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Abstract

The performance of Bayes’ estimates are studied, under
an assumption of conditional exchangeability. More exactly,
for each subject in a data set, let £ be a vector of binary
covariates and let m be a binary response variable, with
P{n=1|£}= £(£). Here, f is an unknown function, to be
estimated from the data; the subjects are independent, and
the £’s are iid uniform. Define a prior distribution on f as
YkWkTk/)kWk, where mx is uniform on the set of f which only
depend on the first k covariates. And wg>0 for infinitely
many k. Bayes’ estimates are consistent at all £ if wg
decreases rapidly as k increase. ‘- Otherwise, the estimates

are inconsistent at f=1/2.

lResearch partially supported by NSF Grant DMS 86-00235

2Research partially supported by NSF Grant DMS 86-01634



1. Introduction

This paper is a modification of Diaconis and Freedman
(1991) ; hereafter, DF91. To state the issue in a specific
context, consider a clinical trial. Each subject has a
response variable m, and covariates £. The response
variable is 1 or 0, corresponding to success or failure. For
instance, m=1 if the subject survives to the end of the study
period, else 7m=0. The covariates are a sequence of 0’s and
1’s. In DF91, we required the subjects to satisfy a
"balance" condition. Here, we require the subjects to
be independent and identically distributed. To begin

with, we assume:

(1) Given the covariates, the response variables

are independent across subjects and P{n=1|£} = £(§).

The function f is assumed to be measurable from the space
of sequences of 0’s and 1’s to the closed unit interval [0,1].
This function is an infinite-dimensional parameter, to
be estimated from the data by Bayesian methods. There is a
fairly conventional prior distribution which is "nested" or
"hierarchical". Begin with a prior mx supported on the class
of functions f that depend only on the first k covariates, so
Ek+1,Ek+2,... do not matter in (1). Then treat k as an
unknown "hyper-parameter", putting prior weight wx on k.

Thus, our prior is of the form



0 <0
2a n = n w
(2a) Zk=0wk k/zk=0 k
where
<0
(2b) wk>0 for infinitely many k and Ek—OWk < o,

The question is whether the Bayes’ estimates are consistent:

do the posterior distributions pile up around the true f£?

]

As in DF91, we let ¢ ={0,1} ; so xeC_ has
coordinates xj,%2,.... which are 0 or 1. Write Aw
for the uniform measure on C. i.e., Lebesgue measure.
With respect to Aw, the coordinates are independent,
and Aw{xj=1}=1/2. By definition, the parameter space
© is the set of measurable functions from C, to [0,1];
functions which are equal a.e. are identified. Put
the L2 metric on the parameter space. A typical

neighborhood N(f,3,e) of £ is defined by (3):

(3) If fe€® and &,e>0, let N(f,8,e) be the set of he® with

J\w{x:xec°° and |h(x)-f(x)|<e} = 1-8.

If n is a pfior probability on €6, the posterior
probability En on © is the conditional law of f given the
data; this will be computed explicitly in section 2. The
prior m is "consistent at f" if En{N(f,é,e)}*l almost surely

as noeo,



At stage n, there are n subjects, indexed by i=1,...,n.
Each subject i has a response variable ni=n(i), and an
infinite sequence of covariates

E(i) = E1(i), E2(i), ....

We assume

(4) The £(i) are independent and have a common uniform

distribution.
This replaces the balance condition in DF91.

Let Ck be the set of strings of 0’s and 1’s of
length k. The prior mx is defined by the joint distribution
it assigns to 2 parameters, Gs:seck. Here, es is the
probability of success for subjects whose first k covariates
are given by s. A little more formally, 7Tk concentrates
on 6xCO®, the set of functions f which depend only on the
first k covariates. If f€6k, then Gs(f) is the value of

f(x) when XeC _, sE€Ck, and xj=s; for 15<j<k. See (6) in DF91.

The mk are assumed to be "I'-uniform" in the sense of
(7) in DF91. The definition is a bit technical. To review
briefly, for SE€Ck, the Os are independent with respect to mg;
each es has a density Ys on [0,1]; these Ys fall in the class T.
In particular, yel' are uniformly bounded above by B<®, and
below by b>0. Let gs=feys(6)d9. By assumption, the gs
all lie in a finite subset F of (0,1), given a priori.
Furthermore, for all large k, for all se&Ck, gs=gw(x) for
all x with xj=s; for 1<j<k. And g, depends only on finitely

many covariates.



This completes the definition of I'-uniformity. The main

theorems of this paper can now be stated.

(5) Theorem. Suppose (1) and (4). Suppose too
the nk are I'-uniform, the prior m is hierarchical in

the sense of (2), and 1#g_ - Then n is consistent.

(6) Theorem. Suppose (1) and (4). Suppose too the mk are
IF'-uniform, the prior m is hierarchical in of (2), and f=g_.

Let 2 be the smallest k with wx>0. Write exp(x)=ex.

0 1 2 £
a) Suppose zk—nwk < exp[-z(log 2)n2 -&on2 ] for all

large n, for some 80>0. Then m is consistent at f.

cO 1 2 2
b) Suppose zk—nwk > exp -z(log 2)n2 +don2 for
infinitely many n, for some 80¢>0. Then m is

inconsistent at f.

The critical rate is different here and in DF91;
see theorems (8) and (9) there. The 8¢9 in the statement

of theorem 6 is a fixed quantity.



2. Computing the posterior

Let 0 be an underlying probability space, on which the
response variables m(i) and covariates £; (i) are defined.
Recall that fe® maps Cw to [0,1]. For f€6, let Pf be the
probability on I which makes the response variables and
covariates distributed so that (1) and (4) hold. The
dependence between the data at stage n and stage n+l
is simple: there is one extra subject with covariate
sequence £ (n+l). The joint distribution across n’s

will matter for some of the arguments here, as opposed

to DF91.
Let
=}
(2.1) £k (X)=E{£f|X1, ..., %k}=|£(X1,...,%k,Y)A (dy)
C
<0
and write fx(s) for fx(x) when s€Cx and X1=S1,...,Xk=Sk.

For now, fix n and k. For se€Ck, let Ns be the number of
subjects i=1,...,n such that £;(i)=s; for j=1,...,k. 1In other
words, Ns is the number of subjects i=1,...,n whose first k
covariates are given by s. Of course, Ns is random; that
is the new technical difficulty. Let xs be the number of
successes among subjects whose covariate sequence begins with
s. More formally, m(i) is the response for subject i, and

(2.2) x =Y."

s i=1 {n(i): £j(i)=s; for i=1,...,n}.



Write bin(m,p) for the binomial distribution with m

trials and success probability p.

(2.3) Lemma. Assume (4). With respect to Pf:

a) {Ns:seck} is distributed like the result of dropping
n balls at random into 2* cells.

b) Given {Ns:seck}, the random variables XS are
independent as s ranges over Ck, each being

bin[Ns,fk (s)]-.

As usual, mx can extended to a probability on 6xQ, by the

formula

ik (AXB) = fA P_{B}mk{df}.

In this formula, A is a measurable subset of © and B is a
measurable subset of . The proofs of (2.3-4) are omitted
as routine. In (2.4) and similar contexts, mk is viewed as

a probability on ©xQ.

(2.4) Lemma. Suppose mnx is I'-uniform. With respect

to nk, the Ns have the ball-dropping distribution

given by (2.3).~ Given {Ns:seck}, the pairs (OS,XS) are
independent as s ranges over Ckx. The parameter es has

density YSGF. Given Ns and es, the number of successes

X 1is bin(N ,6 ).
s ( s’ s)



For yel', m=0,1,2,..., and j=0,1,...,m, let

L 92(1-9)"y(e)
¢(m,J,7)

(2.5a) Y(m,j,*): ©
where the normalizing constant is

1 .
(2.5b) é(m,j,v) = J 07 (1-0)" Jy(0)ae.
0

In particular, ¢(0,0,Y)=1 and Y(0,0,°*)=Y(*).

Let Ek n be the posterior distribution of f, computed
’

relative to mx, given the data from a design of order n.

(2.6) Lemma. Suppose Tk is I'-uniform. According to
to the posterior Ek , the success probabilities GS are
’

independent as s ranges over Ck, and es has density

YS(NS,XS,-) with respect to Lebesgue measure on [0,1].

To compute the posterior relative to m, the mg-predictive
probability of the data is needed. To set up the notation,

recall the normalizing constant ¢ from (2.5b). Let
(2.7) P n = Jlaee PN X 01y

If Ns=0, the corresponding factor in pk nis taken as 1.
!

By (2.4), pk n is the mk-predictive probability of the

[

data, given {Ns}.



Turn now to the posterior En' computed relative to m.
Informally, the "theory index" k in (2) is a parameter,

which has a posterior distribution relative to m. Let

~

(2.8) w = P

- W .
k,n k' k,n

~ aQ -~
Now, mk{data}/n{data} = w

L ] S
k,n/zk=0wk,n °

2.9 k) =w YW
(2.9) ma k)= wk,n/ X=0"k,n’

(2.10) Lemma. Suppose M is hierarchical in the sense of (2),
and the mx are I'-uniform. Given the data from a design

of order n, the posterior is

~ 0 ~ ~ 0 ~
=)

1[ L ]
n %4k=0"k,n k,n/zk=0 k,n

~

The proof is omitted as routine. Of course, "n can

be written as

Looom (k)m
n m .
k=0 n( ) k,n



3. 8ome estimates

(3.1) Lemma. Let 0<p<l. Let X be bin(m,p) and Y=(X-mp)Z2/m.

If m=0, or m>0 but p=0 or 1, let Y=0. Then

a) P{X < mp - me} < exp[-% ] for all x>0.

1
x] for all x>0.

b) P{X 2 mp + I;;} < exp[—;

, , 2
c) Y is stochastically bounded by xz + 21og 2.

Proof. Suppose m>0 and 0<p<l. Claim a) follows from
Bernstein’s inequality. For example, use (4) in Freedman

(1973) to see that

P{X £ mp - me} < exp[-;ix] < exp[—%x].

To get claim b), write g=1-p, and observe that X =2 mp + me

iff (m-X) < mg - Jm . Now use a). For c),

P{Y2x} < 2exp[-%x]. []

(3.2) Lemma. Suppose the random variable § has a Laplace
transform for h<ho, where ho is positive. Let X be the class
of random variables Y for which E{[Y-EY]J }<E({E}} for j22.

2

There are positive, finite o“ and hi, depending only on E,

such that

m sy m o2 jom2
P{Zi=1yi > Zi=1E{Yi} + y} < exp(-y?/20%m)

provided the Y;i’s are independent, Yi€X for all i,

and 0O<y<him.

Note. This lemma is set up to give one-sided bounds.

In some cases, of course, it can also be applied to {-Y}.
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Then a lower bound can be obtained the same way, with a
slightly smaller oc. More detailed results can be obtained by
matching variances or Esscher tilting, but these refinements
will not be needed here. See (Feller, 1966, sec. XVI.6) and

(no moments xxxx).

Proof. Assume without real loss of generality that EY=0.
hy o . .
Let ¢ (h)=E{e }=1+Zj_2E{YJ}hJ/j!. The sum is bounded

above by

«'.aoJ . 122
Zj—zh E{EJ}/3! < 0 h for 0<h<h’.

Here, o2 is a suitable positive, finite number, slightly

larger than the second moment of §. For 0<h<h’,
6 (h) < 14=02h?
Y 2
and
log ¢_(h) < L52p2,
b4 2

The constants o?

and h’ depend on &, not Y or h.
We are assuming that E{Y;}=0. Chebychev’s inequality

. h(Yi1+...+Y h
can be applied to bound P{e (Y1 m)?.e y}:

v

log P{Y1+...+Ym v}

< -hy + m log ¢Y(h)

< =hy + %mczhz.

Put h=y/o’m. We require h<h’, i.e., y<h’oc?m: set hi=h’c?2. []
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(3.3) Lemma. Suppose |U| is stochastically smaller than V.

Then |U-EU| is stochastically smaller than V+EV.

(3.4) Corollary. Let n;y be non-negative integers, and 0<pi<1.
Let Xi be independent bin(ni,pi) and Yi=(Xi-nipi)2/ni. There

are universal positive constants o2 and hi such that
m
P{Y1+. . HYm 2 Zi=1p1 (1-pi) + y} < exp(-y?/20%m)
provided 0<y<him.

Proof. Combine (3.1-3). El

(3.5) Lemma. Let NA be Pois(A), i.e., Poisson with parameter

A. If NA=O’ let log(NA)=0. Let z>0.

a) P{Ji(log NA- logA) 2 z} < exp[-ézz] for all z>o0.

b) P Ix(log NA- logA) < —z} < exp[—izz[(l—e-s)/ejz]

provided 0<stIX. If e=1/2, an upper bound is exp(-z2/4).

Proof. This follows from Bernstein’s inequality:
see (4) in Freedman (1973). Some auxiliary calculations
are needed to estimate the function in (9) of that paper.

We claim

u u , . . .
(3.6) u-+(e -1)2/u2e is strictly convex, with a minimum

at u=o0.
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2
2 =-u/2
Indeed, the function in (3.6) is [(eu/ -e u/ )/u] , which

is readily expanded in even powers of u, with positive

coefficients.

(3.7) A[ez/‘l—i-l] z/ezﬁ

2
>z , for A>0 and z>0.

-u
(3.8) u*(l-e )/u is strictly decreasing for u>0.

2
- A 2 - 2
(3.9) A[l—e Z/J_] > 2z [(1-e 8)/e] for 0<z<eJX. []
- -1/2
(3.10) Corollary. Let Ni=NA if NA>Ae 1/2, else let Ni=xe / .

2
Let ZA=IK(log Ni- logA). Then ZA is stochastically smaller

2
than 4 log 2 + 2x2.

2

(3.11) Corollary. There are finite positive constants ¢“ and

hi1 such that

P{IL,. (31 - B{Z:})| 2 y} < 2exp(-y*/20%m)

provided the Z; are independent, each Z; is distributed

as ZA in (3.10), and 0<y<him.
i

(3.12) Lemma. 11mA*wE{log NA}/logA = 11mA*wE{1og NA}/logA = 1.

Note. As A+, the law of ZA tends to the standard normal.

The bound in (3.5b) can be improved, but there is mass

-A
P{N_=0}=e at z=-filogx; no upper bound of the form

A
exp(-8z2) can be valid for large A.
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Results (3.13-16) are familiar, but are included for ease

of reference. The elementary proof of (3.13) is omitted.

(3.13) Lemma. Let f be a convex function. Let a,b>0 and

let the random variable Xab take values -a or b and

E{Xab}=0. Then E{f(Xab)} increases with b for fixed a;

likewise, E{f(Xab)} increases with a for fixed b.

(3.14) Lemma. Let f be a convex function. Fix A, B and K

with -o<A<p<B<®, Let X be the class of random variables X

such that A<X<B and E{X}=p. Let EEK take only the values
A, B and E{E}=\.. Then E{f(X)} < E{f(E)}.

Proof. Assume without loss of generality that p=0. The

extreme X have two-point distributions and (3.13) applies.

[

(3.15) Corollary. Let f be convex and increasing. Fix L and

¢ positive and finite. Let X be the class of random variables

X such that |X|<L and E{X}<-e. Let EE€K take only the values

*], and E{E}=-e. Then E{f(X)} < E{f(E)}.

(3.16) Lemma. Define X as in (3.15). There is a p with 0<p<1,

depending only on L and €, such that: for independent X€X

and y>0,
P{ZiTl Xy 2 y for some m} < p.
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Proof. Define § as in (3.15). De Moivre solved the

g

gambler’s ruin problem by finding the unique r>1 with E{r’} = 1.

\ , . m S(m) |,
Continuing his argument, let S(m) = Ei—l Xi. Thenr (m) is
an expectation-decreasing martingale, which can be stopped

at the crossing time; take p=1/r. []

Remark. Lemma (3.16) is easily extended to partial sums
of variables X; such that the conditional law of X;

given the past falls in X. See HTGIYM, pl64.

Lemmas (3.17-18) are elementary, and proofs are omitted.

(3.17) Lemma. Let j be a nonnegative integer, and x be

-] .
a positive real number. Let f;(x) = Zi_jx‘/i!. Then
fj(X)/XJ is continuous, convex, and strictly increasing

on (0,), with a limit of 1/j! as x decreases to 0.

(3.18) Lemma. Let m be a positive integer and 0O<p<l. Let X

be bin(m,p), and let j be a nonnegative integer.
. 1 J
a) P{X=3} < 37 (mp)~ .

b) P{x2j} < fj (mp) .

(3.19) Lemma. Assume (4). Fix c>5/3. Almost surely, for
all sufficiently n, for all k > ¢ logzn , there are no s€Ck

with N 24.
s
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Proof. By (2.3a), Ns is bin(n,1/2¥). Write A=n/2*=

1
E{N_}. So A<1/n° ". By (3.17) and (3.18), P{N_24} < CA%,
where C is a suitable positive constant (a bit larger than 1/4!).
The expected number of s with N %4 is then smaller than

c2"7\‘=Cn7\3<C/n3c . The chance of having at least one box
with NSZ4 is also smaller than C/n3c-4, by Chebychev’s
inequality. Since 3c>5, the Borel Cantelli lemma implies
that for all sufficiently large n, for k the least integer

exceeding c logzn, there are no s€Cx with NSZ3. Finally,

for n fixed, |{s:se€Cx and NSZ4}| is decreasing as k increases. []

Note: We write |S| for the cardinality of a set S.

(3.20) Lemma. Assume (4). Fix c>7/4. Almost surely, for
all sufficently large n, for all k > c¢ logzan,
(1) there are no s€Ckx with NSZ4, and

(ii) there is at most one s&Cx with NS=3.

Proof. (i) follows from (3.19), since 7/4>5/3. For
(ii), let Qkx be the event that Ns=3 for two or more s&Cg.

Thus,

Qk U{Ns=3 and Nt=3|s,teck and s=t}

and

2k
P{Qk} [2 ]Pf{Ns=3 and Nt=3}.

= AS . . Gi = i
Now Pf{Ns 3} < /6 by (3.18a) Given {Ns 3}, Nt is

bin[n-3,1/(2%-1)], so

1(n-3 1% _,
P{N _=3|N =3} < =|——]| < A%/s6.
{N =3|N_=3} 6[2-1] /
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Thus

1 2K~ 6 1 2. 4 4c-6
P < —24“%A® = —n“A®* £ 1/(72 n .
{Qk} < == - /( )

The balance of the argument is omitted, as similar to (3.19). []

(3.21) Lemma. Assume (4). Fix c>3. Almost surely, for
all sufficently large n, for all k > c logzn, there are

no s€Cx with NSZZ.

Proof. Only the minimal k needs to be considered. Now
Pf{Ns_>_2}<C7\2 by (3.17-18), so the expected number of s&Ck
. . -2 .
with NSZZ is at most c2%A? = cn2/2% < ¢/(n° °%). since

c>3, the Borel Cantelli lemma completes the proof. []

Lemmas 3.19-21 involve the dependence structure of the
ball-dropping process, as k and n vary. The next result does
not. Consider dropping n balls at random into b boxes, where
n is much smaller than b: in the case of interest, b is of
order n2/log n. Let A=n/b, the expected number of balls in

each box.

(3.22) Definition. Let |M| be the number of multiply-
occupied boxes; and T the total number of balls in the set
of multiply-occupied boxes. Let Sn = T-|M|, with So=0. Let
pj be the conditional probability that ball j drops into a
previously- occupied box, given the results of dropping the

first j-1 balls.
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Clearly, Sn<n-1, where the bound is sharp; n-S, is

n
j=2
where Xj is 1 if ball j drops into a previously-occupied box;

the number of occupied cells; S1=0; and for n22, Sp= Z Xj,

else, Xj is 0. Recall p; from (3.21). Of course, p; is
itself a random variable, and

(3.23) Pj = (3-1-8;-1)/b.

(3.24) Lemma. Let p=n(n-1)/2b.
a) If 0<8<1, then Pr{Sp>(1+8)u} < exp(-&2u/4).
b) Suppose 0<&<1, and n/b<d/2. Then
Pr{Sn<(1-8)u} < exp(-&2u/8).

Proof. Claim a) is Bernstein’s inequality: see e.q.

(4) in Freedman (1973), noting that ijlpj < M.
Claim b) is similar. Indeed,
& n 2
Pri{Sn < M+ zj=1pj < exp(~8%u/8).

Clearly, § = (nSn/b) < E-n

J_lpj, because S; increases

with j. So

& nSn ) n
< -—) - C < + .
{sn (12w - = } {Sn - Zj=lpj}

& S
Furthermore, Sn < (1-5)u - nb" iff Sn £ o, where
&
1=
= > -8).
> 140 (%)
b
Therefore, {Sn <(1-8)H} C {Sn < ogi}. []
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Note. The argument shows S, to be stochastically smaller
n
than zj_ZYJ, where the Y; are independent 0-1 valued
random variables, and Pr{Y;=1} = (j-1)/b.

(3.25) Lemma. Fix j20. Let NA be Poisson, but conditioned to

be j or more. Then NA is stochastically increasing with A.

[+ ¢
Proof. Let fj(A) = Zk—jA /k!. If i>j, we claim that

£i(A)/£fj(A) increases with A. This comes down to showing

(3.26) £/ (A)/Ei(A) > £57(AN)/£5(A).
However,
1 i-1
£57(A) = A + £i(A).
17 (A) (i-1)! i (A)
So (3.26) in turn reduces to
© k=j o k-i .,
3.27 A k! > A -1)!/k!,
(3.27) I N N
which holds term by term. []

**k*% monotone likelihood ratio **x*
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4. The proof of theorem 5

This is proved like (8) in DF91; only the main points
are given. Zones are defined in terms of positive integers

Ki to be chosen later.

IA

Early zone: 0 < k £ K;.

Lower midzone: Ki £ k £ logz2log n + Ka2.

Upper midzone: logz2log n + K2 < k £ log2n - Ks.
Endzone: 1logzn - Kz < k £ logzn + Kg.

High zone: 1loga2n + K4 < k.

The endzone and high zone have negligible posterior mass;
the early zone is negligible too, unless f=fx for some k.
Almost surely, for all large n, for all k in the midzone,
for most s€eCk, NS is large and the MLE ;s= XS/Ns is close
to fk(s). Of course, the latter tends to f: see (2.1).
Finally, the posterior piles up around the MLE, by Diaconis
and Freedman (1990). We turn to details; lemmas (4.2-4) do

most of the work for the midzone.
(4.1) Let A=n/2k, SO E{Ns}=A.

(4.2) Lemma. Assume (1) and (4). Fix any positive integer K.
Almost surely [Pf], for all sufficiently large n, for all k with
0 £ k £ log2log n + K and all s€Ck:

+lzn/[zKﬂlog n].

b) IBS-fk(s)|<[2J2K+llog n) /[n.

a) N >n/2k
s
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Proof. Claim a). By (2.3a), N_ is bin(n,1/2%). Abbreviate

2K+3 . . .
c=1/2 . By Bernstein’s inequality (3.1a),

P{NSSA/Z} < exp(-A?/8n) < exp[-Cn/(log n)?].

The number of strings seCx with 0 < k £ logzlog n + K is

K+1

1l 1 + K
yro92:09 n 2k < 27 "1log n

k=0

and

znc=01 (log n) exp[-Cn/(log n)?] < .

The Borel-Cantelli lemma completes the proof of a).

The proof of b) is similar. Indeed, by (3.1),

- > . - - 2
Pf{lxs stk(s)l > JNS 2 1log n} < 2exp(-2 log n) = 2/n?. E]

(4.3) Lemma. Assume (1) and (4). Fix any large, finite M

and small, positive 8. There are positive integers K2, K3
(depending on M,8) such that: Almost surely [Pf], for all suffi-
ciently large n, for all k with logzlog n + K2 < k £ logzn - Ks,

for all but 82% strings secCk, NS>M.

Proof. The argument is by Poissonization. For now,
fix k. Let N: be iid Pois(A) as s varies over Ckg.
Thus, {NS} is distributed as {N:}, given that {ZSN:=n}.
The conditioning event has probability asymptotic to 1/J3;;.
Choose K3 so large that Pr{Pois(ZKs)SM} < 8/2. The chance
that 82X or more of the se€Ck have N:S M is bounded above by

exp(-822¥/8). This follows from Bernstein’s inequality (3.1b);
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K
also see (3.25). Now 2k22 2log n. Choose K2 so large that
K :
cC =2 262/8 > 1.5. There are fewer than logzn theories k to

consider, and

Y (logzn)fn/n° < .

The Borel-Cantelli lemma completes the proof. []

(4.4) Lemma. Assume (1) and (4). Fix 8,¢ positive but

small. There are positive integers Kz, K3 such that: almost
surely [Pf], for all sufficiently large n, for all k with
logzlog n + K2 £ k £ logzn - Ks, for all but 82%*! strings seck,

|p_-£, (s) |<e.

Proof. By Chebychev’s inequality, if X is bin(m,p), then
P{|X-mp|2em} < 1/(4e?m). Choose M finite but so large that
1/(4e?M) < 8/2. By (4.3), apart from 82X strings secCy, N_>M.
Given {NS}, the XS are independent bin[Ns,fk(s)] random
variables. Bernstein’s inequality-- with no Poissonization
needed-- completes the argument, as in (4.3): There are

another &2* exceptional strings, and setting them aside,

- < -
lp_-£, (s) |<e L]
The early zone: k<K
Let

1 1
. L == == N ,X .
(4.5) logp == ) 109 (N, X_, 7))
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We also need the entropy function:

(4.6) H(p) P log p + (1-p)log(l-p) for 0O<p<1l

=0 for p=0 or 1.

(4.7) Lemma. Suppose (1) and (4). Suppose the mx are

TF'-uniform. Fix k. Then

(=]
lim L  =|H(fx)dA almost surel P_J].
oLy, n = (£ rely [P_]

Proof. This like (4.12) in DF91. Since k is fixed, Ck
is finite. We have Ns ~ n/2* almost surely by the ordinary
strong law: see (2.3a). And ps*fk(s) by the strong law or

(4.2b). By (3.2-3c) in DF91,

1 1
“log(N_,X_,1 ) » SpH[fk(s)) a.s.  []

The endzone: logzn - K3 £ k £ logzn + Kg

(4.8) Lemma. Suppose (1) and (4). Suppose the mx are
IF'-uniform. Fix any positive integers Kz, K4. There is a
positive p<1l, a finite positive constant A, and a small
positive & (all depending on Kz, K4) such that, for all n,

for all k with logz2n - Kz £ k £ logan + Kg,

L n
> -
Pf{Lk,n_ [H(£x)dA a} < alnp .

Proof. The argument proceeds by Poissonization, as in

(4.3). For the moment, fix k. Recall that A=n/2k.
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*
(4.9a) Let Ns be iid Pois(A) for s€Ck.

* * %*
(4.9b) Given {Ns}, let the Xs be independent bin[Ns,fk(s)].

Let *

*
* 1 Xs NS-XS
(4.9¢) Y = logJ 6 " (1-96) Y_(6)de.
s o s

It suffices to prove

(4.10) Pr{iz v fH(fk)-S} < pn.

n“seCk s
* %*
Choose L with 25L <», We claim:
4.11 E Y* N* < N*H f
.1l1la < s));
( ) {Sls} s(k())'
*
(4.11b) there is a positive & (which depends on L but not k or n)
* % * * * %
such that E{Y [N } < N H(f_ (s - &N on {25N <L }.
{sls} s(k()) s { cL L
These results follow from (3.8) in DF91. Thus,
E Y* < AH(f P 2<N*<L*
< s - ePr{25N < .
{ s} ( k( )) { s }

Kg K3

- *  k
Because 2 SA<L 27, Pr{ZSNSSL }/A is bounded above and

below. There is a small positive &’, which does not depend

on k or n, such that

*
(4.12) E{Y_} < A[H(fk(s)) - € ].
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We can now use Bernstein’s inequality (3.2). 1Indeed,
by the definition of I'-uniformity, 752 b > 0; see (7)

in DF91. And
* 1 b *
-N + 1lo <Y <0
s 9 s !

*
by (3.3d) in DF91. Furthermore, the Ys are independent.
. K K
We take m=2k, E=Pois (2 3) + 2 log b + 2 3, y=€’’n, where
. . . . K
€’’’ 1is fixed with 0 < €/’ < min {¢’, hi/2 3}, so €’’<e’ and

y<him. See (3.3) to motivate the definition of §. Then

*

* n
4.13 Pr Y 2 E{Y + €’'np < r
(4.13) {Zseck Leec, LY} }

s sec
2 2 Kk~ - —Ka
where r=exp(-Cn/m) and C=¢’’“/20“. But n/m=n/2"22 .
=K
We take p=exp(-C2 4). Combine (4.12-13):
1 * n
4.14 Prq— Y 2 |H(f - &’ + !’y < .
¢ ) {nzseck s = JH(EK) } P
We take 8=e’-e’’>0. This proves (4.10). []

(4.15) Corollary. Suppose (1) and (4). Suppose the mk are
F-uniform. Fix positive integers Ks, K4. There is a small
positive & (depending on Ks, K4) such that, almost surely,
for all sufficiently large n, for all k with logzn - Kz £ k <
loga2n + Kg,

L ’H fx)dAa S
< - -
k,n (fx)

This completes our discussion of the endzone.
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The high zone: logz2n + K4 < k

Let
(4.16) H(p,0) = p log6 + (1-p)log(1-06).

The relative entropy function H is left undefined at the

corners p=6=0 or 1, where it has singularities.

Let seSk iff seCk and Ns=1: the "S" is for "singly-

occupied." Let

4.17 S = 1 N ,X .
( ) K.n ) Logb(N_,X_, 7))

SES
In other words, Sk n represents the sum defining Lk ’
’ ’

extended only over the singly-occupied s. Since 0<¢<1,

L <s n.
k,n k,n/

From the definition of I'-uniformity, given as (7) in
DF91, gs is the mean of ys; if k>ki and s€Cy, gs=gw(s), the

function 9, being constant on each s in Ck.

(4.18) Lemma. Suppose (1) and (4). Suppose the Tk are
F-uniform. For any positive 8, there is a positive p<1
and a positive integer K4 (both depending on 8) and a finite

positive constant A such that for all n and all k2log2n+Ks,

-A ® n?/2%
>
Pf{sk,n Z n[e JH(fk,gw)dA + 8]} < AI;p .
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*
Proof. The argument is by Poissonization. Define Ns’

* %
Xs, and Ys as in (4.9). It suffices to prove
P

s S -A © n
(4.19) Pr Zsecst 2 njle H(fk,gw)dx + & < p ,

~ * * ~ *
where YS=YS when Ns=1' and Ys=0 elsewhere. Now, for Ns=1,

<
I

* *
X + (1-X )1 1-
_log g_ + (1-X))log(l-g )

* *
xslog g, (s) + (1'xs)109(1‘gw(s))-

In particular,

~ *
E{Y_|N_=1} = H[fk(s),g_ (s)].

Ae , and =n/2k,

%*
Since Pr{Ns=1}

(4.20) E{Z Y } 7\6-7\2

scc Vs ¢ HIEK(8) 19 (5)]

sE

=-A
ne " [H[fk(s),g_(s)].

The function g, is bounded between b, B, with 0<b<B<1,
again by definition. So the random variables Qs are
uniformly bounded, say by C. We use Bernstein’s inequality
(3.2) with E=2C, y=ns, m=2":

SECKk S (o}

~ -A ® n?s2
(4.21) Pr{z Y 2 njle H(fk,gw)dx + 6]} < exp[-;—yzy].

The condition y<him is satisfied if K4 is large enough.

This proves (4.19), with p=exp(-82/202). []
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(4.22) Lemma. Suppose (1) and (4). Suppose the Tk are
I'-uniform, and f#g - There is a small positive &

and a large positive integer K4 such that, almost surely [Pf],

for all sufficiently large n, for all k with logzn + K4 < Kk,
L < [H(£f)d\” - &
< - .
%, n (f)
Proof. < /n, and S decreases with increasing k.

S
kK,n k,n

L
k,n
stabilizes.) The reason is that Sk, the set

(Eventually, Sk

14

of singly-occupied cells, increases with k. Thus, it suffices

to consider the least k 2 logzn + K4. We must show that
almost surely, for all sufficiently large n, for the least

k 2 logzn+Kg,

(4.23) sk’n/n < [H(£)ar - s.

[+ ] a0
We choose 8>0 so small that fH(f,gw)dA < [H(£)arn - 4s.

Now fx—f, so for K4 large and k2logz2n+Kg,
0 [~ ]
fH(fk,gw)dA < fH(f,gm)dA + 8.

But A=n/2kS1/2K4' H is negative; for K¢ large,

14

-A @ -A ©
e fH(fk,gw)dA + 8 <e [fH(f,gw)dA + a] + 8
(=] - o]
< fH(f,gm)dA + 38 < fH(f)arx - &.

Now (4.18) proves (4.23), because
K¢

-] 2,59k [+ o]
Lo et 1 R <e [

n=1 n=1
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Discussion. For this part of the argument, we
do not need that F, the set of prior means, is finite; we do
need b<y<B. We also do not need that gk=g_ for all large k;
uniform convergence would be enough, or even convergence in
measure. Finally, we do not need that g, is finitary,

continuous, etc.

We fix &>0 and choose K¢ large to control the high zone,
by an entropy rate argument. For any choice of Ks3,Kq, the
endzone goes away. We choose K3,K2 large to control the
upper midzone, in the sense of showing that ;k, will be
close to fx and hence f: see (4.3-4). This may be
inefficient, because the upper midzone is probably
irrelevant. For any K2, we get consistency in the lower
midzone by (4.2); and likewise for the early zone,

if f=fx. Details are omitted, because they parallel DF91l.

This concludes our discussion of theorem 5.
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5. The proof of theorem 6
The argument is more delicate; the rate of convergence
of gk to 9, matters, and so does the behavior of g,° We

assume that
(5.1) fx=f=p for all k; and gk=g_=p for k > ki3.
The high zone splits:

Early high zone:

logzn + K¢ £ k £ 2 logzn log2log n - Ks.

Middle high zone:

2 logzn - logzlog n - Ks £ k £ 2 logzn - logzlog n + Ks.

Late high zone:

2 logzn - log2log n + K¢ < k £ 3.1 logzn.

Very late high zone:

3.1 logzn < k.

We now give some heuristics for the early zone, lower

midzone, and upper midzone, that is, for k<logzn-Kgs:
(5.2a) lo ) [N H(A ) - liog N ]
) g‘pk,n seck s P 209 Vg

and
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5.2b = + + H!
( ) szCstH(ps) nH(p) + T+ H (P)Q
where
(5.3a) T = H/(p) Y. . (M,-P)
n i=1 i
and
5.3b = N (b -p)2.
( ) % n Zseck < (P.-P)
Furthermore,

)

- ok K
Seck1og Ns = 2"1log(n/2™).
(The expression n/2k represents the number of observations

per parameter.) To sum up,
log p. = nH(p) + T - l2klog(n/2k)
k,n n 2 ’

The class of theories k with k<logzn-Kz is dominated by

the smallest k with positive prior weight, namely, theory £.
(In the upper midzone, another nuisance term appears in the
expansion; but the argument goes through anyway.) The endzone
goes away by previous arguments. The early and middle high

zones can also eliminated.

The late and very late high zones remain, and the

the term in 2klog(n/2k) drops out:

log pk né nH(p) + Tn.

!
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Therefore, late theories compete-- on entropy grounds--
with theory £. It is the rate of decay of the theory
weights wx which decides the issue. The competitive late
zone starts more or less at k=2logzn, when there are 1/n data
points per parameter. In DF91, the cutoff was 1 data point
per parameter; the extra randomness in Ns helps the Bayesian

statistician, and changes the critical rate for wkx from

(/)" e (142)".

Now for the details. We begin by showing that Qk

14
is small relative to 2*log(n/2¥), provided k<logz2n-Ks.

5.4) Lemma. Defi b 5.3b). For each
( ) efine Qk,n y ( ) (o) ch n, Qk,n

increases with k.

Proof. Use Jensen’s inequality. []

(5.5) Lemma. Assume (1), (4), and (5.1). Suppose the mx are
F-uniform. Let Ki be an arbitrary positive integer. Almost
surely [Pf], for all sufficiently large n, for all k<Ki,

K
< 2"e2e]l0g log n.
Qk,n g g

Proof. Use the law of the iterated logarithm. []
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(5.6) Lemma. Assume (1), (4), and (5.1). Suppose the mk are
F-uniform. Define 62 and hy as in (3.4). Fix B>2. There is

a large positive integer K2 (depending on B) such that: Almost
surely [Pf], for all sufficiently large n, for all k with

logzlog n + K2 £ k £ logzn,

Q < p(1-p)2* + o[B2X10g n.

Proof. This is immediate from (3.4), with m=2% and
y=oJBZE10g n. The test sum for the Borel Cantelli lemma is
at most

L (logzm)/m'? < =

And the condition y<him is satisfied if K is large enough. []

(5.7) Lemma. Assume (1), (4), and (5.1). Suppose the mg
are '-uniform. Fix &>0. Choose K2 as in (5.6). There is a
large positive integer K3 (depending on &) such that:
Almost surely [Pf], for all sufficiently large n,

for all k with logzlog n + K2 £ k £ logz2n - Ks,

Q o < 82%1ogz(n/2¥) .

’
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1
Proof. Suppose first that logzlog n + Kz £ k < Elogzn.

Writ an<<bn iff an/bn~0. Then

p(1-p)2*k + OJszlog n << ézklogzn < 2Xlogz(n/2%).

1
Suppose next that Elogzn £ k £ logzn-Kz. Then

p(1-p)2* + oJBZElog n < &2K1ogz (n/2%)

provided Ks is large. Indeed, p(1-p)<1/4 and logz(n/2X)2Ks

which is large, taking care of the term p(l1-p)2X. Finally,

0JB2E10g n << 2. []

(5.8) Lemma. Assume (1), (4) and (5.1). Suppose the Tk are
I'-uniform. Fix 8>0. Choose Kz as in (5.6). There is a large
positive integer Ki (depending on &) such that: Almost surely
[Pf], for all sufficiently large n, for all k with

K1 £ k £ logz2log n + Kz,

82 ).
Qk n < &2"1ogz2(n/2™)

’

Proof. Let kn be the least positive integer which

is logz2log n + Kz or more. Now

< b .
% n = % n Yy (5.4)

k k

p(l-p)2 " + OJBZ "log n by (5.6)
K2+1 Ko2+1

[p(l-p)z 270 OJBZ 2 ]log n

82%10g2 (n/2%)

A

IA

A
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for k with K; £ k £ logz2log n + Kz, provided K;i is large.

(The 1st and 3rd inequalities hold for all n; the 2nd and 4th,

for n large.) []

(5.9) Corollary. Assume (1), (4) and (5.1). Suppose the Tk are
I'-uniform. Fix 8>0. Choose K3 as in (5.7). Almost surely [Pf],

for all sufficiently large n, for all k with k £ logzn - Ks,
< 82%loga(n/2%).
Qk n gz2(n/2")

Note: From here on, Kz is forced large; but K;,K:z are

free again.

Proof. Combine (5.5), (5.7), and (5.8). []
This completes the discussion of Qk n’ and we turn
[
to the term 1 N in th ion (5.2a) of lo .
zseck og s in e expansi ( ) g pk,n
The sum is [1+o(1)]2klogA, where 7\=n/2k as in (4.1). The main

technique is Poissonization, to approximate the ball-dropping
distribution (2.3a). Unfortunately, there are zones which
do not quite match those previously defined. We begin with

k<(logzn) /4.
(5.10) Lemma. Assume (4). Fix 8>0. For all n, all
k £ (logz2n)/2, and all s€Ck,

a) P_{N_/R21+8} < exp(~-82{n/2)

b) P_{N_/AS1-8} < exp(-82{n/2).

Proof. As (2.3a) shows, NS is bin(n,1/2%). Now use

(3.1). Of course, A2/2k=n2/23k2IH since k<(logz2n)/2. []
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(5.11) Lemma. Assume (4). Fix & > 0. Almost surely [Pf],
for all sufficiently large n, and all k < (logz2n) /2,
log N - logh)| < 82%1ogA.
|Lgecf2og Ny = logh)| g
Proof. By (5.10) and the Borel Cantelli lemma,

1-6SNS/AS1+6 for all seCk and all k<(logzn)/2, for all

sufficiently large n, almost surely: the test sum is

bounded by
2 Xn iigg2n)/2 zkexp(—52I;/2) < 4 En J; eXp(—62I;/2) < o,

Finally, k<(logzn)/2 entails

2% |log(128) | << 2X1og(n/2%). [:]

We turn now to larger k; the lower endpoint of range is

not material, but logzlog n is a convenient cut-point.
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*
(5.12) Lemma. Assume (4). For s€Ck, let Ns be independent

, , ~ * * -1/2
Pois(A) variables. Let NS=Ns when Ns>Ae / , else let

~ -1/2
N =Ae /
s

a) Fix B>2. There is a positive integer K2 so
large (depending on B) that for all n and all

k 2 logzlog n + K2,

~ ~ 2
Pr{lzseck [log N_ - E{log Ns}]l > Boz"|lig—n } < 2/nB /2,

b) Fix &>0 and C>2. There are positive integers Kz, K3
so large (depending on & and C) that for all n and all
k with logzlog n + K2 < k £ logzn - K3, the chance

1/2

* -
that NSSAe for 82X or more indices SECk 1s bounded

c
above by 1/n .

Proof. Claim a). This follows from (3.11), with m=2K,
all A;=A=n/2%, and y=BoJ2¥log n. The condition y<him is
satisfied if K2 is large.

* -1/2 -A/16

Claim b). From (3.5b), Pr{NSSAe / } < e /

. . K
provided Ks is large; indeed, A22 ®. The chance that &2 or

< &8/2

more of these unlikely events occur can be bounded above by
(3.1b). The bound is

2

K2-3
exp(-822¥/8) < exp(-822 log n)

-3log n. []

K
because 2X/8>2 2
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(5.13) Lemma. Assume (4). Let Né = Ns when Ns > Ae p
-1/2 , ,
else let N; = Ae . Fix & > 0; choose K2,K3 as in (5.12).

a) Almost surely [Pf], for all sufficiently large n,

and all k with log2log n + K2 £ k £ logzn - 1,
’ - A) | < 82K10gA.
IzsecélOg N/ - log )| < 82¥10g
b) Almost surely [Pf], for all sufficiently large n, and
all k with logzlog n + K2 £ k < logz2n - Kg3,

< ’ - Kk
0 < zsecélog N/ - log N_) < &2"logA.

Proof. Claim a). We de-Poissonize (5.12a):

. ~ k|1og n (B2—1)/2
(5.14) Pf{|zseck[1og N’ - E{log Ns}]l > Bo2 l——;—— } < A/n .

By (5.14) and the Borel Cantelli lemma, almost surely,
for all sufficiently large n, for all k with

logzlog n + K2 < k £ logz2n - 1,

~ log n
! o k —
Izseck[1°9 N’ - E{log Ns}]l < Bo2 | =

indeed, the test sum is bounded above by

2—
A zn(logzn)/n(B 1)/2 < o,
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Since k £ logzn - 1,

Bo2*[(log n)/n << 2Xlogz(n/2%).

Now use (3.12).

Claim b). We de-Poissonize (5.12b). Let seSx iff se&Cg
and NSSAe-llzz the S is for "small". Write |Sk| for the
cardinality of Sk. Now Pf{|sk|262k} < A/nc-'s. There are
at most logzn indices k to consider, and Z(logzn)nc-'5< LY

because C>2. Thus, almost surely, for all sufficiently large n,

for all k with log2log n + K2 £ k £ logzn - Ks, |Sk|<62k.

If s¢Sk, then Né=Ns' Now suppose s€Sk. If Ns=0, then

log Ns=0 by definition. Thus,
0 £ log Né - log Ns < logA - 1/2 < logA.
Consequently,

< s~ A klogA.
0 < ) ec{log NL = log N) < |Qk|logh < &2log ]

(5.15) Remark. Assume (4). Fix L > 6. Almost surely, for all
sufficently large n, for all k with k £ log2n - logzlog n - L,

and all s€Ckx, N’=N .
s s

Proof. This follows from (3.5b) and Poissonization:

- -A
P{N_SAe 12y < aln e M < A€

L-$

where C = 2 - - The test sum for the Borel Cantelli

N =

lemma is bounded above by

logzn _,, C Cc-1
aY Lo 2m <l iyn <o []
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(5.16) Corollary. Assume (4). Fix &>0. Almost surely [Pf],

for all sufficently large n, for all k with k < logzn - Ks,

|Zsecélog Ns - logA)| < 82"1ogA.

Proof. For k with logzlog n + K2 £ k £ logzn - Ks,

use (5.13). For k < logzlog n + K2, use (5.11). []

In the early zone and lower midzone, k<logz2log n + K;
then ps is nearly p: see (4.2). In these zones, we can

estimate log p , as follows.
k,n

(5.17) Proposition. Assume (1), (4), and (5.1). Suppose
the nx are I'-uniform. Define Tn by (5.3a). Fix 8>0 and K<,
Almost surely, for all sufficiently large n, for all k with

0 £ k £ logz2log n + K,

1
| 109 P , ~ DH(P) - T + Ezklog(n/zk)| < 82%1og(ny/2*).
I 4

Proof. We estimate log pk n by (3.3) in DF91, making
7

(5.2a) rigorous by adding 0(2%)=o0(2Xlog(n/2X)). Now

N H
ZSGCk S (pS)

can be expanded around p by (3.14) in DF91. The lead term
is nH(p). The linear term gives Tn' after a bit of algebra.

The quadratic remainder is negligible by (5.9). Finally,

1
- E log N
2 “seCk s

can be estimated by (5.16). []
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In the upper midzone, NS may be 0 for some s. The
corresponding Eerms contribute 0 to the sum defining log pk,n'
Even if Ns>0’ ps may be 0 or 1. This necessitates some
additional nuisance terms in the expansion of log pk,n'
because the approximation to ¢(m,j,y) changes form when

j=0 or m. See (3.2) and (5.4) in DF91.

(5.18a) Let Nx be the number of seCk with Ns>0 and

X =0 or N .
s S

(5.18Db) Let s€Gk iff 0<XS<NS.

log Jps(l-ps) .

A

All terms in Ek n are negative, because 0<ps<1.
14

1
(5.18c) Let E = -Elog(n/zk)Nk + )

k,n sSEGk

(5.19) Proposition. Assume (1), (4), and (5.1). Suppose the
nk are '-uniform. Fix &>0 and K<», Define Kz as in (5.16).
Almost surely [Pf], for all sufficiently large n, for all k

with logzlog n + K £ k £ logzn - Ks,

_ ] _
| 109 P p ~ DH(P) = T + Ezklog(n/zk) - E n| < &2Xlog(n/2¥%).
’ ’

Proof. This is argued like (5.17). []

This completes the discussion of the early zone and
midzone. The endzone goes away by (4.15), and we turn to

the high zone.
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The early high zone
The early high zone is defined by the condition
(5.20) logzn + K¢ £ k £ 2 logzn - logz2log n - Ks.
K4 defines the right edge of the endzone, but from our
perspective, it is a free parameter: (4.15) imposed no
condition on K¢. For present purposes too, K4 is not really

material; we can set K¢=3. We will prove:

(5.21) Proposition. Assume (1), (4), and (5.1). Suppose
the nx are I'-uniform. Fix a large positive number L. There
is a large positive integer Ks such that: Almost surely [Pf],

for all sufficiently large n, for all k satisfying (5.20),

log pk n< nH(p) + T - L log n.

Suppose s€Ckx. As in (4.17), let s€Skn iff Ns=1; likewise,
SEMkn iff Ns>1. The S is for "single occupancy" and M for
"multiple occupancy"; the dependence on n will matter later.
Write i€s iff £;(i)=s; for 1<j<k; in other words, the first k
covariates for subject i agree with s. Suppose k is so large

that gk=p: see (5.1). A bit of algebra shows

(5.22) If sESkn then log ¢(N_,X_,7_) = H(p) + (n -p)H’(P)

for the unique i€s.
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For 05j<m and m>2, let

(5.23) ¢o(m,j,v) = logd(m,j,y) - mH(p) - (j-mp)H’(p).

For s€Mkn, let As=¢o(Ns,Xs,ys). By (5.22) and a bit more algebra,

(5.24) log Pr = nH(p) + Tn + ),

A -
[ seMkn S

To prove (5.21), we must estimate Z A . The main
SeMk n S
technique is Poissonization, and here are some preliminaries.
Recall from the definition (7) in DF91 of I'-uniformity that
YEl' entails y2b>0. The next result is immediate from (3.34d)

in DF91.

(5.25) Lemma. |bo(m,j,¥)| < [1 + |H’(p)|]m + |log b| for

Yel’ with lower bound b.

*
(5.26) Definition. Fix k. For s€Cx, let Ns be Pois(A),
* * *
where A=n/2%. Given {NS}, let {Xs} be independent bin(Ns,p).

%* %* %* %* *
Let AS=¢0(NS,XS,YS). Let M be the number of s€Ckx with NSZZ.
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Relationships (5.27-30) are obvious:

* * * ) *
(5.27) M =) I, where I is 0 if N <2 and
SECK " s s s

* * *
I is 1 if N 22, The I are iid.
s s s

1 -A
(5.28) 5A2(1-A) < [1-(1+A)e ] < %Az for all A.
* K -A
(5.29) E{M } = 2X[1-(1+A\)e "].
1 * 1
(5.30) EnA(l-A) < E{M} < EnA for all A.

(5.31) Lemma. Fix & with 0<8<1. Suppose 0<A<3/2.
*
a) P{M 2(1+8)nA/2} < exp(-52nA/8).

b) P{M*S(l—é)nA/Z} < exp(-8°nA/16).

Proof. Claim a). This is Bernstein’s inequality.
Theorem (4) in Freedman (1973), coupled with the estimate

*
(5.30) for E{M }, gives the bound

1 (8nA/2)?2

1 _(onnje) _s2
exp[ > (1+8)nx/2] < exp(-8“nA/8)

because 0<&<1.
*
Claim b) is similar. By (5.30), nA/2 2 E{M } and

*
E{M } - (1-8)nA/2 2 nA(8-A)/2 > dnA/4, so the bound is

1 (dnA/4)?
exp[--z- -(—-I—l:}\;—z)—] < exp(-82%nA/16). D
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Note. Lemma 3.1 is quite inefficient for small p, when
me would-- ideally-- be replaced by Jmp . Hence the

resort to other estimates.

(5.32) Lemma. For i=1,2,... let Zi be independent,
* *
and distributed as As given NSZZ. Define €2>0 as in

(3.8) of DF91. Suppose 0<A<1/2.

a) E{A1} < —€2.
b) There is an €>0 and o2 with 0<o?<» such that:

(1) for all A with 0<A<1/2 and all m=1,2,...
Pr{zilei > -em} < exp(-£2m/20%);

ii) Pr{ ) 2Y > e’ 332%
< —¢& < - .
(11) T seCx s s exp 8

%* %*
Proof. Claim a). By (3.8) in DF91, E{AS|NS=m} < -mem
~ %* * * %*
for m > 2. So E{A;} = E{AS|NSZZ} < -ZszP{NS=2}/P{NSZZ} <

-2€2(1-A) < =-g2, with the help of (5.28).

Claim b). Let £ = |log b| + {1+|H(p) |+|H’ (p)|}N,
where N is Pois(1/2) conditioned to be 2 or more. By (5.25)
and (3.25), |Z{| is stochastically bounded by £, so (3.2)

2

applies. Compute 0° and h: according to that lemma. Let

e=min{hi,€2/2} and p=exp(-€£2/20%). Now
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Pr{zizlzi > -em} < Pr{zizlzi > Z,mlE{Zi} +sm} < exp(-£?m/202).

The first inequality holds because E{Zi}<-2e; the second,
by (3.2): the condition yi<him holds because €<hj;. This

proves (i), and we turn to (ii).

~

Cos * . . . m
Conditional on M =m, the sum is distributed as Ei—lAi'

giving the bound
20 ¥ 02 20 rm 2
E{exp(-t“M /20°)} < exp[-€e“E{M }/20°]

*
by Jensen’s inequality. But A<1/2 so E{M } > nA/4 by
(5.30) . []

Note. 1In the proof of c), if you just think of

x %
X A Is as the sum of 2* terms, (3.2) gives the

s€Ck s
e2(nA) 2
——

2 3 2
= - A .
exp(-€“nA~/80%)

disappointing bound exp[-
Recall that Mxn = {s:s€Ckx and N522}.

(5.33) Lemma. Assume (1), (4), and (5.1). Suppose the Tk
are I'-uniform. Fix & with 0<8<1/2 and suppose 0<A<d§/2.

Choose €>0 as in (5.32b).

a) P_{|Mxn| 2 (1+8)nh/2} < Aln exp(-82nr/s).
b) P {|Mn| £ (1-8)n)/2} < Aln exp(-82nAr/16).

> —g!} .2 2
c) Pf{zseMknAs 2 EIMan} < aJn exp(-£2nr/802).
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Proof. Claims a) and b) follow from (5.31) by de-

Poissonization. Claim c) is similar, starting from (5.32).

(5.34) Corollary. Assume (1), (4), and (5.1). Suppose the

Mk are I'-uniform. Suppose k and n satisfy (5.20).

a) P_{|Mkn| € (1-8)nA/2} < a/n° "7, with c=822"*"%,

D-.5 Ks=3
b A 2> -e|M < ith D=€2
) Pf{XseMkn < | knl} ‘A/n , with D=g%2

Proof of Proposition 5.21. Fix 8<1/2 in (5.34a);
we require 2-K4<6/2 so A<8/2 in (5.31). Choose € as
in (5.32b). Choose Ks so large that C>2 and D>2
in (5.34). There are at most logzn theories in
the zone. So, almost surely, for all sufficiently

large n, for all k satisfying (5.20),

Ks

-2
|[Mkn| > (1-8)nA/2 > 2 log n

Ks=2
seMknAs < =¢|Mkn| < -€2 log n. []

)

Remark. We have assumed in (5.1) that the mean of Ys

equals p, for éeck and k>nj3. Suppose that Ys is constant,
*

say at vel' with [6y(8)f6 = p. Then {b_:s€Mkn} are iiad

%*
for each k, with E{As} = E{¢o(NA,X,7)}; N. is Pois(A)

A
conditioned to be 2 or more; given NA=m, X is bin(m,p).
See (5.23) and (5.26). The argument for (5.33) shows that

1
Z{As.semkn} ~ SNAE{¢o (N, ,X,7)}.

This completes our discussion of the early high zone.

/o2,

[]
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Middle high zone

The middle high zone is the most delicate of all the

zones. It is defined by the condition
(5.35) 2 logzn - logzlog n - Ks £ k £ 2 logen - log2log n + Ke.

Here, Ks and Ke¢ are large positive integers; Ks is needed
to control the early high zone; K¢ will control the late high

zone.

(5.36) Proposition. Assume (1), (4), and (5.1). Suppose the
Nk are I'-uniform. There is a small positive t€o (depending on
Ks, Ke) such that: Almost surely, for all sufficiently large

n, for all k satisfying (5.35),

log pk n < nH(p) + Tn - €olog n.
’

At stage n of the trial, we have data on n subjects;
let Dkn be the set of seCk with NS=2; the D is for "doubly
occupied". The main difficulty is showing that |Dkn|=nA/2.
The dependence on n matters, and is displayed in the notation.
Since nA is of order log n, exponential bounds must be
supplemented by passing to geometric subsequences, and the
I; for de-Poissonization cannot be afforded. We solve the

latter problem first.
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(5.37) Lemma. At stage n, let Dkn be the set of s€Ck with

s
0<8<1. Fix positive integers Ks,Ke¢. Almost surely, for all

N =2, and let Mkxn be the set of s&€Cx with NSZZ. Fix & with

sufficiently large n, for all k satisfying (5.35),
a) (1-8)nA/2 < |Mkn| < (1+8)nA/2

b) (1-8)nA/2 < |Dkn| < (1+8)nA/2.

Note: A depends on k and n, and nA=n?/2%: see (4.1).

Proof. Claim a). Fix r slightly bigger than 1 and
consider the sequence rJ. For each k, |Mkn| increases with
n. As n increases from r! to rJ*!, nA increases from r?J/2%
to r2i*t?2 2%k j.e., only by a factor of r?. Thus, it suffices
to prove claim a) for n of the form rJ. Recall S, from
(3.22). By (3.20), |Mkn|=Sn or Sh=1; and it is enough to
prove the claim for Sh, and n of the form rJ. That is

immediate from the Borel Cantelli lemma and (3.24) with

n=rJ and b=2k.

Claim b) follows from a), because |Dkn|=|Mkn| Or |Mkn|-1,

by (3.20). O

Recall the function ¢o(m,j,y) from (5.23). Let X
be the class of random variables distributed as ¢o(2,X,7),
where X is bin(2,p) and yel'. If YeK, then Y is uniformly
bounded, by (5.25), and E{Y}<-2e2<0 by (3.8) in DF91.

As (3.2) shows,
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(5.38) Lemma. There are positive constants hi and 02,

depending only on ¥, such that: if Y;€K are independent for

i=1,...,m, and 0<y<him, then

Pr Zizl(y1 - E{Yi}) 2 y} < exp(-y%/20%).

Recall As' as defined for (5.24). Given Dkn, {As:seDkn}

are independent; and ASGK.

(5.39) Lemma. Define €2 as in (3.8) of DF91; h; and o?
as in (5.38). Let O<e<min(hi,e2). Almost surely, for all
sufficiently large n, for all n and k satisfying (5.35),
Ke¢+4
X{As:seDkn} < -g(logan) /2 ¢ .
Proof. First, consider only n of the form 2J. By

(5.38),

(5.40) Pf{Z{AS:SEDkn} b4 -e|Dkn||Dkn} < exp(—g2|Dkn|/2o2).

Then E{exp(-€2|Dkn|/20%)} < exp(-e2E{|Dkn|}/20%) and
E{|Dkn|} = 2%A%/2 = n?/2%*! > (log ny2Rett o 5 0Ket2,
The Borel Cantelli lemma shows that almost surely, for
all sufficiently large n of the form 2J, for all k
satisfying (5.35), Z{As:seDkn} < -&|Dkn|. Indeed,

the test sum is bounded by

CoJ Kg+3
0J 7762,

(1+Ks+Kg) zj e < ©, where Co=t£2/2

Finally, use (5.37) to bound |Dkn|, noting that nA2(log n)2K

6
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We must now interpolate between 2J and 21*!; the
argument is only sketched. Fix k. Then Z{AszseDkn}
is below =-g(log n)/2K6+2, say, when n=2J. As n increases from
2} to 2J*!, 2J additional balls are dropped at random into
the 2X boxes, perturbing the sum. We claim that almost
surely, for all sufficiently large n, the perturbations

. Kg+3
will amount at most to £(log n)/2 , SO

+
E{AS:SGDkn} < =-g(log n)/2K6 3

for all n and k satisfying (5.35), with 2J<n<2J*!, provided

j is sufficiently large.

There are four kinds of perturbations: (i) an additional
doubly-occupied box is created, adding an independent term
A;€X; (ii) a triply-occupied box may be created; (iii) more
than one triply-occupied boxes may be created; (iv) a box
may become more than triply occupied. Perturbations (iii)
and (iv) do not occur for large n, by (3.20), and need not be
considered further. Perturbation (ii) changes the sum by a

uniformly bounded amount; see (5.25).

We must now bound the effect of perturbations of type
(i), showing they amount to less than Colog2n=Coj, where
Co=e/2K6+5; this leaves more than enough to absorb
perturbations of type (ii). Now, dropping in 2J balls
increases Dkn from (essentially) 22J/2K*1 to 22i*2/2k*1 hy
(5.37); i.e., from cj to 4cj. But, adding this number of A’s

-- or any other -- crosses the Coj boundary with probability

at most pJ, by (3.16). []
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Proof of Proposition 5.36. Use (5.24), (3.20),
and (5.39). []

Remark. We have assumed in (5.1) that the mean of Ys
equals p, for s€Ck and k>n;. Suppose that Ys is constant,
say at yel' with [0y(6)f6 = p. Then {A_:s€Dkn} are iid,
with E{As} = E{¢$0(2,X,7)}, X being bin(2,p): see (5.23).
The argument for (5.39), pushed a little harder, shows
that Z{As:seokn} ~ %nAE{¢o(2,X,1)}; the idea is to split

along the geometric sequence r" with r just bigger than 1.

This completes our discussion of the middle high zone.



52

Late high zone
The late high zone is defined by the condition
(5.41) 2 logzn - logzlog n + K¢ £ k £ 3.1 logzn.

(5.42) Proposition. Assume (1), (4), and (5.1). Suppose
the nmx are I'-uniform. Fix €>0. There is a large positive
integer K¢ (depending on t) such that: Almost surely, for

all sufficiently large n, for all k satisfying (5.41),

| log pk,n - nH(p) - Tnl < ¢ log n.

Proof. By (5.24), it is enough to bound Z{AS:SEMkn}.
But (3.20) shows that Mkxn (the set of multiply-occupied
cells) differs from Dkn (the set of doubly-occupied cells)
by at most one triply-occupied cell. So it is enough to
bound Z{AszseDkn} and hence |Dkn| by (5.25). For each n,
|Dkn| decreases as k increases, so it is enough to consider
k just larger than 2 logzn - logzlog n + Ke. Now (5.37)

shows that almost surely, for all sufficiently large n,

-K
|Dkn| < nA = n?/2% <2 ®log n. D
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Very late high zone
The very late high zone is defined by the condition
(5.43) 3.1 logzn £ k.

(5.44) Proposition. Assume (1), (4), and (5.1). Suppose
the nx are I'-uniform. Almost surely, for all sufficiently

large n, for all k 2 3.1 logazn,

log pk n - nH(p) + Tn.

Proof. This is immediate from (3.21) and (5.24). []

Proof of theorem 6

Proof of theorem 6. Claim a). By (5.17), with &; any

small positive number of our choice

~

5.45 > H + T - i221 2£ -3 221 22
(5.45) w, > wexp|nH(p) + T - 72 log(n/2) - 812" log(n/2")|.

The random term Tn was defined by (5.3a), and is of order

Jn log log n or less. We must now eliminate theories in

the endzone and high zone.

Theories in the endzone (logzn - K3 to logzn + K4) are
negligible relative to theory £, by (4.15). The & there
depemds on K3, K4; but no matter .what that & is, the endzone

has entropy rate H(p)-8& < H(p).
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The early high zone is defined by (5.20). For such

theories, by (5.21),

-]

zk Yin < [Ek=log2nwk]exp[nH(p) +T - L log n]

o
log 2

2 2
< exp[nH(p) + Tn - L log n - %2 log n - 2 log n]

using the condition of the theorem-- with logzn = (log n)/(log 2)
in place of n. (The sum of the high-zone weights starts at
logzn.) In total, the early high zone has negligible

posterior weight, relative to theory £, provided

So 2 12 2
2 > =2 + 812 .
log 2 4

But L can be made large by choosing Ks large.

We combine the middle high zone, late high zone and very

late high zone, i.e., we consider all theories
k 2 L(n) = 2 logzn - logzlog n - Ks.

The posterior weight in this combined zone is

by (5.36), (5.42), and (5.44) at most

0

(5.46) Zk ;]k,n < [Zk=L(n) wk]exp[nH(p) +T + ¢ log n]

< exp[nH(p) + Tn + € log n - %(log 2)2£L(n) - 5022L(n)].

Now

2
2 logn-Co log logn - C;.

=

1 2
(5.47) Z(log 2)2 L(n) =
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Again, this zone is negligible relative to theory £, if we

2 280 _4
choose € + 8;2 < log°22 . The &; in (5.45) is the &

of (5.17), and is at our disposition. The € in (5.46)

comes from (5.42). To make it small, we have to choose Kg
large. Choosing Ks and K¢ large makes the €o in (5.36) small.

However, the value of &£o does not matter.

The balance of the argument for claim a) is omitted,
being very similar to the argument for Theorem 5 in this
paper, or Theorems 8 and 9 in DF91. Basically, posterior
mass shifts into the early zone or midzone, where there are

are lots of observations per parameter.

We turn to claim b). Consider only n with

o}

X Wk > ex -l(lo 2)n2£+8 n2£
k=n " P7gl°9 ° )

We combine theories in the late and very late high zones,

SO

k 2 L(n) = 2 logzn - logzlog n + Kg.

By (5.42&44), the total posterior weight in these two zones

is at least

(5.48) exp[nH(p) + Tn - €t log n - %(log 2)2£L(n) + 602£L(n)].

€ is a small positive number, at,K our disposition; &¢ is

fixed, by the conditions of the theorem. Of course,

1 2 1 4
(5.49) Z(log 2)2 L(n) = 52 logn-Co log logn + Ci.
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By comparison, the total posterior weight in the early
zone and midzone (k<logzn-Ks) is by (5.17&19) at most

zlogzn-Ks

(5.50) rm §

[wkoexp[nH(p) +T - %Zklog(n/zk) + 612klog(n/2k)]]

i 14 2 2 2
< Zk—z“k exp(nH(p) + T = $2"log(n/2") + 812" log(n/2") |.
&1 is a small positive number, at our disposition.
The term Ek n in (5.19) was dropped, being negative: see

’

(5.18c). The displayed inequality holds by (5.17) in DF91.

Compare (5.48&50): the early zone and midzone are
negligible relative to the late and very late high zones,
provided 612£+s < 26022/log 2. It is the minor bit of algebra
in (5.47&49) that seems to determine the critical rate of decay

for the w’s in Theorem 6.

The endzone goes away, as usual; the early high zone
can also be eliminated. We do not know (or need to know)
how much posterior mass is in the middle high zone.
Informally, posterior weight shifts so far out that there
are only O(log n/n) observations per parameter. The argument

can be completed as in (5.18) in DF91. [:]

REFERENCES TO BE SUPPLIED



