. In DF91, the cutoff was 1 data point

per parameter; the extra randomness in N helps the Bayesian

statistician, and changes the critical rate for wk from

1/,f to 1/ 4

Now for the details. We begin by showing that Qk,n
is small relative to 2klog(n/2k), provided klog2n-K3.

(5.4) Lemma. Define Qk,n by (5.3b). For each n, Qk,n
increases with k.

Proof. Use Jensen's inequality. L

(5.5) Lemma. Assume (1), (4), and (5.1). Suppose the 'Ik are

r-uniform. Let Ki be an arbitrary positive integer. Almost

surely [Pf for all sufficiently large n, for all k<Kl,

Qk < 2k*2*log log n.
k,n

Proof. Use the law of the iterated logarithm. L
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(5.6) Lemma. Assume (1), (4), and (5.1). Suppose the ltk are

r-uniform. Define o2 and hi as in (3.4). Fix B>2. There is

a large positive integer K2 (depending on B) such that: Almost

surely [Pf]. for all sufficiently large n, for all k with

log2log n + K2 . k . log2n,

Q < p(l-p)2k + oJB2klog n.
k,n

Proof. This is immediate from (3.4), with m=2k and

y=QjB2klog n. The test sum for the Borel Cantelli lemma is

at most

En(1092n)/n 2< .

And the condition y.hlm is satisfied if K2 is large enough. D

(5.7) Lemma. Assume (1), (4), and (5.1). Suppose the nk

are r-uniform. Fix >0. Choose K2 as in (5.6). There is a

large positive integer K3 (depending on S) such that:

Almost surely [Pf], for all sufficiently large n,

for all k with log2log n + K2 . k . log2n -K3

Qk n< 62 log2(n/2 )-
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Proof. Suppose first that log2log n + K2 < k . -10g2n.
2

Writ an<<bn iff an/bnt-O. Then

p(l-p)2k + aIB2klog n << 22k10g2n < 2k1og2(n/2 k).
1~~~~

Suppose next that 10g2n . k . log2n-K3. Then
2

p(l-p)2 + GJB2klog n . 62k1og2(n/2k

provided K3 is large. Indeed, p(1-p).l/4 and log2(n/2k).K3

which is large, taking care of the term p(l-p)2 k Finally,

oJ B2 log n << 2

(5.8) Lemma. Assume (1), (4) and (5.1). Suppose the Ttk are

r-uniform. Fix 6>0. Choose K2 as in (5.6) . There is a large

positive integer Ki (depending on 6) such that: Almost surely

[Pf], for all sufficiently large n, for all k with

Ki < k <1.g2log n + K2,

Qk,n < 62k1og2 (n/2 kJ

Proof. Let kn be the least positive integer which

is log2log n + K2 or more. Now

Qk,n knn by (5.4)

< p(l-p)2 n + aJB2B log n by (5.6)

< [p(1-p)2 2 + C B2 2 log n

< 62 log2(n/2 )
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for k with Ki . k . log2log n + K2, provided Ki is large.

(The 1st and 3rd inequalities hold for all n; the 2nd and 4th,

for n large.) D

(5.9) Corollary. Assume (1), (4) and (5.1). Suppose the Jtk are

r-uniform. Fix 6>0. Choose K3 as in (5.7). Almost surely [PfI
for all sufficiently large n, for all k with k . log2n - K3,

Qkn < 62 klog (n/2 k -

Note: From here on, K3 is forced large; but Kj,K2 are

free again.

Proof. Combine (5.5), (5.7), and (5.8).

This completes the discussion of Qk
n

and we turn

to the term ESECk log Nin the expansion (5.2a) of log k n

The sum is [1+o(l)]2klogA, where A=n/2k as in (4.1). The main

technique is Poissonization, to approximate the ball-dropping

distribution (2.3a). Unfortunately, there are zones which

do not quite match those previously defined. We begin with

k.(log2n)/4.

(5.10) Lemma. Assume (4). Fix 6>0. For all n, all

k . (log2n)/2, and all SECk,

a) P (N/f1+6} < exp(_62J1/2)

b) P (N/fNA-61 < exp (_62J/2).

Proof. As (2.3a) shows, N is bin(n,1/2k). Now use
5

(3.1). Of course, X2/2k=n2/23k.J since k.<(10g2n)/2.D
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(5. 11) Lemma. Assume (4) . Fix 6 > 0 . Almost surely (Pf1
for all sufficiently large n, and all k . (log2n)/2,

|X EC(log N - logAJ)| < 2klogA.seC-k 5

Proof. By (5.10) and the Borel Cantelli lemma,

1-8.N /A.1+8 for all SECk and all k.(log2n)/2, for all

sufficiently large n, almost surely: the test sum is

bounded by

~(1092n)/2 k (82 E 0kO 2kexp(-2n/2) < 4 E nn exp(- 2Xn/2) < o.

Finally, kS(log2n)/2 entails

2kjlog(l+±)j << 2 klog(n/2k). D

We turn now to larger k; the lower endpoint of range is

not material, but log2log n is a convenient cut-point.
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(5.12) Lemma. Assume (4). For SECk, let N be independent

~* * -1/2
Pois(A) variables. Let N =N when N >Ae , else let

N A112.N =Xe/.
s

a) Fix B>2. There is a positive integer K2 so

large (depending on B) that for all n and all

k 2 log2log n + K2,

log n B2 /2
PrE [log N - Eflog N . Ba2k < 2/1n

b) Fix 6>0 and C>2. There are positive integers K2, K3

so large (depending on 8 and C) that for all n and all

k with log2log n + K2 < k < log2n - K3, the chance

that N .Ae / for 62k or more indices SECk is bounded
s

C
above by l/n

Proof. Claim a). This follows from (3.11), with m=2k,

all Ai=A=n/2 , and y=BoI2klog n. The condition y.hlm is

satisfied if K2 is large.

* -1/2 -A%/16Claim b). From (3.5b), Pr{N .<e } < e < 6/2

provided K3 is large; indeed, X22K. The chance that 62k or

more of these unlikely events occur can be bounded above by

(3.lb). The bound is

exp(_622k/8) < exp(_622K2-3log n)

because 2 k /8>2K2 -3 log n. D
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(5.13) Lemma. Assume (4). Let N' = N when N > e /,12

else let N' = Xe21/2 . Fix 8 > 0; choose K2,K3 as in (5.12).
5

a) Almost surely [Pf' for all sufficiently large n,

and all k with log2log n + K2 < k < log2n - 1,

|C (log N ' - logk) < 2klogX.

b) Almost surely [Pf' for all sufficiently large n, and

all k with log2log n + K2 < k < log2n - K3,

0 . x (log N' - log N ) < 52klogx.5ECk 5 5

Proof. Claim a). We de-Poissonize (5.12a):

logn ~ (B 2_1)/2(5.14) Pf{IXsC [log N' - E{log N}]i 2 Ba2k 1 } A/n

By (5.14) and the Borel Cantelli lemma, almost surely,

for all sufficiently large n, for all k with

log2log n + K2 < k < log2n - 1,

BOk logn

|sEC [log N' - E{log NnI < Ba2

indeed, the test sum is bounded above by

En(log2n)/n( B -1)/2
4A ~(10g2n)/n < Co.
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Since k S log2n - 1,

BcY2kJ (log n)/n << 2 10g2(n/2 ).

Now use (3.12).

Claim b). We de-Poissonize (5.12b). Let SESk iff sECk
-1/2 iand N .Ae / the S is for "small". Write ISkl for the

S
~C-.5cardinality of Sk. Now Pf{ISkI82kj} < A/n . There are

C-. 5at most log2n indices k to consider, and X(log2n)n < c

because C>2. Thus, almost surely, for all sufficiently large n,

for all k with log2log n + K2 . k . log2n - K3, ISkI<82.

If SSk, then N'=N . Now suppose SCSk. If N =0, then

log N =0 by definition. Thus,

0 < log N' - log N . logA - 1/2 < logA.
5 5

Consequently,

0 . x (log N' - log N ) < lQkllog < 2klogA.SECk 5 5

(5.15) Remark. Assume (4). Fix L > 6. Almost surely, for all

sufficently large n, for all k with k . 10g2n - 10g2log n - L,

and all SECk, N'=N
s s

Proof. This follows from (3.5b) and Poissonization:

-1/2 -~ -A/16 < CP{N S.e /} AJn e - A/n

where C = 2 - -. The test sum for the Borel Cantelli2
lemma is bounded above by

A Xnlo2n 2k/nC < 2A n i/nCl < o L
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(5.16) Corollary. Assume (4). Fix 8>0. Almost surely [PflI
for all sufficently large n, for all k with k < log2n - K3,

| EC(log N - logAJ)l < 62klogA.

Proof. For k with log2log n + K2 < k . log2n - K3,

use (5.13). For k < log2log n + K2, use (5.11). L

In the early zone and lower midzone, klog2log n + K;

then p is nearly p: see (4.2). In these zones, we can

estimate log pk,' as follows.

(5.17) Proposition. Assume (1), (4), and (5.1). Suppose

the 11k are r-uniform. Define T by (5.3a) . Fix 8>0 and K<>>.

Almost surely, for all sufficiently large n, for all k with

O. k. 1g2log n + K,

slog p - nH(p) - T +
2g2klog(nl2k) < 62 log(n/2 kJk,n n 2

Proof. We estimate log pk by (3.3) in DF91, making

(5.2a) rigorous by adding 0(2k)=o(2 klog(n/2 k)). Now

sE-Cks 5ps

can be expanded around p by (3.14) in DF91. The lead term

is nH(p). The linear term gives T , after a bit of algebra.

The quadratic remainder is negligible by (5.9). Finally,

2 EElog N
2 sE-Ck 5

can be estimated by (5.16).
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In the upper midzone, N may be 0 for some s. The

corresponding terms contribute 0 to the sum defining log k

Even if N >0, p may be 0 or 1. This necessitates some

additional nuisance terms in the expansion of log p ,

because the approximation to 4(m,j,y) changes form when

j=0 or m. See (3.2) and (5.4) in DF91.

(5.18a) Let Nk be the number of SECk with N >0 and

X =0 or N
s s

(5.18b) Let seGk iff O<X <N.

1 kA A

(5.18c) Let 2 = --log(n/2 )Nk + log p (1-p ).
k,n 2 sCeGk s s

A

All terms in Ek n are negative, because O<ps<1.

(5.19) Proposition. Assume (1), (4), and (5.1). Suppose the

TRk are F-uniform. Fix 6>0 and K<o. Define K3 as in (5.26).

Almost surely [Pf1 for all sufficiently large n, for all k

with log2log n + K . k < log2n - K3,

1 k ~ k -<
slog Pk - nH(p) - T + -2 log(nl2f< ) )log(n12).

,O,n n 2 ~k,,n' 2l /

Proof. This is argued like (5.17). L

This completes the discussion of the early zone and

midzone. The endzone goes away by (4.15), and we turn to

the high zone.
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The early high zone

The early high zone is defined by the condition

(5.20) log2n + K4 < k < 2 log2n - log2log n - Ks.

K4 defines the right edge of the endzone, but from our

perspective, it is a free parameter: (4.15) imposed no

condition on K4. For present purposes too, K4 is not really

material; we can set K4=3. We will prove:

(5.21) Proposition. Assume (1), (4), and (5.1). Suppose

the rIk are r-uniform. Fix a large positive number L. There

is a large positive integer Ks such that: Almost surely [Pf],
for all sufficiently large n, for all k satisfying (5.20),

log Pk < nH(p) + Tn - L log n.

Suppose SECk. As in (4.17), let SSkn iff N =1; likewise,

SEMkn iff N >1. The S is for "single occupancy" and M for

"multiple occupancy"; the dependence on n will matter later.

Write ies iff Ej(i)=sj for l<j<k; in other words, the first k

covariates for subject i agree with s. Suppose k is so large

that gk=p: see (5.1). A bit of algebra shows

(5.22) If sESkn then log +(N ,X ,y ) = H(p) + (q-p)H'(p)

for the unique ies.
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For O.j<m and m.2, let

(5.23) 40o(m,j,y) = log4(m,j,y) - mH(p) - (j-mp)H'(p).

For SEMkn, let As=o(Ns,Xs,ys). By (5.22) and a bit more algebra,

(5.24) log pk = nH(p) + T + AEMs
.

To prove (5.21), we must estimate s A. The main
sE-Mkn 5

technique is Poissonization, and here are some preliminaries.

Recall from the definition (7) in DF91 of r-uniformity that

Ter entails 7.b>O. The next result is immediate from (3.3d)

in DF91.

(5.25) Lemma. +o(m,ij) < [1 + IH'(p) r]m + jlog bl for

yer with lower bound b.

(5.26) Definition. Fix k. For SECk, let N be Pois(A),
S

k Gvn * lt * *
where A=n/2 Given [N , et X 7 be independent bin(N ,p).

* * * * *
Let A =4o(N ,X ,y ). Let M be the number of SECk with N 22.
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Relationships (5.27-30) are obvious:

* * * *

(5.27) M = XCCI , where I is 0 if N <2 and

* * *
I is 1 if N 22. The I are iid.
s s s

1 2 -A% 1A2(5.28) -A (1-A) < [1-(l+A)e I <-A for all A.
2 2

k ~~-A
(5.29) E{M } = 2 [l-(l+X)e ]

(5.30) -nA(1-A) < E{M } < -nA for all A.
2 2

(5.31) Lemma. Fix 6 with 0<6<1. Suppose O<A<6/2.

*
a) P[M 2(1+)nnA/2] < exp(-62nA/8).

*
b) P{M <(1-6)nA/2} < exp(- 2nA/16).

Proof. Claim a). This is Bernstein's inequality.

Theorem (4) in Freedman (1973), coupled with the estimate
*

(5.30) for E{M }, gives the bound

exp-1 (nA/2)2 < exp(_62nA/8)

because 0<6<1.

Claim b) is similar. By (5.30), nA/2 . E{M } and
*

E{M } - (1-6)nA/2 2 nA(6-A)/2 > 8nA/4, so the bound is

exp 1 (6nA/4)2 < exp(282nX/16).
e 2 nA/2
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Note. Lemma 3.1 is quite inefficient for small p, when

f- would-- ideally-- be replaced by T . Hence the

resort to other estimates.

(5.32) Lemma. For i=1,2,... let Ai be independent,
* *

and distributed as A given N >2. Define E2>0 as in

(3.8) of DF91. Suppose O<A<1/2.

a) EfAi] < -62-

b) There is an e>0 and o2 with o<a2<w such that:

(i) for all A with O<A<1/2 and all m=l,2,...

PzmA/2 G2);PrLLjA 2 -em] < exp(-e m/2

** * r s~~2nKl(ii) SE,CkA 2-eM } < expl 8-

Proof. Claim a). By (3.8) in DF91, E{A |IN=m} < -me
~~ * * * *

for m 2 2. So E{/A} = E{AsINs2} < -2E2P{Ns=2}/P{Ns.2} <

-262(1-A) < -62, with the help of (5.28).

Claim b). Let i = Ilog bj + {l+IH(p) I+IH'(p) I}N,
where N is Pois(1/2) conditioned to be 2 or more. By (5.25)

and (3.25), IAiI is stochastically bounded by i, so (3.2)

applies. Compute o2 and hi according to that lemma. Let

e=min{hi,e2/2} and p=exp(-e2/2a2). Now
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r }-em} < Pr Ai > _E{A} +em} < exp(-e2m/2o2)

The first inequality holds because E{fA}<-2e; the second,

by (3.2): the condition yl<hlm holds because e.hl. This

proves (i), and we turn to (ii).

Conditional on M =m, the sum is distributed as Ai,

giving the bound

(_2M 2 2 * 2E{exp(-E M /2a )} < exp[-e E{M }/2oy

by Jensen's inequality. But A<1/2 so E{M } > nA/4 by

(5.30).

Note. In the proof of c), if you just think of

** ~~~~~~kECCkA I as the sum of 2 terms, (3.2) gives the

disappointing bound exp 2(2] = exp(-e2nk3/8y2).

Recall that Mkn = {S:SeCk and N 22}.

(5.33) Lemma. Assume (1), (4), and (5.1). Suppose the nk

are r-uniform. Fix 6 with 0<6<1/2 and suppose O<A<6/2.

Choose e>O as in (5.32b).

a) Pf[lMknl . (1+6)nA/2] < AJ^F exp(-62nA/8).

b) PfflMknI < (1-6)n1/2J < AJn exp(-_2nA/16).

cJ P {ESEMknA> -eIMknl} < AJn exp(-e2nnA/8y2) .
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Proof. Claims a) and b) follow from (5.31) by de-

Poissonization. Claim c) is similar, starting from (5.32). L

(5.34) Corollary. Assume (1), (4), and (5.1). Suppose the

7k are r-uniform. Suppose k and n satisfy (5.20).

a) P f[MknI . (1-8)nA/2] < A/n , with C=822K.
f

b P A > -E
it

< with D=e22 /2fSf~EMkn5 2

Proof of Proposition 5.21. Fix 8<1/2 in (5.34a);
-K4

we require 2 <8/2 so A<8/2 in (5.31). Choose e as

in (5.32b). Choose Ks so large that C>2 and D>2

in (5.34). There are at most log2n theories in

the zone. So, almost surely, for all sufficiently

large n, for all k satisfying (5.20),

IMknI > (1-8)nA/2 > 2 log n

X A < -eIMknI < -e 2 log n.
5E=Mkn KS2 I

Remark. We have assumed in (5.1) that the mean of y

equals p, for sECk and k>nl. Suppose that X is constant,

say at GEr with fe(e)fG = p. Then {A :sEMkkn} are iid

for each k, with E{A } = E{fo(NA,X,y)}; NA is Pois(A)

conditioned to be 2 or more; given N =m, X is bin(m,p).

See (5.23) and (5.26). The argument for (5.33) shows that

X{A :seMkn} 11nXEf+o(N,,X,)}-s2

This completes our discussion of the early high zone.
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Middle high zone

The middle high zone is the most delicate of all the

zones. It is defined by the condition

(5.35) 2 log2n - log2log n - Ks . k < 2 log2n - log2log n + K6.

Here, Ks and K6 are large positive integers; Ks is needed

to control the early high zone; K6 will control the late high

zone.

(5.36) Proposition. Assume (1), (4), and (5.1). Suppose the

SLk are r-uniform. There is a small positive co (depending on

K5, K6) such that: Almost surely, for all sufficiently large

n, for all k satisfying (5.35),

log PkTn < nH(pJ + Tn- colog n.

At stage n of the trial, we have data on n subjects;

let Dkn be the set of sECk with N =2; the D is for "doubly
5

occupied". The main difficulty is showing that IDknfl|nA/2.
The dependence on n matters, and is displayed in the notation.

Since nA is of order log n, exponential bounds must be

supplemented by passing to geometric subsequences, and the

J for de-Poissonization cannot be afforded. We solve the

latter problem first.
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(5.37) Lemma. At stage n, let Dkn be the set of SECk with

N =2, and let Mkn be the set of SECk with N .2. Fix 8 with
s s

0<8<1. Fix positive integers Ks,K6. Almost surely, for all

sufficiently large n, for all k satisfying (5.35),

a) (I-S) nXI2 < | MknlI < (1+) nXI2

b) (1-S)nA/2 < IlknI < (l+8)nA/2.

Note: A depends on k and n, and nA=n2/2k: see (4.1).

Proof. Claim a). Fix r slightly bigger than 1 and

consider the sequence rJ. For each k, IMknI increases with

n. As n increases from rJ to rJ", nA increases from r2j/2k
to r2J2/2k, i.e., only by a factor of r2. Thus, it suffices

to prove claim a) for n of the form ri. Recall Sn from

(3.22). By (3.20), IMknI=Sn or Sn-1; and it is enough to

prove the claim for Sn and n of the form ri. That is

immediate from the Borel Cantelli lemma and (3.24) with
kn=rJ and b=2

Claim b) follows from a), because IDknl=lMknI or IMknI-1,

by (3.20).

Recall the function 4o(m,j,y) from (5.23). Let (

be the class of random variables distributed as 4o(2,X,y),

where X is bin(2,p) and yET. If YEK, then Y is uniformly

bounded, by (5.25), and E{Y}<-2e2<0 by (3.8) in DF91.

As (3.2) shows,
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(5.38) Lemma. There are positive constants hi and o2

depending only on JK, such that: if Y1esa are independent for

i=l,. ..,m, and O<y.h 1 m, then

__ (Yi - E(Yi) 2 y < exp(-y /2 ).

Recall A , as defined for (5.24). Given Dkn, {A :sEDk }

are independent; and A EK.
5

(5.39) Lemma. Define £2 as in (3.8) of DF91; hi and o2

as in (5.38). Let O<e<min(hl,e2). Almost surely, for all

sufficiently large n, for all n and k satisfying (5.35),

XiA :seDkn) < -E(log2n)/2
K

5

Proof. First, consider only n of the form 2i. By

(5.38),

(5.40) Pf {{A :seDkn} 2 -eIDknhlDkn} < exp(-e2jDknj/2G2).

Then E{exp(-e 2IDknh/202)} < exp(-e2E{IDknI}/2G2) and

E{IDknI} % 2kk2/2 = n2/2k+l > (log n)/2K6+l > j/2 K62

The Borel Cantelli lemma shows that almost surely, for

all sufficiently large n of the form 2J, for all k

satisfying (5.35), X{A :sEDkn} < -ElDknl. Indeed,

the test sum is bounded by

(1+K5+K6) e-e i < 00, where Co=e2 /2K6+302.

Finally, use (5.37) to bound lDknI, noting that nA.(log n)2
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We must now interpolate between 2J and 2J+1; the

argument is only sketched. Fix k. Then X{A :seDkfn}

is below -e(log n)/2 , say, when n=2J. As n increases from

2J to 2J+', 2J additional balls are dropped at random into

the 2k boxes, perturbing the sum. We claim that almost

surely, for all sufficiently large n, the perturbations

will amount at most to e(log n)/2 , so

EtA :seDknl < -e(log n)/2

for all n and k satisfying (5.35), with 2j.<n2J+l, provided

j is sufficiently large.

There are four kinds of perturbations: (i) an additional

doubly-occupied box is created, adding an independent term

A1ie(; (ii) a triply-occupied box may be created; (iii) more

than one triply-occupied boxes may be created; (iv) a box

may become more than triply occupied. Perturbations (iii)

and (iv) do not occur for large n, by (3.20), and need not be

considered further. Perturbation (ii) changes the sum by a

uniformly bounded amount; see (5.25).

We must now bound the effect of perturbations of type

(i), showing they amount to less than Colog2n=Coj, where

Co=e/2K6 ; this leaves more than enough to absorb

perturbations of type (ii). Now, dropping in 2J balls

increases Dkn from (essentially) 22j/2k+l to 22j+2/2k+l, by

(5.37); i.e., from cj to 4cj. But, adding this number of A's

-- or any other -- crosses the Coj boundary with probability

at most pi, by (3.16).
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Proof of Proposition 5.36. Use (5.24), (3.20),

and (5.39). L

Remark. We have assumed in (5.1) that the mean of y

equals p, for seCk and k>nl. Suppose that 'y is constant,

say at yer with fO(p)fe = p. Then {As:sDkn} are iid,

with E{A } = E{fo(2,X,7)}, X being bin(2,p): see (5.23).

The argument for (5.39), pushed a little harder, shows

that L{A :seDknl} -,2nAE{o(2,X,y)}; the idea is to split

along the geometric sequence r" with r just bigger than 1.

This completes our discussion of the middle high zone.
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Late high zone

The late high zone is defined by the condition

(5.41) 2 log2n - log2log n + K6 < k < 3.1 log2n.

(5.42) Proposition. Assume (2), (4), and (5.1). Suppose

the alk are r-uniform. Fix C>O. There is a large positive

integer K6 (depending on £) such that: Almost surely, for

all sufficiently large n, for all k satisfying (5.41),

Ilog p -n nH(p) - Tn < E log n.

Proof. By (5.24), it is enough to bound X{A :sEMkn}.

But (3.20) shows that Mkn (the set of multiply-occupied

cells) differs from Dkn (the set of doubly-occupied cells)

by at most one triply-occupied cell. So it is enough to

bound X{A :sEDkn} and hence IDknI by (5.25). For each n,

lDkni decreases as k increases, so it is enough to consider

k just larger than 2 log2n - log2log n + K6. Now (5.37)

shows that almost surely, for all sufficiently large n,

IDknl < nA = n2/2k < 2-K6 log n.
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Very late high zone

The very late high zone is defined by the condition

(5.43) 3.1 log2n . k.

(5.44) Proposition. Assume (1), (4), and (5.1). Suppose

the 'k are r-uniform. Almost surely, for all sufficiently

large n, for all k . 3.1 log2n,

log pk,n = nH(p) +Tn

Proof. This is immediate from (3.21) and (5.24). L

Proof of theorem 6

Proof of theorem 6. Claim a). By (5.17), with 61 any

small positive number of our choice

r ~~~12 2 2 2(5.45) w n > weexpLnH(p) + T - 2 log(n/2 ) - si2 log(n/2)J.

The random term T was defined by (5.3a), and is of order

In log log n or less. We must now eliminate theories in

the endzone and high zone.

Theories in the endzone (log2n - K3 to log2n + K4) are

negligible relative to theory 2, by (4.15). The 6 there

depemds on K3, K4; but no matter what that 6 is, the endzone

has entropy rate H(p)-6 < H(p).
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The early high zone is defined by (5.20). For such

theories, by (5.21),

k Wk,n [<k=log2nwk]exp4nH(p) + T - L log n]

< exp1nH(p) + T - L log n --2 log n -
0
°2 log n

n ~~4 log 2

using the condition of the theorem-- with log2n = (log n)/(log 2)

in place of n. (The sum of the high-zone weights starts at

log2n.) In total, the early high zone has negligible

posterior weight, relative to theory 2, provided

So 2 12 2
L + 2 > -2 + 612 .

log 2 4

But L can be made large by choosing Ks large.

We combine the middle high zone, late high zone and very

late high zone, i.e., we consider all theories

k 2 L(n) = 2 log2n - log2log n - Ks.

The posterior weight in this combined zone is

by (5.36), (5.42), and (5.44) at most

(5.6)Xk wk,n [XkL(n) WkIexPnH(P) + T + E logn]

< expnnH(p) + T + E log n -(log 2)2 L(n) - So2 L(n)].

Now

1 2
(5.47) -(log 2)2 L(n) = -2 log n - Co log log n - Ci.

4 2
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Again, this zone is negligible relative to theory 2, if we

choose e + 612 < -2° 2 . The 61 in (5.45) is the 6
log 2

of (5.17), and is at our disposition. The e in (5.46)

comes from (5.42). To make it small, we have to choose K6

large. Choosing Ks and K6 large makes the eo in (5.36) small.

However, the value of eo does not matter.

The balance of the argument for claim a) is omitted,

being very similar to the argument for Theorem 5 in this

paper, or Theorems 8 and 9 in DF91. Basically, posterior

mass shifts into the early zone or midzone, where there are

are lots of observations per parameter.

We turn to claim b). Consider only n with

X =nwk > exp[--(log 2)n2 +on2]

We combine theories in the late and very late high zones,

so

k 2 L(n) = 2 log2n - log2log n + K6.

By (5.42&44), the total posterior weight in these two zones

is at least

(5.48) exp1nH(p) + Tn E log n - (1lg 2)2 L(n) + 8o2 L(n)].

e is a small positive number, at, our disposition; So is

fixed, by the conditions of the theorem. Of course,

1 2 i2
(5.49) -(log 2)2 L(n)= -2 log n - Co log log n + Cl.4 2
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By comparison, the total posterior weight in the early

zone and midzone (klog2n-K3) is by (5.17&19) at most

(5.50) 102n IwkoexpLnH(p) + T -2 log(n/2k) + 12 log(n/2 )

< Wk]exp nH(p) + T - 22 log(n/2) + 812 log(n/2)].

Si is a small positive number, at our disposition.

The term
k

in (5.19) was dropped, being negative: see
k,n

(5.18c). The displayed inequality holds by (5.17) in DF91.

Compare (5.48&50): the early zone and midzone are

negligible relative to the late and very late high zones,

provided 812 +E < 20o2 /log 2. It is the minor bit of algebra

in (5.47&49) that seems to determine the critical rate of decay

for the w's in Theorem 6.

The endzone goes away, as usual; the early high zone

can also be eliminated. We do not know (or need to know)

how much posterior mass is in the middle high zone.

Informally, posterior weight shifts so far out that there

are only O(log n/n) observations per parameter. The argument

can be completed as in (5.18) in DF91. L
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