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1. Introduction. In his famous paper of 1943 Wald proved asymptotic optimality
properties for a variety of tests of simple or composite hypotheses. The tests are
derived from a recipe that involves maximum likelihood estimates On and estimates rn
of the inverse of the covariance matrix of On. One forms a chi-square type statistic
(On- )'rn(0n- 0) and reject those 0's for which the statistic is too large. For En
Wald uses the Fisher information matrix Jo evaluated the estimate on of 0. It has been
noted by several authors that Wald's procedure can suffer from some unsatisfactory
features. One defect, noted by Hauck and Donner (1977) is that, for fixed 0, a cri-
terion of the type (0 - t)'Jt (0 - t) can decrease as 10 - t I becomes large. Another
feature, noted by Vaeth (1985) is that the results of the test procedure are not invariant
under smooth one-to-one transformations of the parameter space. Vaeth also points
out that the behavior described by Hauck and Donner can occur if one uses the cri-
terion (0 - O)'JJ (O- 0) for the maximum likelihood estimate 0: There can be
sequences On such that (0 - On)'J. (0 - On) tends to zero for all fixed values of 0. An

example of this, imitated from Vaeth, (1985), will be given in Section 3.
The purpose of the present paper is to propose a substitute for Wald's chi-square

formula. It is as follows. Let (En) be a sequence of experiments
En = 0Po,n E1 Let q1 (s,t) = -8 logJd /i,. Our proposal is to use
qcl(s,t) as a measure of the separation of the parameter points s and t and to build
confidence intervals of the type (O; qn2(Tn,0) 5 cn(0)) for suitably selected estimates
Tn-

The performance of the procedure depends, of course, on the choice of the esti-
mates Tn. For the situation described by Wald and for Tn equal to the maximum likel-
ihood the conditions

ql (Tng0) < c and (0- T)' JT (0- TO) < c

can be shown to be locally equivalent in the following sense: Let 00 be the true value
of the parameter. Then for sequences (On) such that q, (Or, 0) remains bounded the
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difference

qC2(0n, 0n) - (0n - 0) JO (03n en)

tends to zero in Poo,n probability.

Since q,2 is intrinsically defined by the experiment En, it remains invariant under
all one-to-one transformations of the parameter space.

The function qn is a monotone increasing function of the Hellinger distance h

defined by h2 (s, t) - jJ|(4 -,n )2d Since the Hellinger distance is closely

related to the total variation norm distance, and even more closely connected to the
square distance k4 (s, t)

1 (dPs,n -dPt, )2

2 J d(Psn + PL
a decrease of q2 (0, t) for fixed 0 as I 0 - t I increases is an indication that the distance
10- t I or the parametrization is not well chosen. Thus if the Hauck-Donner
phenomenon arises for q1n, one should check the parametrization.

The use of qcj instead of a chi-square has some disadvantages. For one thing it
may be harder to compute than the chi-square. However, leaving this aside, the main
inconvenience is that to compute qn (T, 0) the value of the estimate Tn must lie in the
range of definition of qn2. For a first draft of the present paper we had not paid
sufficient attention to that requirement. The gap was pointed out by Yu-Lin Chang,
who deserves my thanks. That there is a real difficulty is pointed out in Section 2
below. Attempts at remedying it are described in Section 5.

Otherwise the paper is organized as follows. Section 2 describes Gaussian shift
experiments and the role there of the function we called q2. It also describes
heteroschedastic normal expenments pointing out that chi-square formulas are not
readily defensible there. This same Section 2 reviews the results obtained in Wald's
paper of 1943 or, more precisely, our version of them.

Section 3 gves details of an example analogous to the one considered by Vaeth
(1985). The behavior of our substitute criterion appears satsfactory.

Section 4 is suggested by the heteroschedastic approximations that occur naturally
in the framework used by Wald. It show that variations on the definitions of the chi-
square type criteria can lead to very different answers.

Section 5 touches upon a number of different matters: the effect of lack of unifor-
mity in the local convergence to Gaussian shift experiments, the need to use estimates
Tn that take values outside the assumed parameter sets E)n and some possibilities for



the extension of the domain of definition of qn to cover such eventualities.

Section 6 is an aside on covariance stablizing transformations, An appendix gives
the derivation of the formula for q2 (s, t) in the heteroschedastic Gaussian case.



- 4 -

2. Local Asymptotic normality, an outline of the theory.
In this section we recall a few facts about approximations by Gaussian shift experi-

ments. The facts are well known but presented in a manner that emphasizes the role
of chi-square type expressions and the role of the function q2 defined in the introduc-
tion.

Let e8 be an arbitrary set. An experiment G = (G0: 0 e 8) is called Gaussian, or
Gaussian shift for precision, if it satisfies the following two conditions:

1) The measures Go; 0 e 89 are mutually absolutely continuous,
dGt

2) Let A (t, s) = log dG. Then the stochastic process t -> A (t, s), t E is a

Gaussian process for the distribution induced by the measure Gs.
(Under condition (1) the choice of the point s does not -matter).
Note that the definition of Gaussian given here does not refer to any particular

algebraic or vectorial structure that may exist on E8. The set e was not assumed to
have any such structure. However if one is given a Gaussian experiment G on 83 one
is also automatically given a map of e into a Hilbert space. To define it consider the
process X (t) = A (t, s) - EsA (t, s). Let Mo (89) be the set of finite signed measures
with finite support on E8 that are such that . (8) = 0. Let II . 112 to be the variance of
the random variable X (t)p (dt). These Gaussian variables generate a Hilbert space.
One maps e into it by associating to 0 the difference a0 - S. of the Dirac masses car-
ried by 0 and s. The square distance between 0 and t becomes

1I8s8lI2 - Es IXE(0)-X(t) 12
= -81og f4dG0 dGt,

as can be readily checked.

If the measures Go had been given by a standard normal density with respect to the
Lebesgue measure of the form

1det1111(21CeIrJxp -(x - 0)'r(x - 0))

with 17 fixed, independent of 0, one would have 11 8( _ St 112 = (0 - t)' 1 _(0- t).
Note that the Gaussian family {GO: 0 e 81 can be expanded to a Gaussian shift

experiment (G,,: p. e MO (8)) indexed by the entire linear space MO(8), or by the
Hilbert space that completes it. To do this define G, by

dG,L = exp(JX (t) p. (dt) - - II ,u112) dGs.2
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All of this suggests that, if an experiment E = (Po; 0 E () is not exactly Gaussian
shift but only approximately so, an appropriate measure of the separation of two
parameter values s and t is the number q2 (s, t) = -8logJd~P dPtW

The finction (s, t) -> q (s, t) is not necessarily a metric. In particular it does not

necessarily satisfy the triangular inequality. However 11 - exp[- ]I1I2 is a metric

on e( since it is the Hellinger distance. For further use note that for the Gaussian case

one has II 112 = --4~ JJ' II Bs - 8t 112 p. (ds) p. (dt). An attempt to extend the definition of

to all of MO (8) by taking the corresponding F (p) = - JJq2 (s, t) p (ds) p. (dt) can

fail because the form so defined need not be positive and because q2 may take infinite
values.

We have mentioned "approximately Gaussian experiments". A formal definition
can be given as follows.

In Le Cam, (1964), we introduced a distance A (E, F) between two expenments
E = (Po; 0 e 8) and F = (QD; 0 E 8) indexed by the same set 8. Except for techni-
calities, to say that A (E,F) < e is to say that, as long as one uses only loss functions
W bounded by zero and unity, any risk function available on one of the experiments
can be matched within e by a risk function available on the other experiment.
Definition 1. A sequence (En) of experiments En = (P0 n; 0 E Vn) is asymptotically
Gaussian shift if there are Gaussian shift experiments Gn = (Go.n; 0 e Vnj such that

A(En,Gn) -+ 0 as n -4 Co.

Note that we have written the parameter sets as Vn instead of E)n. This is because
the kind of approximation required by Definition 1 will usually be possible only very
locally, in "neighborhoods that shrink as n -+ oo", instead of on an entire parameter
space. In fact, even under the very severe conditions imposed by Wald in his 1943
paper, Gaussian shift approximations are only possible locally unless the Fisher infor-
mation matnices are constant. By contrast Wald shows that his conditions imply the
possibility of a global approximation by heteroschedastic Gaussian experiments. An
heteroschedastic Gaussian experiment - henceforth abbreviated HetG - is a family
(Ho; 0 E ) in which Ho is the distribution of a vector Y which is Gaussian but with
expectation and covariance that depend on 0.

Let P be a Gaussian distribution with center 0 and covariance matrix P1 on IRk.
Let Q be another Gaussian measure with center t and covariance matrix K-1 on the
same Rk. The value of q2 = -81og f 4dPdQ is easily seen to be

-2logdet[I - (M-1 A)2] + (t - H)'[M - AM-,A](t -0)
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where M is the matrix M = (F + K) and A= (F - K). (C. Kraft, 1955, where
2 2

however the formula is misprinted. See the Appendix).
This formula shows that q2 consists of two terms. One of them measures the

difference between the centers 9 and t and reduces to the chi-square formula if F = K.
The other term involves the determinant det [I - (M-1 A)2]. Examples can be readily
constructed where -21og det (I - M71 A M-1 A) is very large but where both
(9 - t)' r (e - t) and (9 - t)'K ( - t) are small. This is part of the reason for the mis-
behavior of chi-square type criterion in the approximations used by Wald.

We have already used the word "locally" to describe properties valid on small
enough sets. In the sequel we shall use the word "locally" in the following manner:
Let (En) be a sequence of experiments En = Po,n; 9 e En. Let qn2 be the
corresponding separation function defined by q1 (s, t) = -81ogJ dPs. dP,. A "local"
property is one that is valid on certain specified sets of the type
Vn(,t, b) = {0: q(,2(09,;) . b) for specified sequences {(T) and, usually, for any arbi-
trarily fixed value of b.

In this sense global approximability by a HetG does not always imply local
approximability by Gaussian shift experiments. To get into details of possible
behavior, let us look at Wald's conditions, or more precisely at some of the conclu-
sions the conditions were presumably meant to entail. The wording will be imitated
from Le Cam (1956) and not directly from Wald's 1943 paper for reasons that will
appear later.

Consider a sequence (En} of experiments En = {Po.n;It 0e } where it will be
assumed that en is a subset of a k-dimensional real vector space Rk. It will also be
assumed that En comes with estimates Tn defined on it. The estimates Tn will be
assumed to take values in Re. If they take values in 0)n, they are called strict.

One of the first conclusions in Wald's paper concerns the case where Tn are the
maximum likelihood estimates and where their behavior is describable as follows
(A) Let (t} be an arbitrary sequence, Tn e 8n. These are non random matrices MN,n
such that, if qn(9n,tn) remains bounded, then the distribution L IM,, n(Tn On) I On1
tend to the standard k-dimensional normal N (0, I).

B(l) The Tn take their values in En
B(2) If ({rn) is as in (A) then, given e > 0, there is a b = b(e) and an N = N(e) such
that n > N(e) implies P, nq (Tn,tn) > b) < e

(C) The Tn are asymptotically sufficient in the following sense: There are other fami-
lies {Q-On; 9 E e9n)} of probability measures, defined on the same a-fields as the Pe, n
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such that:

(i) For (Qo,n; 0 e 8) the statistics Tn are sufficient (exactly so!).

(ii) sUp (liP0, n - Qe,n ; 0 e O3n - 0 for the total variation distance between

measures.

D) Let Fe,n be the distribution of Tn for Po. n. There are Gaussian distributions G9, n
centered at 0 and with the following properties:

There are Markov kernels Kn' and Kn": such that sup IIFo, -Kn'G0, I and

supliG,,n - KT"Fo nll tend to zero as n -- oo.
0

Finally the Kn' and K," represent small distortions in the following sense. Let
rein be the inverse of the covariance matrix of Go,n, (assumed to exist).
E) For every sequence Urn), tn e E0n' every b < co and every e > 0, let
Bn(t,) = x: (x - t)' ,,n(x - t) < E) then supKn [Bn (t,e) It];

t

(t - T)'r n (t - Tn) b) tends to zero as n - oo and similarly for Ks,".
The reader should note that the conjunction of the properties (A) to (E) is very res-

trictive. One reason for this is the requirement that all convergence properties hold
uniformly on the entire sets On. Another, perhaps less visible reason, is that the esti-
mate Tn must be strict. That is they must take their values in E)n. A combination of
(A) and (B) or (A) and (D) will usually force the points of O3n to be interior to the clo-
sure of en and even more. There is also some doubt that the sufficiency property of
(C) can hold uniformly unless the space en is very special, for instance the whole of
Rk. In that case the uniformity of convergence does not usually hold.

On this particular point Wald's arguments seem to contain a gap. He works with a
fixed subset On = 0E of Rk but fails to specify what kind of set it may be. He
proceeds as if the maximum likelihood estimates were, except for unifornly negligible
probabilities, roots of the maximum likelihood equations. This cannot be at the usual
kind of boundary points. Some of the problems in Wald's paper are avoided in Le
Cam (1956) by two devices. The first is to allow estimates Tn that satisfy asymptotic
normality and sufficiency requirements but take values outside of en. The second is to
relax the uniformity requirements for the convergence properties. Both devices create
problems of their own as we shall see.

The properties called (A) to (E) above were not stated in this form by Wald. He
does not use our function qn at all but assumes existence of an underlying Euclidean
norm that has special properties and can be used to define what is "local". He does
use a property that is very close to the part of our (D) (E) that involves the kernels Kn'
but not the part relative to the kernels Kn". Instead of our sufficiency property (C) he
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uses a set transformation that attaches to each measurable set in the observation space
a set in the maximum likelihood space that has, uniformly in 0, almost the same pro-
bability. This seems asking for too much. One can have sufficiency of a subfield B of
the observation a-field A even though the conditional expectation of an indicator IA is
not close to an indicator IB. We have not checked the validity of Wald's Lemma 1
but can readily conceive of situations where the properties (A) to (E) are satisfied but
the conclusion of Wald's Lemma 1 is doubtful.

The msbehavior of Wald's chi-square criterion noted by Hauck and Donner (1977)
and by Vaeth (1985) can readily be understood by looking at the form of the function
q2 for the approximating HetG families. The lack of invariance is another matter. It
is simply this. Write 0 and Tn as functions of other variables, say 0 = 4)(t) and
T= 4 (Sn). The differences Tn - 0 will be approximated by 4) (4) (Sn - ,) for small
values of Sn- t. this will allow a form of local asymptotic invance. However, for
sn~ 4 large, the differences Tn - 0 may have no relation with 4 (t) (Sn-

This means that if the properties (A) to (E) are satisfied by an estimate Tn that is a

maximum likelihood estimate and is uniquely defined, one need not worry about the
lack of invariance of Wald's chi-square for very small deviations Tn- 0 but that large
deviations are a totally different matter. The fact that trouble occurs in such a simple
transformation as the passage from the usual Binomial (]p9(1 p)nAC to its

"natural" exponential family form (] e1k' [1 + e" In is a bit dispiriting perhaps.
However note that the conditions (A) to (E), or Wald's orginal assumptions are
clearly not satisfied by the Binomial family, with p e (0,1). They are not satisfied
either for p restricted to an interval [a,b] c (0,1) (whether the interval is taken closed
or open). One can make the conditions hold by taking an interval [a, b], with
0 < a < b < 1 if one removes the restriction (B 1) that the estimate Tn be strict, that is
take values in [ a b ] only.

Some relations between the properties (A) to (E) and our proposal to use tests and
confidence sets based in ql2 are as follows.

Proposition 1. Let conditions (A) to (E) be satisfied. For tn as in condition (A), let
K n = MS n'M;n. Then for all On such that ql (0, t,) stays bounded the difference

q (Tn, On) - (Tn -n)0 ,n (Tn- On)
tends to zero in Pe n probability.

Proof. Let On and tn be points of On such that both q. (0On, n) and qn(tn, Tn) remain
bounded. Consider the binary experiments Bn = (Pe,n,nP;,n, Bn' = {Fe. , F;,)n and
Bnt = (Go,n, Gt,n where B ' and B /" are from condition (D). We claim that the
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distances between these three experiments tend to zero. For (Bn, Bn') this follows from
condition (C). For (Bn', Bn") this is exactly the statement of condition (D) restricted to
the pairs (On, tn)

Now introduce the half space distance 11 Fo, n - Go,nllh = su5p IFo, n (H) - G, n(H)

taken over all half-spaces H C Rk. This distance is invariant under all affine transfor-
mations. Condition (E) implies that supJF0,n - G0, n h -*0. If qn(On, tn) and

qn (tn, tn) remain bounded, condition (A) says that both L[Mn n (Tn -(n) I n I and
L [M. n(Tn- tn) I t] tend to the same N (0,I) limit. Thus the half space distance
between L [ Tn - OnI On ] and L [ Tn-tn I tn] tends to zero. Recenter both GO and

* *~~~~~~~~~~~n
Gt,, at zero, getting new normal distributions G0, and G,, n It follows from the
above that JIG , - GtIIh - 0. However this implies that the Ll-norm
IGo* - GCn II also tends to zero. Thus the experiments Rn"n = (Gon, Gt n) are

asymptotically equivalent to experiments Bn = {G0n,1', G,n') where Gon,n' and Gt n'
are normal distributions centered respectively at On and at tn but with the same covari-
ance matrices. The same argument applies to pairs such as (On, tn). The asymptotic
equivalence of these experiments implies that the difference between the affinity
numbers Pn = J nIdP@tntnwn Pn - dF0ndFn and so forth up to pn all tend to
zero. Similarly the difference between affinities Pn = JndPe,, dP^,, and the
corresponding number for pairs (Go0 n'G,G,n') will tend to zero. It follows that since

qn (On, Tn) and qn (tn, tn) remain bounded the numbers q1 (On, tn) also remain bounded.
But then the difference between logjn nd0 n and logf dG0 , n'dG,,n' must also
tend to zero. It follows easily that q2(On,tn)-(On-tn)'K,j(On-tn) must tend to
zero. The result claimed for qcjn(Tn, On) follows then from condition (B). Hence the
Proposition.

Although the above proof is devious the result is hardly surprising. Note that the
proof made.use of all the conditions (A) to (E). It is perhaps more surprising that Pro-
position 1 admits a partial converse.

Proposition 2. Assune that conditions (A) and (B) hold and that, with the notation of
Proposition 1,

qn (On,n) - (On - tn),K,n(On - Tn)
tends to zero for all pairs such that qn2 (0n, n) remains bounded. Then conditions (C)
to (E) and also satisfied.

Proof. Condition (A) and the approximation property for the qn function imply that in
sets of the type Vn = (0: q(0,tn) < b) the statistics Tn are asymptotically sufficient
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and distinguished. A proof to that effect can be carried out as in Le Cam (1977).
Condition (B) allows carrying out a patchwork argument as in Le Cam (1986), Chapter
11, Theorem 3. This gives (C). Statement (D) and (E) can then be obtained by a
method similar to the method used in Le Cam (1986) Chapter 1 1, Section 8.

It follows from the above propositions that, under the conditions (A) to (E), one
can asymptotically treat ql (Tn, tn) as if it was, under tr, a central chi-square, just as
would be the case for (Tn - ta)'Ks, (T.-tn). If the distributions are induced by Tn
then ql (Tn,g n) will behave as; a non-central chi-square, as is the case for
(Tn - en)'KT,n (Tn - On), at least if qn (On, Tn) remains bounded. If qn(On, Tin) tends to
infinity condition (B) implies that qn(Tn, On) will tend to infinity in Pn probability.
This can be used as support of our proposal to use ql (Tn, 0) to build confidence sets,
or for testing purposes, instead of Wald's chi-square. The phenomenon noted by
Hauck and Donner (1977) and Vaeth (1985) would still be possible for
(Tn - (n)' Ke ,n(Tn - en). That can tend to zero for suitable sequences en while

qn (Tn, On) e oo. However, by condition (B), qd (Tn, On) cannot stay bounded in P| n

probability unless ql (O,ntn) remains bounded. Thus the two criteria may behave
differently. The one based on q seems more satisfactory if (B) holds.

There are, however, certain difficulties. One of them arises from the fact that
Wald's conditions, and our conditions (A) to (E), are extremely restrictive. Part of this
is due to the insistence on uniformity of the convergence on the entire 8n. To judge
this appropriately one should note that most asymptotic papers do not bother about
uniformity of convergence, much less about bounds. However, uniformity of conver-
gence is something that happens "as n tends to infinity'" and is therefore of little
interest to the practitioner, except perhaps as psychological reassurance.

It is pr6bably too much, in the present state of the art to ask for usable, computable
bounds. Yet it is often feasible to look at auxiliary estimates and associated
confidence regions that can be trusted to limit the possible range of values of the
parameter 0 to rather small subsets of the initial set e)n. If, in that restricted range, the
approximations implied by our conditions (A) to (E) can be verified to hold reason-
ably, then we may proceed.

To repeat, suppose that 1) you have evidence that the model (Pee, n; 8 E can
fit the observations adequately and 2) you have some auxiliary "robust" estimate 0n
with known variability that says that the true parameter value must with high probabil-
ity lie in a certain small subset An C e)n. Then the validity of (A) to (E) on the whole
of en is of little relevance. What matters is the adequacy of the approximations on

An.
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Thus, if one has just taken appropnate precautions and if auxiliary confidence sets
that can be trusted say that one is in a region where the chi-square approximation to
the distribution Of q2 (Ta, 0) holds adequately, one may feel justified in using it.

A different kind of difficulty arises from the fact that to use qn2 (Tn, 0) the value of
Tn must be in the range where qo, is defined. As argued above, it may be rather
difficult near boundary points to check the validity of both (A) and (B1). It is often
easier to dispense with (B1) and either extend the domain of definition of n or replace
the estimates Tn that would satisfy (A) to (E) except (B) by some other estimate Tn'
for which the distribution of q9 (Tn', 0) is no longer chi-square but something that can
be evaluated according to the geometry of the situation.

Further elaboration on this will be found in Section 5 below.

One obvious problem in using ql is that one has to evaluate it. In this respect let
us note the following results, already imbedded in the proof of Proposition 1

Proposition 3. Let the conditions (A) to (E) be satisfied. Let Gn be the heterosche-

dastic gaussian experiment of condition (D) and let gn (s,t) = -8log f dG,
Then, for every e > 0 there is an N (e) such that for n 2 N (e) and all pairs (s, t) one
has either

Iql (s,t)-gn (s, t) I < e or

min[qn2(s,t), g2(s,t)I > lie.

Indeed the difference between the affinities tend to zero uniformly as n -* oo.
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3. An example of M. Vaeth.

This section refers to the paper by M. Vaeth (1985) and in particular to the exam-
ple discussed pages 205-206. Actually we shall not use the exact formulation of Vaeth
but a simpler one that exhibits the same phenomenon but in terms of "exponential
integrals" instead of Bessel functions.

For a fixed k let fk (x, 0) be the density

______ 1 0 > 0
fk(X,) - Fk(°) Xk

with respect to the Lebesgue measure on [1, o). Here Fk (0) = Je4x dx is the
x

"exponential integral of order k" usually denoted Ek(0). We shall use Fk instead of

Ek to avoid possible confusion with expectations.

For such a family the following relations hold:

1) Fk+l(e) = - [e -OFk(O)I
k

Fk..1 (0)
2) E0X= Fk(O)

Fk.. (0)
3) E0X2 = Fk()

The maximum likelihood estimate 0 is the solution of the equation

X= ) - E- X,
Fk (0)

at least for k s 3. For k > 3 the range of E0X is limited. One has E6X c k-

k-i k
Hence, for X > k-2 the m.l.e. 0 is equal to zero. Otherwise, if k < 3, the m.l.e. coin-

cides with the estimate obtained by the method of moments.

The phenomenon discussed by Vaeth is as follows. Consider the parametrization
by f (0) = E0X so that X is the m.l.e. of 3(0).

To test the hypothesis that 0 = 01 or to build confidence intervals, Wald suggests

the use of the expression - where d is the m.l.e. of the standard deviation of

X. For values of k such that 1 < k < 2 this expression tends to zero as X tends to
infinity. Thus large values of X, which tend to indicate values of 0 close to zero, are
held compatible with any value of 0. For k > 1, 1 < k < 2 this is not too disturbing
since the sequences (fk( , 0)) and (fk(0 )) are contaguous as 0 -* 0. In fact

fk (x, 0) tends to fk (x, 0) = k- x 1. For k < 1 the phenomenon in question doesk
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not occur: the coefficient of variation of X stays finite as 0 -e 0.
This can be easily checked by using the classical expansions of Fk (0) for 0 near

zero. They can be found, for instance, in Abramowitz and Stegun (1964) or can be
derived directly.

For k = 1 the m.l.e. of I (0) is X itself. It has a variance

F.1 (0) _ r F(0) 12
VarX F1(0) - [ Fi (0)

Now Fo (0) = e /0 and for 0 tending to zero F1 (0) behaves like -log 0 - y where y

is Euler's constant y = -CYe log y dy - .57. Thus for small 0 the variance of X will

behave like

F1 (0) = |'ew + Oe}(
F, (0) 02

e
FiF(0)

021 log 0

The maximum likelihood equation shows that, for large X, the m.l.e. - behaves like
0

X logX so that the estimated standard deviation of X is of the order

1 1 _X4lOgx
0 4I-logOI

X - Ip(Oi)
hence the behavior of the criterion -

There is nothing particularly surprising about this fact. As 0 e 0 the distribution
of X is far from normal. Its expectation and standard deviation are poor indications of
location and spread. For instance the median of X behaves like 1 / '41 while E0X

behaves liker 1 The ath quantiles behave like 0'. The distribution of X can-
01 loge01

not be "normalized" by a change of location and scale. The observed misbehavior of
Wald's criterion extends to some other expressions. For instance if one uses an esti-
mate 0 obtained by putting X equal to its median and then estimate the spread of the
distribution by an interquartile range computed at 0 the resulting ratio will also tend to
zero as X -* oo.

All the arguments used above in this section use only one obseivation. If one has
n independent identically distributed observations X1, X2, . . . , Xn their average Xn
will still be the maximum likelihood estimate of E0X. As explained by Vaeth (1985)
the misbehavior noted for one observation persists for every value of n. Now let us
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see how the functions q,^ (Tn, 0) of Section 2 can behave. Here q (s, t) = nq2 (s, t)
where q is the function computed for one observation only.

The argument of Section 2 depend on finding estimates Tn that are well behaved
and in particular satisfy the condition (B) of Section 2. One can easily show that,
here, the m.l.e. on satisfies condition (B) even though, as we shall see, it does not
satisfy the other conditions of Section 2 uniformly on e0 = (0, oo).

Proposition 4. Let {pO; 0 E (0, o)} be an exponential family of rank one in an arbi-
trary parametrization. Then for n independent identically distributed observations and
for the m.l.e. O3 one has

0.n (q ns(03 . 8z) < 2e7Z

for all z > 0.

Proof. An exponential family in its natural parametization has the form

po (dx) = exp 0x - A (0) } (dx)

for some measure St. Thus

q2(0,t) = 8{1 (o) + A(t)]+-At2 2

Since A is a convex function, for 0 fixed q2 (0, t) increases as 10 - t increases. Con-
sider any particular t > 0 and the test based on n observations that minimizes the sum

of probabilities of error for 0 and t. This sum of probabilities of error is 11 P0, n A Pt,U 11
< exp (h-8 q (0, t)). However, by concavity of the logarithm of likelihood ratios, if

the test in question rejects t, the test of 0 against t' > t will also reject t'. Thus, except

for probability at most exp { ql (0, t)) for P0,n, one will reject all t' > t. The same

argument applies to values s < 0. Hence the result, since the inequality qn (O., 0) > 8z
is invariant under all one to one reparametrizations.

Note the 8z in the expression in curly brackets of Proposition 4. If q1n(0-,0) was

actually chi-square one could replace it by 2 z for the same bound on the probabilities.
Part of the loss can be attributed to the passage from 1I Po, n A Ptn 11 to Hellinger
affinities but part may just be due to the fact that, here, nothing much is known about
the distribution of 03n or q1w (On, 0)

In the present specific example one can obtain a variety of results about the asymp-
totic behavior of q1a. Of course, if 0 is kept fixed, independent of n, the variables
4[Xn - E0 (X) I will be asymptotically normal and, On being the mnl.e., qn(0v,0) will
be asymptotically X?2 If, on the contrary, the true 0 is a 'on that depends on n and
tends to zero, the behavior of q2(On,0) can be very different from chi-square. To
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investigate what can happen consider two sequences (sn} and (tn} both tending to zero
and such that sn > tn. For n observations the Hellinger transform of the pair

IPsn,n, P6n) has a logarithm of the form

On (a) = n log [ f (x, sn) ]l'a [ f (x, tn) ]a dx
= n (logF[(l - a)sn + at] - (1 - a)logF(sn) - alogF(tn))

where F (v) is the exponential integral F (v) = F1 (v) = evx1 dx.
1

For small z it has the expansion

F(z) = Ilog z -y+ l; aj zJ,

and its logarithm has the expansion

logF(z) = logllogzl+log[l - + l ajzJ

Let us first look at the log I log I term in the expansion. For on (a) they give a first
term

con(a) = n {logllog (1 - a) sn + at}l -(1-a)oglogI10sin -alog1logt10 ).

To investigate the behavior of this we shall assume tn < sn and let tn = (1 - en) Sn,
O<4n< 1. Then (1 - a)sn+atn SnI- 4n] and 1log[(l-ac)sn+att]i
= Ilogsn|-log(l -a n

Similarly logtn = logs -log(1-en) = logsn {1 log sn This

yields

)n(a) = n log[1- 1 log(1 - a )] -alog[1- 10
-

]g

To study this it is convenient to introduce the notation

1
= ilog Sn

so that

on(a) = n (log[ 1 - 6nlog(l - an)] -alog[ 1 - log(l -n)])-
We shall distinguish three cases:

Case A, n-t coo. Then, for con (a) to stay bounded, 4n must tend to zero. In such a

case one has -+ 1 a2g,2 and -log(l- e)- + 2- and-10O- 4n - a4n 2 n10 - n- 2



- 16 -

con(a) behaves like

n log[ I + "a 2 a2-02)] - alog[ 1 + °nqn + 2 4n2)]J}

Expanding the logarithms once more, one sees that the terms in 8n6n cancel. The
expression remains bounded if nS.41 remains bounded. If nn2 e 2& the term

12con(a) tends to 2 a [a2 - a]. This is the logarithm of the Hellinger transform for a

Gaussian experiment.
This suggests looking at a family Fn = nQ>. I where Q% n is Po n with a 0 taken

equal to sn + x sn
n

with x restricted so that 0 > 0. It can be shown that the

experiments Fn converge to a Gaussian shift experiment linearly indexed by X. Thus,
with this parametrization, the corresponding q X(2,) will still behave asymptotically
as chi-square, with one degree of freedom.

Case B, non -+ b, finite, positive. Then con (a) can stay bounded for values 4n that
stay away from zero and unity. If n -+ 4, 0 < 4 < 1 then con(a) tends to

-b[log(1 - at) - alog(1 - 4)]. This shows that, under Psnv the distribution of
d Pt,nwlog d p tends to a shifted gamma distribution. The sequences are contiguous.
ds,n

Case C, n5n -+ 0. In this case it is possible to let n tend to unity in such a way that
n Bn log (1 - 4n) stays bounded. If -n 6nlog (1 - en) tends to a limit b then
(On (a) -+ -ba. This is the log Hellinger transform for a pair (Qo, Qj) where the part
of Qi that is dominated by Qo has a constant density equal to eb. The part of Qi that
is Qo singular has mass 1 - e7b. This implies that the sequence (Ps^ n) is contiguous
to {Pxtn) but the reverse is not true. Here qc (sn, tn) tends to 4 b and 1IPs,n A Ptn
tends to eb.

In the above derivations we have used only the log log term in the expansion of
log F. However, it is easy to check that the other terms tend to zero.

dPtn,nIn all cases, the logarithm of likelihood ratio An = log - has the form
dP,
- n

An = anXn + bn where an and bn are constants and where Xn = - l Xj. Since X. is

the maximum likelihood estimate of its expectation I (0) = EOXn the expression
qn2 (0n, 0) can also be written in terms of Xn and [ as, say i; [). Since, by Propo-
sition 4, q, (Xn,v n) remain bounded in Po, n probability no matter what [n = [3(On)
does, one can approximate -qi (Xn, Pn) by the expressions used above for -8 n(1/2).
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In case B this leads to an approximation of the type

-8blog2 + 8blog{q+ 4}

Xn-cn.
Since is approximately distributed as a gamma variable with exponent b, this

does not seem to behave like a chi-square. For case C the variables -qn (Xn, [n) seem

to behave in the same manner as log - By Proposition 4 this must stay

bounded in PeDn probability for on = E0X. If On is replaced by a tn= (1 - 4) On
n _ xn

such that log (1 - -n)> b, then n log - will have for P6n a distribu-

tion with a mass 1 - e7b tending to infinity. This should be taken into account in the
construction of confidence intervals.
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4. Some heteroschedastic gaussian cases.

As seen in Section 2 heteroschedastic gaussian experiments occur routinely in
asymptotic theory. In fact the conditions (A) to (E) of Section 2 provide for a situa-
tion where the experiments En = (P0 n; e (3)nj are such that A (En,Gn) -> 0 for the
heteroschedastiC experiment Gn of condition (D). For this reason we shall study here
the behavior of some heteroschedastic gaussian experiments. However, for simplicity
we shall only use parameters 0 that run through an interval of the real line, say
E3 = [a, oo) where a is a large positive number.

Let X be a normal variable whose distribution depends on a parameter 0 e [a,oc).
Assume that, given 0, the variable X has expectation 0 and a variance a2(0) = .

The family so obtained defines an affinity

-Si ft4y(s)yI(t) 1114 1 y(s)y(t) It_~SI2)
1y(S)+y(t)]2 exp 4 y(s)±y(t)

yielding

q2 (s, t) = -8 log p (s, t)

[y(s) + y(t)]2 } (s)y (t) t S122log{ ysyt +2Its.
= ~~ ~} st y(s) + y(t)

We shall be interested in situations where y is a smooth decreasing function that
tends to zero rapidly as 0 e oo. For a first example let us take y(O) = e-20. Then

e (s+t)
q2(s,t) = 4logcosh(t - s) + e (t - S)2cosh (t - s)

indicating that, for s and t large, the main contribution to q2 (s, t) will arise from the
first term. This is the term that takes into account the difference between the variances
at s and t.

The negitive of the logarithm of the likelihood function is

1 (X 0)2e720 + = 1 tX- 1/2logv]2v +- logv,2 2 2

where v is the vanrance v = e20. The maximum likelihood equation is

exp{20} = (X -0)+ (X - 0)2.
In terms of the variance v this becomes

= ( 1 1 Wv= (X- logv) + (X - logv)2,2 2

showing that, for I X I large, V^ will behave approximately like X2 + X. Approximate
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solution of the likelihood equation shows that, for I XI large, 0 (restricted to (a,oc), a
large) behaves approximately like log IX Some standard methods of constructing
confidence intervals can lead to very different results. The standard "equal tails"
intervals-with probability of coverage near .955 would be given by inverting the ine-
qualities 0 - 2e29 < X < 0 + 2e20. However, for X 2 -(1 + log 2) the lower barrier is
ineffective. The resulting intervals would be half infinite, of the form [tc (X), cc). A
similar phenomenon occurs for X negative but I X I large.

If, on the contrary, one uses intervals of the type X - 26 < 0 < X + 2dS where e is
estimated then the intervals would take the form [a, c (X) ] with an ineffective bound-
ing for small values. For instance if one estimate 0 by log IX I for IX I 2 1 one would
estimate B by IX I and get intervals of the type X - 2 1X I < .< X + 2IX 1. The lower
bound is always negative and therefore ineffective since we assume 0 > a with a > 0,
large. As I XI -+ oo these intervals produce an instance of the Hauck-Donner-Vaeth
phenomenon. They accept any finite value of 0.

For confidence intervals based on the function q the situation is different. Let us

take some estimate 0. If v = a2 (0) is large, the main contribution to q (t, 0) will be
4 log cosh (t - 0). Thus the intervals will be given approximately by an inequality of
the type {0: cosh (0 - 0) < eb/4), that is 10 --01 . cosh-1 (e1"4)=c.

For simplicity, let us use the crude estimate v =x2 so that 0 = 2 log X2 = log IX2
with IX I assumed 2 1. Then we have intervals equivalent to I - log IX I I < c. For 0
very large these intervals have a probability of coverage about equal to P (log I , I < c)
for a 4 with a N (0,1) distribution. Thus one can consider intervals obtained from a
value c of the order of log 2. Note that these have a fixed length as IX o . This is
in sharp contrast with the intervals obtained from chi-square type formula.

The situation described above is rather extreme in that one would not expect to
encounter very often observations X whose standard deviation is an exponential func-
tion of their expectation. However, the same kind of analysis can be carried out for a
variety of other cases.

One could object that, for the normal family N (0, e20) used above, there is nothing
"asymptotic". However, the same kind of analysis will apply for each fixed n to a

family of the type (N(O,'e2); 0 2 1). This shows that for many densities f(x,0)
n

that are sufficiently smooth functions of 0, the analysis will apply for n i.i.d. observa-
tions X1, . . . , X provided that the Fisher information decreases exponentially fast as
0 Co0.
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5. The choice of estimates and the range of qn.

As noted in Section 2, the use of confidence sets of the form (0: q (Tn, 0) . b}
must rely on an appropriate choice of estimates Tn. To avoid various complex prob-
lems, let us consider only the case where we have product measures P0 n;. E
obtained from n independent identically distibuted observations, X1 ... , Xu. A
prime candidate for Tn is the maximum likelihood estimate On- However, one cannot
limit oneself to On for many reasons. The m.l.e. On is known to misbehave for very
many common families (Po0nI' for instance for families obtained from mixtures. In
1973, 1975 and 1986 we proposed estimates Tn obtained by a complex construction.
Another construction was proposed in Birg6 (1983). In both cases the estimates Tn

1S)=_(~dptr 2have the following desirable property. Let h2 (s,t) = 2(-d-"4dpd where Po is

the distribution of individual Xi under 0. Then E0 n h2 (0, Tn) . CD (In) where C is a

universal constant and where D is a metric dimension function for en and h, evaluated
at some suitable number tn selected roughly so that C1 ntq = D (tn) for a coefficient
C1 approximately equal to 64. Since the relation between qn and h is given by
ql (s, t) = -8 n log [ 1 - h2 (s, t) ] one sees that for sets en that have bounded metric
dimension one will be able to assert that ql (Tn, 0) will remain bounded in Po,n proba-
bility uniformly in 0. Thus one may contemplate the use of such estimates.

The arguments of Le Cam (1986), Chapter 16, also give bounds for the probabili-
ties PO,n (n h2 (Tn, 0) 2 c} that can be converted into inequalities for

Pe,n [ q1 (Tn, 0) 2 b}. However this gives only inequalities and not approximate values
for the probabilities in question.

The arguments of Le Cam (1986),. Chapter 16, can be applied to i.i.d. sequences
X,n,... , Xpn whose individual distributions, say Po, n, are the same for all X,n
j = 1,... , n, but may be allowed to depend on n. In some cases (see Le Cam
(1986), Chapters 16 and 17) one can use estimates based on empirical cumulatives to
the same effect but with the same or similar difficulties relative to the approximate
evaluation of probabilities. Since Wald's construction was intended for the case of
asymptotically normal families, it would be pleasant to find estimates Tn that are such
that q(2 (Tn, 0) is not only bounded in Po, n probability uniformly for 0 E e9n but also
asymptotically distributed as a chi-square. As already noted in Section 2 the combina-
tion of the conditions (A) (= asymptotic normality for Tn and (Bl) (that Tn E en) is
not likely to be satisfied at boundary points of the closure Of en.

In such cases one may want to extend the domain of definition of the function qn.
There are situations where an extension is immediate. For an instance consider the
binomial B (n, p) with p restricted to lie in an interval [a, b ' (0,1). There is then
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some e > 0 such that 0 < a -e < b + e < 1. One can then let the estimate Tn take
values in (a - e, b + e) and use the function q1 relative to the binomial.

Such extensions raise the question of whether one can extend the definition of the
family (Pe,n; 0 e en) to a larger set en ' 8n and let Tn take values in in. The
problem is essentially the same as the following: Let 4 be a map from 8 c Rk to a
Hilbert space X. Let 19* z,when can one extend ¢ to8* in a reasonable way and
what is a reasonable way? In many cases the map will be uniformly continuous on E0.
Then it extends to a uniformly continuous map in the closure et of e. To extend it
further one could take for 0 i e a r (0) e e0 closest to 0 and let 4 (0) be [X (0)].
However, this need not yield a continuous map. Other possibilities need to be investi-
gated.

Another form of extension is discussed in some detail in Le Cam (1986), Chapter
11, It is as follows: One ignores totally the Euclidean structure of ()9 including the fact
that Rk is a vector space. Instead one uses a space MO (En) defined as the space of
finite signed measures that are such that A (E)n) = 0 and have finite support on E)n. For
each 0 e ()n one defines on MO (E0) a positive quadratic form J ,n obtained from a

"best fitting" Gaussian shift experiment to En, = (Pt; qc (t, 0) 5 bn). Thus, for
each 0 one obtains an approximation rown( -°s) to q (t, s) for qn (t,0) 5 bn and
q1 (s, 0) < bn. This approximation is then extended to all of MO(en). Under suitable
circumstances (described in Le Cam (1986) Chapter 11) that involve finite dimensional
restrictions locally on MO (Qn) normed by ->4~ jn(g) and existence of appropriate
estimates, one can form centerings Zn with values in the- space M1 (0n) of finite signed
measures ,u with finite support such that p (0)n) = 1. These will be asymptotically nor-
mally distributed and ro n(Zn - 80) will be asymptotically distributed like a chi-
square. Use of the expressions r,a n (Zn - S0) where Xo is an estimate of 0 can lead to
the phenomenon described by Vaeth (1985) and Hauck and Donner (1977), but here
one can take precautions since the estimates Zn and co need not be or cannot be the
same. This suggests, however, that it may be preferable to use the formula given in
Section 2 for the heteroschedastic Gaussian case. Here it would take a form of the
type

gn2 (x )= -2 log det [ I - (M-1 A)2] + IT (k - )

where M corresponds to - (Ir n + O, n) and A to (Froi n - re n) The Fn would

correspond to (M - A M-1 A). This can be made to have a perfectly well defined
meaning with operators on the Hilbert space completion of Mo (3n). (See Appendix).

There are occasionally other possibilities. For instance in the i.i.d. case of observa-
tions X1, . . . , Xn with individual distributions (p0: 0 e 8n) or {Po, n; 0 e EM, one
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can use the square distance H2(s, t) = nh2(s,t) with h = 1 - f p One can
then use on MO (en) the quadratic form Fn defined by
rn (p.) = -4JJH1 (s,t) p (ds) p (dt). According to Le Cam (1986) Chapter 11, Section 6
page 265 s.q.q. this gives a positive global substitute for the local F6 ,. Then one can
use approximation of En = (P0,n; Oen) by a Gaussian shift experiment in which the
Hauck-Donner-Vaeth cannot occur. Note however that this procedure imbeds en into
a Hilbert space that can be infinite dimensional.

It is tempting to use instead of the Fn defined above a F * defined by

F (p.) = - 1 JJql (s, t) p (ds) p (dt). However, there are difficulties due to the fact that

Fr* (p) may be negative. Also, if qn can take infinite values, ln (p.) may fail to be
defined. Under the conditions (A) to (E) of Section 2 the use of Fn appears to be safe.
However since part of the purpose of introducing the centers Zn and the quadratic form
Fn is to avoid the restriction (Bi) of Section 2, one should consider conditions weaker
than (A) to (E). Here is a possible set of conditions. The square norm En defines a
metric or pseudo-metric on MO (8n). For measures m carried by Mo (On) (or its com-
pletion) let 11 m ID. be the corresponding dual Lipschitz norm

(A*) For any sequence {rn}, Tn e en, if Fn(8.,S.) remains bounded, then the dual
Lipschitz distance between L (Zn - 8e I n) and a centered normal distribution Go6 n,
with inverse covariance form En tends to zero as n e .

(B*) For sequences ('tn) and (Qn) as above rn[Zn - 50nIOn] stays bounded in Pe., n
probability.

(C*) There is an integer k with the following property: Let {,n) be as in (A*). Then
there are linear subspaces Hn (tn) c MO (en) of linear dimension at most equal to k,
such that, for any sequence On such that En (86. - 68) stays bounded, there are ele-
ments gn e Hn (tn) with the following properties:

1) rn(5i - 6.- gn] tends to zero as n -+ o

2) The Ll-norms 11 Xn 11 stay bounded.

If these conditions are satisfied the distance A (En, Gn) between En = Po6 n; 0 e e}
and the Gaussian shift experiment attached to In (with parameters restricted to 8o
0 E 03n ) will tend to zero.

The conditions given above yield uniformity of all convergences, as needed for
Wald's properties (A) to (E) described in Section 2. There are many examples that
would satisfy (A) to (E) but with uniformity of convergence only on certain subsets of
the parameter spaces en. This create problems, but, at least in certain cases, the prob-
lems can be more of an aesthetic mathematical nature than a real practical impediment.
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The real problem is that the convergences occur "as n tends to infinity" while the
practical questions occur for fixed finite n. What seems to be a reasonable procedure
is as follows: Proceed in two steps. First narrow down the range of possible values of
0 by a. trustworthy method that may be far from optimal. Then check that in the range
in question the approximations by Gaussian shift experiments implicit in (A*), (B*),
(C*) above are reasonably good.

To give an example let us take Vaeth situation as described in Section 3. That is,
assume that one observes Xl, . . . , X. independent and all distributed according to a
density

f(x,0) = F (O) x 1, 0 > 0.

Let us assume that n is very substantial, say n = 1600. Then one can construct an
1 n

empirical cumulative distribution function by H-n (x) =-l I(Xj s x). Let H (x, 0) be
n j=i1

the cumulative corresponding to f( , 0).
Define a restricted range for 0 by the recipe

Rn= 0: F1HsupIHn (x) - H(x,0)1 .4). For any 00 the probability under Po0n that
x

Rn does not contain 00 is of the order of 10-13. This does not tend to zero as n tends
to infinity but is close enough to zero for many and perhaps most practical purposes.

For n = 1600 this limits 0 to a range Rn = 0: sup Hn (x) -H (x, 0) I -).
400

For the densities f (x, 0) in question the Kolmogorov distance is just one half of the
L1 distance between densities. Since this is larger than the square Hellinger distance
one sees that two values s and t that belong to Rl, must be such that

h2 (s,t) = f (x, t) 12 dx 5 giving for the one observation value of
2 ~'200

-8 log [ 1 - h2 (s, t) I - q2 (s, t) a bound approximately equal to 1/25. This restricts 0 to
an interval [In, rn] that cannot be very long unless rn happens to be very large.

The first thing to do is to check that Rn is not empty. If Rn is empty, as will hap-
pen often, the modelling by the densities f ( , 0) is not credible and one should rethink
the whole problem anew. If RT is not empty and if one is sufficiently convinced of
the validity of the model, one might want to try the inequality of Section 3 that says
that for the maximum likelihood estimate On one has Po,nInq (On, 0) 2 222) < 10-12.
Here this may not_narrow the possible range of 0 materially.

The next step would be to check whether on R a Gaussian shift approximation
seems appropriate. Now one can try Gaussian shift approximations whose random
term is linear in the parameter 0 itself or in the expectation f (0) = E0 X or in any
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other parametnzation that seem suitable. To check the reasonableness of a linear
parametrization in 0 one would just have to check that in the range 0 e Rn the vari-
ance Var0X does not change too much. Since we have not defined "reasonable"' or
"too much" this cannot be taken to make precise mathematical sense, but the idea
should be clear.

One may be tempted to use the parametrization proposed by E. Mammen (1985).
For this, let In be the left extremity of Rn and let rn be the right one.

One could use the parameter 4 (t) = q (t, In) for t e [1n,rn]. This would not affect
at all the approximability of a pair (Ps, PQ) by a Gaussian experiment [GS,Pt] but
would affect the approximability of [Pt t e [i n,rn) by a Gaussian experiment
whose log likelihood has a leading random term linear in 4 (t) instead of t. It also
would affect the construction of chi-square type statistics. Unless one uses our pro-
posed n q2(n, 0) formula, one may want to look at expression of the type
n (0n - 0)2 J (on), for the Fisher information J computed on one observation, or the for-
mula n[Xn - ,B(0)]2/Var.X or a formula of the type n [ q (0n,ln) - q (0,in)]2C(on)
with an appropriate coefficient C (on).

In the final analysis there does not seem to be any possibility of escaping a check
on the reasonableness of the chi-square distribution approximation for the expression
retained. However it needs to be checked only for 0 in the range R,
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6. Reduction to the homoschedastic case.

We have just seen, m Section 5 above, that one can occasionally imbed the param-
eter space E,n into a Hilbert space and obtain approximations by Gaussian shift experi-
ments. This is what is done as a matter of routine, when E)n c fR, by variance stabiliz-
ing transformations. Then 0n remains a subset of the line R. Vaeth (1985) shows
that such transformations will prevent the misbehavior of Wald's criterion at least for
exponential families.

When en is a subset of ftk, k > 1, the situation is vastly more complex.
Under the conditions (A) to (E) of Section 2 one can approximate the experiments

E= nsP,n 0 E E)j by heteroschedastic Gaussian ones, say Gn = {Go0n; 0 e e)n).
Such an approximation yields for each 0 a quadratic form on lRk, using as a matrix the
inverse covariance matrix at 0. Thus we obtain on en a structure of a Riemannian
manifold. A transformation that leads to a Gaussian shift experiment amounts to an

isometic imbedding of this Riemannian space into a Euclidean space Rt!. Now there
are theorems that indicate the possibility of such embedding: E. Cartan says that such

manifolds of dimension k can locally be imbedded in Rm for m = 2 k (k + 1). This is

a local result. There is a global result of Nash that says that the entire manifold, if it

is of class C3, can be isometrically embedded in Rfm for m = - [3k3 + 14k2 + ilki.
2

(See for instance J.T. Schwartz (1969) page 43 and J. Dieudonne (1971) volume 4
page 341.)

Unfortunately, the dimension m of the imbedding space is very much larger than
that of the original e1 c ek. Thus En becomes a very thin subset of Rfm.

The problem of stabilization of covariances is also related to the problem of selec-
tion of a "best'fitting" local Gaussian shift expenment. E. Mammen (1985) argues
that, for one-dimensional exponential families around a point 00, the optimal choice is
one in which the expectation 4 (t) of the normal approximation is such that

q2 (00, t) = I (t)- ((0)I12
(if the standard deviation is taken equal to unity). We do not know of extension of
such results to multidimensional families, but they may involve the same kind of
difficulty as the embedding of Riemannian manifolds described above.

When feasible, the Hilbert space imbedding by rn (g) = -4 Hn(s,t) g (ds) p (dt)
described above seems simpler, although perhaps not optimal.
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7. Conclusion.

An examination of Wald's asymptotic tests or confidence intervals shows that they
can exhibit distressing behavior. This is partly due to differential approximations that

replace the expression q2 (s, t) = -8 logJ0 |-IFt by approximations that are quadratic
in (s - t). That can be justified only within the confines of sets where a good approxi-
mation to the log likelihood of the type

dPt 1
log-dt- (t - s)W - 2 (t - s)' r (t - s)

dPs ~~2
holds for a constant matrix r. For larger sets one needs to take into account the varia-

bility of the matrices F.

Using instead confidence sets of the form (e: ql (Tn, 0) . c) one can avoid many
of the difficulties s Tn can be constructed. If asymptotic
normality of the estimates cannot be achieved with Tn that take values in the parame-
ter space, palliatives are sometimes available.

One should also refrain from expecting too much from asymptotics. In the case

discussed by Hauck and Donner there were a total of 455 observations. The analysis
used effectively classifies them into 512 different boxes. This does not allow enough
observations per box to induce faith in the applicability of asymptotic theory. It also
can result in confusion over what the data try to say and what they are made to say by
features that have been inserted, inadvertently perhaps, in the mathematical formulas.
-The use of multiple chi-square like tests under such circumstances can be hard to
defend, for obvious reasons and for the added reason that the tests in question are
based on a formula that does not measure adequately the difference between the postu-
lated distributions at different values of the parameters.
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Appendix
The affinity for two Gaussian measures

In Section 2 and Section 4 we have used a formula for the Hellinger affinity
J4dG1 dG2 between two Gaussian measures that may have different means and covari-
ance matnces. The formula goes back at least to C.H. Kraft (1955). However, in the
published version of Kraft's thesis it was misprinted and is barely recognizable. The
derivation of the formula is not difficult but its implications are many. Thus we shall
present here two derivations. One is intended for finite dimensional situations. The
other is meant for arbitrary dimensions.

Let P and Q be two gaussian measures on a finite dimensional vector space
Assume that P has expectation 0 and that the inverse of its covariance matrix is F so
that it has a density

(det)F1/21
(de .exp (- (x - 0)'r(x - 0))
(2ic) 2

with respect to the Lebesgue measure of Rk. Similarly, let Q have expectation t and
inverse covariance matrix K.

Multiplying the square root of the densities will yield, in the exponent, a quadratic

form that, except for the coefficient (----), is equal to
4

(x - 0)'F(x - 0) + (x - t)'K(x - t).

To reduce this to a tractable form assume that F and K are both invertible and intro-
duce a centering v by

(F + K)v = rF + Kt.

Then the above quadratic becomes

(x - v)'(F + K) (x - v) + (v - 0)' (v - 0) + (v - t) K (v - t).
The term (v - 0) can be expressed as (v - 0) = (F + K)-1 K (t - 0). Similarly

(v - t) = (F + K)-1 F(0 - t).

Let M be the matrix M= (r + K) and let A = (I - K) so that F = M +A
2 2

and K = M - A. Then (v - 0) takes the form (v - 0) = (t-0) - 1 M-1A(t -0)
2 2

and v - t is obtained by changing A to -A. Then the sum of the two terms of the qua-
dratic that do not involve (x - v) will yield a quadratic in (0 - t) with a matrix

{(I - M-1 A)' F (I - M-1 A) + (I + M71 A)K (I + M-1 A)). Direct computation shows
4

this toi be equal to 2- [M - At M-1 A] Thus the term in the exponent of the square
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root of the product of the densities is

1 1-4 (x - v)'(J7 + K) (x - v) - 8 (t - )' [M -A M1 A ] (t - 0).

Now integrate out the variable x. One will get a term equal to [det (- + K) ]-1/2

multiplied by exp (-- (t - 8)' [M - A' M71 A (t - ). Combining this with the
8

detenninantal coefficients of the densities yields an affinity equal to

[(detI) (detK)11 1
det

K)12 exp (-- (t -H)'[M - )'M)1A](t-8))
[detMII112 8

and the result quoted in Section 2 follows by using the fact that the determinant of a

product of two matrices (square of same order) is the product of the detenninants.
This shows that JdPdQ| is a product of two terms. One of them involves differences

between expectations in the form

exp {- (t - 0)'[M - A'M-1A] (t - 0)).
8

The other involves only the inverse of the covariance matrices in the form

{det[I - M- A)2])1/4

For many uses this determinantal form is not convenient. A form using the covari-
ances themselves can also be used. Let A = I1 be the covariance matrix of P and let
B- K71 be the corresponding matrix for Q. The determinantal term in |fdPdQ can

also be written

det A ]1'/4 [det B ]f1/4 (det E 2

Its fourth power is

A'+ B-.2-1 detAB([detA] [detB ] det([ 2
]2) )-1 = A+BI2 ~~~~det( 2 )

Write S=- (A+B), D= -(A-B). Then A=S+D, B=S-D and
2 2

AB = S2 - D2. Thus the determinantal term can also be written as fourth root of

det [ I - (S-1 D)2]
This form is particularly convenient for passage to infinite dimensions. To look at
such a case, take a vector space V over the real numbers. Let X and Y be two
processes v -> X (v) and v -> Y (v) indexed by V and linear in v. Assume that X (v)
is Gaussian with expectation zero and variance E I X (v) 12 = A (v). Similarly let
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E Y(v) = 0 and E I Y(v) 12 = B (v). These are squares of Hilbertian seminorms on V.
The processes X and Y yield distributions that can be represented by measures P and
Q on the algebraic dual of V.

If. V ~contains sequences {vn) such that A (vn) + B (vn) stays bounded away from
zero but min[A (vn), B (vn) I 0 then P and Q are obviously disjoint. Thus if

J/dP dQ = p (P, Q) > 0 the two seminorms A1f2 and B112 must be equivalent in the
sense that there exists numbers a, b, 0 < a < b <0c such that aA (v) . B (v) s bA (v)
for all v. This shows that there will be no loss of generality in assuming that if
- 1IS = 2 (A + B) then S (v) = 0 only at v = 0. Also one can assume V complete for the2
norm 112 so that (V, 5112) is a Hilbert space. Let X be the dual of V for the norm
51r2. It is clear that the inner product [I ]A defined by A on V can be represented as

[U v ]A = < u, Av> where the bracket < u, x > is the evaluation of the linear function
x e X at u e V and A is a linear map of V onto X such that < u,Av> = < v,Au>.
Similarly, the inner product corresponding to B can be written < u,Bv> and the inner
product defined by S is < u, Sv> where S is the canonical identification of the Hilbert
space (V, S112) with its dual. The inverse S-1 of that identification map sends X onto
V. We shall also denote the norms of (V, S1) and of its dual by the symbols liv II, so
that 11 v 112 = S (v).

Consider then a finite dimensional subspace H of V. For the processes X and Y
restricted to H we have distributions PH and QH. It is clear that
VdPHdQH 40l+dQ~.
Let II be the orthogonal projection of V onto H in the Hilbert space (V, 51/2). Let

I-t be the transpose of II on the dual space X of V. One can show that rTISrT = SII.
Indeed, let H= x: < v,x> = 0, all v e H) be the polar of H in X. For any y e X
one has < (1-Il)v,y> = < v,(1 - rI)ty>. Thus if v e H < v,(I-I1)ty> =O and
therefore (I - fJ)t y E 13. The defining relation for 13 can also be written
< rIv, x > = 0 = < v, lItx > for all v E V. This means that if x e H° then Frtx = 0.
Therefore 13 = (I - I1)tX.

Now take any v e V and consider
< w,SfIv> = < w,IltS Iv> + < W,(1 - LI)tSFIv>. The second term on the right
is equal to < (I - II)w,SLIv>= (I - Il)wIIIv] where ['1'] is the inner product
corresponding to S on V. Thus <w,SFIv>=<w,IltSLIv> for all v, implying
Slfl= t5flS and SH = IItX. Let [ IA be the inner product defined on V by A.
The map A from V to X is such that <u,Av> = [uIV]A for all pairs (u,v) of ele-
ments of V. By the same argument there is also a map AH from H to the space
H' = SH = IrlX such that < u,AHv> = [ulvIA for all pairs (u,v) of elements of H.
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This gives < u,AHv> = < u,Av> for all such pairs. Equivalently
< IIU,AHV> = < IIU,AV> for all u e V and v E H. Therefore AHV =IFtAV.

Defining BH in a similar manner, we get a difference DH = 1 (AH - BH)-
2

(Note that AH need not be in SH = H'. An example is given by the matrices

A [ t], B= (_P 1 ] on the plane). Considering PH and QH as measures on

H' = SH the formula derived above shows that [ P (PH' QH) ]4 = det [I - (S-1 DH)2]
2 p4(P,Q) = say. Let m be the dimension of H and let X1, 2 . ... v Xm be the

m

eigenvalues of S-1 DH. Since HI (1 - X2)2 and since lXII . 1 one must haveH- ~~j=1 0adsneIX n uthv

m m m

0 S Xf.< 1 - J3 and £ X2 < -log,3. However £ 2= 11 S-1 DH Uj 112 for any orthog-
onal base {uj; j = 1,... , ml of H. since S-1 preserves the norms, this also means

m
that £ || DHUj 112 < -log .

j=1
This is true for any H and any orthogonal sequence IU1 u2, .... , uM,...) in V yield-
00

ing £ IID uj 112 < -log[. Thus, if P and Q are not disjoint, D and S-1D are Hilbert-

Schmidt operators and (S-1 D)2 is an operator with finite trace.

A consequence of this is that one can find in V a basis {uj; j e J) that is orthogo-
nal for the norm S1/2 and also for the norms A1/2 and Bt1'2. To obtain it, let ul be such
that A (ul) is maximized subject to 11 ul 11 ' 1. This is the same problem as maximizing

2 [A (u) - B (u) ] subject to - [A (u) + B (u)] < 1. Equivalently again, subject to the
2 ~~~~~~2

same condition, we are to maximize < u,Du>. Since D is a compact operator, there
does exist a ul that achieves the maximum. If ul, . . u,tn have been determined, one
selects un+1 to maximize A(u) subject to Ilull < 1 among those u's that are orthogonal
to ul,.. . ,tun. For this basis S-1D is represented by a diagonal matrix and there is no
difficulty in writing the detenminant of I - (S-1 D)2 as a product

((1 -X );j e J) - p4(P,Q).

A corollary of the above is that if p (P, Q) > 0 then P and Q are mutually abso-
lutely continuous. From this it is easy to derive the Hajek-Feldman theorem: Two
Gaussian measures are either mutually absolutely continuous or disjoint.
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