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1. Introduction. In his famous paper of 1943 Wald proved asymptotic optimality
properties for a variety of tests of simple or composite hypotheses. The tests are
derived from a recipe that involves maximum likelihood estimates 8, and estimates I n
of the inverse of the covariance matrix of én. One forms a chi-square type statistic
8, — 8)'T, (8, — 0) and reject those 0’s for which the statistic is too large. For |
Wald uses the Fisher information matrix Jg evaluated the estimate 6, of 6. It has been
noted by several authors that Wald’s procedure can suffer from some unsatisfactory
features. One defect, noted by Hauck and Donner (1977) is that, for fixed 0, a cri-
terion of the type (0 — t)’J, (0 — t) can decrease as |0 — t| becomes large. Another
feature, noted by Vaeth (1985) is that the results of the test procedure are not invariant
under smooth one-to-one transformations of the parameter space. Vaeth also points
out that the behavior described by Hauck and Donner can occur if one uses the cri-
terion (6 — 6)’ J5 (0 - 8) for the maximum likelihood estimate 8: There can be
sequences én such that (8 — én)’ Jé. 0 - én) tends to zero for all fixed values of 6. An
example of this, imitated from Vaeth, (1985), will be given in Section 3.

- The purpose of the present paper is to propose a substitute for Wald’s chi-square
formula. It is as follows. Let (E;} be a sequence of experiments
E,=(Pgn; 0 ©,). Let q2(s,t) =-8log[VdP,,dP,,. Our proposal is to use
q2(s,t) as a measure of the separation of the parameter points s and t and to build
confidence intervals of the type {0; q,%(T,,, 0) < c,(0)} for suitably selected estimates
T,

The performance of the procedure depends, of course, on the choice of the esti-

mates T,. For the situation described by Wald and for T, equal to the maximum likel-
ihood the conditions

Qe (Tp0) <c and O -T) I (0-Ty sc

can be shown to be locally equivalent in the following sense: Let 6, be the true value
of the parameter. Then for sequences {6,} such that q2(6,,0,) remains bounded the



difference
qx%(én’ en) - (én - en), Jén(én - en)
tends to__zefo in Pg_, probability.

Since g2 is intrinsically defined by the experiment E_, it remains invariant under
all one-to-one transformations of the parameter space.

The function g2 is a monotone increasing function of the Hellinger distance h

defined by h2(s,t) = %f(\/dPs n— \Ide)z. Since the Hellinger distance is closely

related to the total variation norm distance, and even more closely connected to the
square distance k2 (s, t) | '
_ _1_ (dPs.n - dPt.n)2
27 dPs, + Py ’

a decrease of q,%(e, t) for fixed © as | @ — t] increases is an indication that the distance
|0 —t| or the parametrization is not well chosen. Thus if the Hauck-Donner
phenomenon arises for g2, one should check the parametrization.

The use of g2 instead of a chi-square has some disadvantages. For one thing it
may be harder to compute than the chi-square. However, leaving this aside, the main
inconvenience is that to compute g2 (T,,0) the value of the estimate T, must lie in the
range of definition of q2. For a first draft of the present paper we had not paid
sufficient attention to that requirement. The gap was pointed out by Yu-Lin Chang,
who deserves my thanks. That there is a real difficulty is pointed out in Section 2
below. Attempts at remedying it are described in Section S.

Otherwise the paper is organized as follows. Section 2 describes Gaussian shift
experiments and the role there of the function we called q2. It also describes
heteroschedastic normal experiments pointing out that chi-square formulas are not
readily defensible there. This same Section 2 reviews the results obtained in Wald’s
paper of 1943 or, more precisely, our version of them.

Section 3 gives details of an example analogous to the one considered by Vaeth
(1985). The behavior of our substitute criterion appears satisfactory.

Section 4 is suggested by the heteroschedastic approximations that occur naturally
in the framework used by Wald. It show that variations on the definitions of the chi-
square type criteria can lead to very different answers.

Section 5 touches upon a number of different matters: the effect of lack of unifor-
mity in the local convergence to Gaussian shift experiments, the need to use estimates
T, that take values outside the assumed parameter sets ®, and some possibilities for
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the extension of the domain of definition of q, to cover such eventualities.

Section 6 is an aside on covariance stablizing transformations, An appendix gives
the derivation of the formula for q2 (s, t) in the heteroschedastic Gaussian case.
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2. Local Asymptotic normality, an outline of the theory.

In this section we recall a few facts about approximations by Gaussian shift experi-
ments. The facts are well known but presented in a manner that emphasizes the role
of chi-square type expressions and the role of the function q? defined in the introduc-
tion.

Let © be an arbitrary set. An experiment G = {Gg: 0 € ©} is called Gaussian, or
Gaussian shift for precision, if it satisfies the following two conditions:

1) The measures Gy; 6 € ® are mutually absolutely continuous,
dG
2) Let A(t,s) =log EC—}L Then the stochastic process t ~> A(t,s), te © is a
S
Gaussian process for the distribution induced by the measure Gsq.
(Under condition (1) the choice of the point s does not matter).

Note that the definition of Gaussian given here does not refer to any particular
algebraic or vectorial structure that may exist on ©. The set ® was not assumed to
have any such structure. However if one is given a Gaussian experiment G on © one
is also automatically given a map of © into a Hilbert space. To define it consider the
process X (t) = A(t,s) — EgA(t,s). Let My(®) be the set of finite signed measures
with finite support on © that are such that u(®) =0. Let IIuII2 to be the variance of
the random variable ]X(t) i (dt). These Gaussian variables generate a Hilbert space.
One maps © into it by associating to 0 the difference dg — d; of the Dirac masses car-
ried by 0 and s. The square distance between 6 and t becomes

18g — 8.1 = EsIX(8) - X[
= -8log [dG, dG,

as can be readily checked.

If the measures Gg had been given by a standard normal density with respect to the
Lebesgue measure of the form

|det [/
(21t)k/2
with I" fixed, independent of 8, one would have ||8g — &,|> = (8 — t)’T" (6 — t).
Note that the Gaussian family {Gg: 0 € ®} can be expanded to a Gaussian shift
experiment {G,: L € M;(@)} indexed by the entire linear space M, (®), or by the
Hilbert space that completes it. To do this define G, by

4Gy = exp([X R (D) - = 111} dG,

em{;u—mTu—m}
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All of this suggests that, if an experiment E = {Pg; 6 € ©} is not exactly Gaussian
shift but only approximately so, an appropriate measure of the separation of two
parameter values s and t is the number g2 (s, t) = —8log [ \dP, dP,.

The function (s,t) ~> q(s,t) is not necessarily a metric. In particular it does not

2
necessarily satisfy the triangular inequality. However |1 — exp[-—qg-- 11¥2 is a metric
on O since it is the Hellinger distance. For further use note that for the Gaussian case

one has ||p|? = a% “ll 8, — &, IIP(ds) L (dt). An attempt to extend the definition of

q? to all of M, (®) by taking the corresponding I' (p) = ——;— ”q2 (s,t) L (ds) u(dt) can

fail because the form so defined need not be positive and because q? may take infinite
values. '

We have mentioned ‘‘approximately Gaussian experiments’’. A formal definition
can be given as follows.

In Le Cam, (1964), we introduced a distance A(E,F) between two experiments
E = (Py; 0 € ©) and F = {Qg; 0 € ©) indexed by the same set ©. Except for techni-
calities, to say that A(E,F) < € is to say that, as long as one uses only loss functions
W bounded by zero and unity, any risk function available on one of the experiments
can be matched within € by a risk function available on the other experiment.

Definition 1. A sequence {E,} of experiments E; = {Pg ,,; 0 € V,} is asymptotically
Gaussian shift if there are Gaussian shift experiments G, = {Gg ,; 6 € V,} such that
AE,,G,) 5 0asn — oo,

Note that we have written the parameter sets as V,, instead of ©,. This is because
the kind of approximation required by Definition 1 will usually be possible only very
locally, in ‘‘neighborhoods that shrink as n — oo’’, instead of on an entire parameter
space. In fact, even under the very severe conditions imposed by Wald in his 1943
paper, Gaussian shift approximations are only possible locally unless the Fisher infor-
mation matrices are constant. By contrast Wald shows that his conditions imply the
possibility of a global approximation by heteroschedastic Gaussian experiments. An
heteroschedastic Gaussian experiment — henceforth abbreviated HetG — is a family
{Hg; 6 € ©} in which Hg is the distribution of a vector Y which is Gaussian but with
expectation and covariance that depend on 6.

Let P be a Gaussian distribution with center ® and covariance matrix I"! on RK.
Let Q be another Gaussian measure with center t and covariance matrix K~! on the
same RK. The value of q? = ~810gf\/deQ is easily seen to be

—2logdet[I - M 1A2]1+(t-6Y[M-AM1A]t-6)
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where M is the matrix M = %(r +K) and A = %(r —K). (C. Kraft, 1955, where
however the formula is misprinted. See the Appendix).

This formula shows that q? consists of two terms. One of them measures the
difference between the centers 6 and t and reduces to the chi-square formula if I" = K,
The other term involves the determinant det[I — (M~ A)?2]. Examples can be readily
constructed where —2logdet(I-M1AM1A) is very large but where both
©®—-t)I"'(®—t)and (0 — t)’ K(0 — t) are small. This is part of the reason for the mis-
behavior of chi-square type criterion in the approximations used by Wald.

We have already used the word ‘‘locally’’ to describe properties valid on small
enough sets. In the sequel we shall use the word ‘‘locally’’ in the following manner:
Let {E,} be a sequence of experiments E, = (Pg,; 0 ©,}. Let q2 be the
corresponding separation function defined by g2 (s, t) = —810gjm. A “‘local”’
property is one that is valid on certain specified sets of the type
Vn (T, b) = {O: q,%(e, T,) < b} for specified sequences {t,} and, usually, for any arbi-
trarily fixed value of b.

In this sense global approximability by a HetG does not always imply local
approximability by Gaussian shift experiments. To get into details of possible
behavior, let us look at Wald’s conditions, or more precisely at some of the conclu-
sions the conditions were presumably meant to entail. The wording will be imitated
from Le Cam (1956) and not directly from Wald’s 1943 paper for reasons that will
appear later.

Consider a sequence {E,} of experiments E;, = {Pg ,; 6 € ©,} where it will be
assumed that ©, is a subset of a k-dimensional real vector space R¥. It will also be
assumed that E; comes with estimates T, defined on it. The estimates T, will be
assumed to take values in RX. If they take values in ®,, they are called strict.

One of the first conclusions in Wald’s paper concerns the case where T, are the
maximum likelihood estimates and where their behavior is describable as follows
(A) Let (1:,,'} be an arbitrary sequence, T, € ®,. These are non random matrices M _,
such that, if g,(8,,7,) remains bounded, then the distribution L {M,_,(T, —6,)|6,)}
tend to the standard k-dimensional normal N (0, I).
B(1) The T, take their values in @,
B(2) If {t,} is as in (A) then, given € > 0, there is a b = b(g) and an N = N (g) such
that n > N (¢) implies P;_, (g2 (Tp, T,) > b} <&
(C) The T, are asymptotically sufficient in the following sense: There are other fami-
lies {Qg,5; 0 € ®,} of probability measures, defined on the same o-fields as the Pg ,,



such that:

(i) For {Qg, ; 6 € ©} the statistics T, are sufficient (exactly so!).

(>ii) sgp{lIPg'n— Qo,nll; © € ®,) > 0 for the total variation distance between
measures.
D) Let Fg , be the distribution of T, for Pg ,. There are Gaussian distributions Gg
centered at 6 and with the following properties:

There are Markov kemnels K. and K.,” such that sup IIFg,n — K;'Gg oIl and
sup 1Gg,n — K;,” Fg 5l tend to zero as n — oo.

’

Finally the K, and K,” represent small distortions in the following sense. Let
I, be the inverse of the covariance matrix of Gg ;,, (assumed to exist).

E) For every sequence {t,}, T,€ ©, every b<e and every £€>0, let
B, (t,€) = {x: (x — t)'I‘,mn(x -t) <€} then sn:pKn’[B,f(t,e)lt];

(t — 1))’ T n(t — T,) < b} tends to zero as n — o and similarly for K,".

The reader should note that the conjunction of the properties (A) to (E) is very res-
trictive. One reason for this is the requirement that all convergence properties hold
uniformly on the entire sets ©,. Another, perhaps less visible reason, is that the esti-
mate T, must be strict. That is they must take their values in ©,. A combination of
(A) and (B) or (A) and (D) will usually force the points of ©, to be interior to the clo-
sure of ©, and even more. There is also some doubt that the sufficiency property of
(C) can hold uniformly unless the space ©, is very special, for instance the whole of
RX. In that case the uniformity of convergence does not usually hold.

On this particular point Wald’s arguments seem to contain a gap. He works with a
fixed subset ®, = © of RX but fails to specify what kind of set it may be. He
proceeds as if the maximum likelihood estimates were, except for uniformly negligible
probabilities, roots of the maximum likelihood equations. This cannot be at the usual
kind of boundary points. Some of the problems in Wald’s paper are avoided in Le
Cam (1956) by two devices. The first is to allow estimates T, that satisfy asymptotic
normality and sufficiency requirements but take values outside of ®,. The second is to
relax the uniformity requirements for the convergence properties. Both devices create
problems of their own as we shall see.

- The properties called (A) to (E) above were not stated in this form by Wald. He
does not use our function q, at all but assumes existence of an underlying Euclidean
norm that has special properties and can be used to define what is ‘‘local’’. He does
use a property that is very close to the part of our (D) (E) that involves the kernels Kn'
but not the part relative to the kemnels K. Instead of our sufficiency property (C) he
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uses a set transformation that attaches to each measurable set in the observation space
a set in the maximum likelihood space that has, uniformly in 6, almost the same pro-
bability. This seems asking for too much. One can have sufficiency of a subfield B of
the observation o-field A even though the conditional expectation of an indicator I, is
not close to an indicator Ig. We have not checked the validity of Wald’s Lemma 1
but can readily conceive of situations where the properties (A) to (E) are satisfied but
the conclusion of Wald’s Lemma 1 is doubtful.

The misbehavior of Wald’s chi-square criterion noted by Hauck and Donner (1977)
and by Vaeth (1985) can readily be understood by looking at the form of the function
q2 for the approximating HetG families. The lack of invariance is another matter. It
is simply this. Write © and T, as functions of other variables, say 0 = ¢(§) and
T, = ¢(S,). The differences T, — 0 will be approximated by (i)(é) (S, — &) for small
values of S;, — . this will allow a form of local asymptotic invariance. However, for
S, — & large, the differences T,, — © may have no relation with d)(&) S, - &).

This means that if the properties (A) to (E) are satisfied by an estimate T, that is a
maximum likelihood estimate and is uniquely defined, one need not worry about the
lack of invariance of Wald’s chi-square for very small deviations T,, — © but that large
deviations are a totally different matter. The fact that trouble occurs in such a simple

transformation as the passage from the usual Binomial n pk(l -p) K to its
““natural’’ exponential family form [ﬁ]eek[l +¢e®1™ is a bit dispiriting perhaps.
However note that the conditions (A) to (E), or Wald’s original assumptions are
clearly not satisfied by the Binomial family, with p € (0,1). They are not satisfied
either for p restricted to an interval [a,b] < (0,1) (whether the interval is taken closed
or open). One can make the conditions hold by taking an interval [a,b], with
0 <a<b< 1 if one removes the restriction (B1) that the estimate T, be strict, that is
take values in [a,b] only.

Some relations between the properties (A) to (E) and our proposal to use tests and
confidence $ets based in g2 are as follows.

Proposition 1. Let conditions (A) to (E) be satisfied. For T, as in condition (A), let

Ke o =M "M .. Then for all 8, such that q2(0,,%,) stays bounded the difference
QI% (Tm en) - (Tn - en)’ Ktn.n(Tn - en)

tends to zero in Pg_, probability.

Proof. Let 6, and t; be points of @, such that both q,(6,,1,) and g, (t,, T,) remain
bounded. Consider the binary experiments B, = (Pg_,, P, n}, By’ = {Fg_p,F; ) and
B,” = {Gq, n»Gt_n} where B’ and B,” are from condition (D). We claim that the
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distances between these three experiments tend to zero. For (B,,B,") this follows from
condition (C). For (B,’,B,") this is exactly the statement of condition (D) restricted to
the pairs (0, t,). ‘

Now introduce the half space distance ||Fy , — Gg ,lI, = Sll_llplFe,n(H) = Gy n(H|

taken over all half-spaces H © RX. This distance is invariant under all affine transfor-
mations. Condition (E) implies that sgp IFg,n — Go,nlln = 0. If q,(8,1,) and
Gn (th, Tp) remain bounded, condition (A) says that both L[M, ,(T,-6,)16,] and
LM (T, - t)lt,] tend to the same N(O,) limit. Thus the half space distance
between L[T, - 6,10,] and L[T, — t;]t;] tends to zero. Recenter both Gg , and
G, , at zero, getting new normal distributions Gé: n and Gt: o It follows from the
above that IIGG;';n - G,: allk > 0. However this implies that the L;-norm
IIGé: ’n-G:, all also tends to zero. Thus the experiments B,” = {Gg_,, G, 5} are
asymptotically equivalent to experiments B,, = { Ge,n’» G n'} where Gg_," and G, .’
are normal distributions centered respectively at 8, and at t, but with the same covari-
ance matrices. The same argument applies to pairs such as (0,,T,). The asymptotic
equivalence of these experiments implies that the difference between the affinity
numbers p, = j m, Pn = f\/m and so forth up to p,, all tend to
zero. Similarly the difference between affinities p, = f\/m and the
corresponding number for pairs (Gg_,’ .n) Will tend to zero. It follows that since
Gn (B, T and q, (t,, T,) remain bounded the numbers q,(0,,t,) also remain bounded.
But then the difference between log [/dPq_ ,dP, , and log [/dG, , dG,,, must also
tend to zero. It follows easily that q2(0,,t,) — (6, — t)' K¢ 2 (0, — t,) must tend to

zero. The result claimed for q,%(Tn, 0,) follows then from condition (B). Hence the
Proposition.

Although the above proof is devious the result is hardly surprising. Note that the
proof made.use of all the conditions (A) to (E). It is perhaps more surprising that Pro-
position 1 admits a partial converse.

Proposition 2. Assume that conditions (A) and (B) hold and that, with the notation of
Proposition 1,

QJ% (em 1:n) - (en - tn)’K1,n (en - Tn)
tends to zero for all pairs such that q2(0,,7,) remains bounded. Then conditions (C)
to (E) and also satisfied.

Proof. Condition (A) and the approximation property for the g, function imply that in
sets of the type V, = {0:q2(8,1,) < b} the statistics T, are asymptotically sufficient
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and distinguished. A proof to that effect can be carried out as in Le Cam (1977).
Condition (B) allows carrying out a patchwork argument as in Le Cam (1986), Chapter
11, Theorem 3. This gives (C). Statement (D) and (E) can then be obtained by a
method similar to the method used in Le Cam (1986) Chapter 11, Section 8.

It follows from the above propositions that, under the conditions (A) to (E), one
can asymptotically treat q2(T,,T,) as if it was, under T,, a central chi-square, just as
would be the case for (T, — 1,)'K;_,(T, — 1,). If the distributions are induced by 1,
then q2(T,,0,) will behave as a non-central chi-square, as is the case for
(T, - ()n)’Ktmn(Tn - 0,), at least if q, (6,,T,) remains bounded. If q,(8,,7,) tends to
infinity condition (B) implies that q, (T, 6,) will tend to infinity in P , probability.
This can be used as support of our proposal to use q2(Tp, 6) to build confidence sets,
or for testing purposes, instead of Wald’s chi-square. The phenomenon noted by
Hauck and Donner (1977) and Vaeth | (1985) would still be possible for
(T, — 8,)'Kg_n(T, — 6,). That can tend to zero for suitable sequences 6, while
q2(T,,0,) — . However, by condition (B), g2 (T,, 6,) cannot stay bounded in P
probability unless q2(6,,T,) remains bounded. Thus the two criteria mdy behave
differently. The one based on g2 seems more satisfactory if (B) holds.

There are, however, certain difficulties. One of them arises from the fact that
Wald’s conditions, and our conditions (A) to (E), are extremely restrictive. Part of this
is due to the insistence on uniformity of the convergence on the entire ©,. To judge
this appropriately one should note that most asymptotic papers do not bother about
uniformity of convergence, much less about bounds. However, uniformity of conver-
gence is something that happens ‘‘as n tends to infinity’’ and is therefore of little
interest to the practitioner, except perhaps as psychological reassurance.

It is probably too much, in the present state of the art to ask for usable, computable
bounds. Yet it is often feasible to look at auxiliary estimates and associated
confidence regions that can be trusted to limit the possible range of values of the
parameter @ to rather small subsets of the initial set ©,. If, in that restricted range, the
approximations implied by our conditions (A) to (E) can be verified to hold reason-
ably, then we may proceed.

To repeat, suppose that 1) you have evidence that the model {Py_,; 0 € ©,} can
fit the observations adequately and 2) you have some auxiliary ‘‘robust’’ estimate 9:
with known variability that says that the true paraniétcr value must with high probabil-
ity lie in a certain small subset A, < ©,. Then the validity of (A) to (E) on the whole
of ©, is of little relevance. What matters is the adequacy of the approximations on

A,
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Thus, if one has just taken appropriate precautions and if auxiliary confidence sets
that can be trusted say that one is in a region where the chi-square approximation to
the distribution of q,?(Tn, 0) holds adequately, one may feel justified in using it.

A different kind of difficulty arises from the fact that to use q2(T,, 6) the value of
T, must be in the range where q,% is defined. As argued above, it may be rather
difficult near boundary points to check the validity of both (A) and (B1). It is often
easier to dispense with (B1) and either extend the domain of definition of g2 or replace
the estimates T, that would satisfy (A) to (E) except (B) by some other estimate T,’
for which the distribution of q,%(T n»0) is no longer chi-square but something that can
be evaluated according to the geometry of the situation.

Further elaboration on this will be found in Section 5 below.

One obvious problem in using g2 is that one has to evaluate it. In this respect let
us note the following results, already imbedded in the proof of Proposition 1

Proposition 3. Let the conditions (A) to (E) be satisfied. Let G, be the heterosche-
dastic gaussian experiment of condition (D) and let g,% (s,t) = —810gj'\ldGs 094G, .

Then, for every € > 0 there is an N (€) such that for n 2 N (€) and all pairs (s,t) one
has either

g2 (s,t) — g2(s,0)| <€ or
min[q2 (s, t), g2 (s,t)]1 > 1/€.

Indeed the difference between the affinities tend to zero uniformly as n — oo,
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3. An example of M. Vaeth.

This section refers to the paper by M. Vaeth (1985) and in particular to the exam-
ple discussed pages 205-206. Actually we shall not use the exact formulation of Vaeth
but a- simpler one that exhibits the same phenomenon but in terms of ‘‘exponential
integrals’’ instead of Bessel functions.

For a fixed k let f; (x,0) be the density

e—ex

1 .
Fi (8) xk’

fy (x,0) = x>1, 6>0,

with respect to the Lebesgue measure on [1,00). Here F(0) = Ie‘e"ikdx is the
1 X

‘‘exponential integral of order k’’ usually denoted E; (8). We shall use Fy instead of
E, to avoid possible confusion with expectations.

For such a family the following relations hold:
1
1) Fi ®) = [e®-0F.(0)]

Fi1(8)
2) EgX=——m—
) ] Fk (9)
F2(6)
3) EgX?=——
° Fi (6)
The maximum likelihood estimate 8 is the solution of the equation
Fi1 (0) )
Fi. (9) o
at least for k < 3. For k > 3 the range of EgX is limited. One has EgX < ll::;

Hence, for X > -i-lz:%- the m.le. 0 is equal to zero. Otherwise, if k < 3, the m.l.e. coin-

cides with the estimate obtained by the method of moments.

The phe:nomenon discussed by Vaeth is as follows. Consider the parametrization
by B(6) = EgX so that X is the m.l.e. of B ().

To test the hypothesis that 6 = 8; or to build confidence intervals, Wald suggests
X-p®y |

the use of the expression -———-:—:——-1— where & is the m.l.e. of the standard deviation of

X. For values of k such that 1 < k < 2 this expression tends to zero as X tends to

infinity. Thus large values of X, which tend to indicate values of O close to zero, are

held compatible with any value of 8. For k > 1, 1 < k < 2 this is not too disturbing

since the sequences {fy(-,0)} and {fi(-,6;)} are contiguous as 6 — 0. In fact

fi (x,0) tends to fi (x,0) = k_kl , X2 1. For k <1 the phenomenon in question does

X
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not occur: the coefficient of variation of X stays finite as 6 — 0.

This can be easily checked by using the classical expansions of F, () for 6 near
zero. They can be found, for instance, in Abramowitz and Stegun (1964) or can be
derived directly.

For k = 1 the m.l.e. of B(0) is X itself. It has a variance

F_,(©) [Fo (6) ]2

VarX = -
TR T |RO

Now Fy(0) = ~9/0 and for 0 tending to zero F, (0) behaves like — log® — v where y

is Euler’s constant y = —j e Ylogydy ~ .57. Thus for small 6 the variance of X will
0

behave like
F—l (e) 1 -0 1 -9 1
= {—eV+—e" p———r
F; () {92 0 F,; (0)
o1
82]logO|

The maximum likelihood equation shows that, for large X, the m.l.e. behaves like

|

Xlog X so that the estimated standard deviation of X is of the order
1 1 v
- — ~ XVlogX,
0 Vllogel
. .. X-PB@®O
hence the behavior of the criterion ————.
There is nothing particularly surprising about this fact. As 6 — O the distribution

of X is far from normal. Its expectation and standard deviation are poor indications of
location and spread. For instance the median of X behaves like 1/V0 while EgX

behaves liker rlolga' The a® quantiles behave like 6*. The distribution of X can-

not be ‘‘normalized’’ by a change of location and scale. The observed misbehavior of
Wald’s criterion extends to some other expressions. For instance if one uses an esti-
mate O obtained by putting X equal to its median and then estimate the spread of the
distribution by an interquartile range computed at 8 the resulting ratio will also tend to
zero as X — oo, |

All the arguments used above in this section use only one observation. If one has
n independent identically distributed observations X;,X,, ..., X, their average X,
will still be the maximum likelihood estimate of EgX. As explained by Vaeth (1985)
the misbehavior noted for one observation persists for every value of n. Now let us
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see how the functions q2(T,,8) of Section 2 can behave. Here a2 (s,t) = nq2 (s, t)
where q is the function computed for one observation only.

- The argument of Section 2 depend on finding estimates T, that are well behaved
and in particular satisfy the condition (B) of Section 2. One can easily show that,
here, the m.l.e. é,, satisfies condition (B) even though, as we shall see, it does not
satisfy the other conditions of Section 2 uniformly on © = (0, o).

Proposition 4. Let {pg; 6 e (0,0)} be an exponential family of rank one in an arbi-
trary parametrization. Then for n independent identically distributed observations and
for the m.l.e. 8, one has

Pe n (a2 (8,,0) > 8z} < 2¢*

for all z> 0.

Proof. An exponential family in its natural parametrization has the form
Pe(dx) = exp{6x — A(6)}u(dx)

for some measure yl. Thus

0+t
2

Since A is a convex function, for 0 fixed q2 (6,t) increases as |0 — t| increases. Con-
sider any particular t > 6 and the test based on n observations that minimizes the sum
of probabilities of error for 0 and t. This sum of probabilities of error is [|[Pg , A Pyl

2®,1) = 8{%[A(e>+A(t)1—A[ 1.

< exp -% q2(0,1)). However, by concavity of the logarithm of likelihood ratios, if
the test in question rejects t, the test of 6 against t’ > t will also reject t’. Thus, except

for probability at most exp {—-é— q2(@,1)} for Pg ., one will reject all t” > t. The same

argument applies to values s < 6. Hence the result, since the inequality q2(6,,0) = 8z
is invariant under all one to one reparametrizations.

Note the 8z in the expression in curly brackets of Proposition 4. If q,%(én, 0) was
actually chi-square one could replace it by 2 z for the same bound on the probabilities.
Part of the loss can be attributed to the passage from ||Pg , A P, |l to Hellinger
affinities but part may just be due to the fact that, here, nothing much is known about
the distribution of 8, or g2 (8,, 6).

In the present specific example one can obtain a variety of results about the asymp-
totic behavior of q2. Of course, if @ is kept fixed, independent of n, the variables
Vn[X, — Eq(X)] will be asymptotically normal and, én being the m.l.e., q,%(én, 0) will
be asymptotically 2. If, on the contrary, the true © is a 6, that depends on n and
tends to zero, the behavior of q,f(én, 0) can be very different from chi-square. To
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investigate what can happen consider two sequences {s,} and {t,} both tending to zero
and such that s;>t,. For n observations the Hellinger transform of the pair
{P;_ 5 Pi_n) has a logarithm of the form

© 7 on(@ = nlog[[f(x,s) 1 *[£(x,t,)]%dx
= n{logF[(1 -a)s,+at,] - (1 - a)logF(s,) — clogF(t)}

where F (v) is the exponential integral F(v) = F; (v) = jc‘“ % dx.
' 1

For small z it has the expansion
F(z) = |logz|-y+ X a7,
_ =1

and its logarithm has the expansion

l .
logF(z) = logllogz| +logll ~ 170 —n + T1og2y =472

Let us first look at the log|log| term in the expansion. For ¢, (o) they give a first
term
0, () = n{logllog(l - o)s, + aty| - (1 — o)log|logs,| — alog|logt,|}.
To investigate the behavior of this we shall assume t, <s; and let t, = (1 - &) s,,,
0<&,<1. Then (1-os,+at,=s,[1-af ] and |log[(1 - a)s, +at,]]
= [logsy| — log(1 — & &p).

Similarly |logt,| = |logs,| —log(1 - &, =|logs,| I—M This

yields

log(1 -
log(1 -ag)] - alog[1 - logtl ~ &) }

o, (o) = n{log[1l -
n(@ “{°g[ log |

1
|log sy |

To study this it is convenient to introduce the notation

1
|log sy |

n —

so that
@, () = n{log[1-3,log(l - a§y)] - alog[1 - §,log(1l - &I}
We shall distinguish three cases:
Case A, nd, — . Then, for o, () to stay bounded, &, must tend to zero. In such a

case one has -log(l — &) ~a§n+%a2§,% and -log(l1 —-&)) "5{"%&3 and
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, (o) behaves like

n {lbg[l + 8, (&, + —;-azé,f)] —alog[l+6,(,+ _;'&.cr%)]}'

Expanding the logarithms once more, one sees that the terms in §,&, cancel. The
expression remains bounded if n8 &2 remains bounded. If n3,£2 — o the term

, (o) tends to —%— o?[a? — a]. This is the logarithm of the Hellinger transform for a
Gaussian experiment.

This suggests looking at a family F,, = {Q, ,} where Q, , is Py , with a 6 taken

, [Tog s, |
equal to s, + As, i = with A restricted so that ® > 0. It can be shown that the

experiments F, converge to a Gaussian shift experiment linearly indexed by A. Thus,
with this parametrization, the corresponding q,%(ﬁ.n, A) will still behave asymptotically
as chi-square, with one degree of freedom.

Case B, nd, — b, finite, positive. Then ®, () can stay bounded for values & that
stay away from zero and unity. If § — & O0<&<1 then w,(x) tends to
-b[log(l — &) — alog(l —&)]. This shows that, under P, ;, the distribution of

dp
1
%3P

n

tends to a shifted gamma distribution. The sequences are contiguous.
Swll

Case C, nd, — 0. In this case it is possible to let £, tend to unity in such a way that
nd,log(l — &) stays bounded. If -nd log(l1 —&,) tends to a limit b then
o, (o) = —ba. This is the log Hellinger transform for a pair (Qg, Q;) where the part
of Q; that is dominated by Qg has a constant density equal to e™®. The part of Q, that

-b

is Qp singular has mass 1 — e™. This implies that the sequence (P, ,} is contiguous

to {P,_,} but the reverse is not true. Here q,f(sn, ty) tends to 4 b and [P, , A P |l

tends to e,

In the above derivations we have used only the log log term in the expansion of
log F. However, it is easy to check that the other terms tend to zero.
dp

,n
dp, ,

In all cases, the logarithm of likelihood ratio A, = log

has the form

— —— n —
Ap =2, X, + b, where a, and b, are constants and where X, = % 21 X Since X, is
J=

the maximum likelihood estimate of its expectation B(6) = EqX, the expression
q2(8,,0) can also be written in terms of X, and B as, say 6,12(5(—,,, B). Since, by Propo-
sition 4, G2 (X,, B,) remain bounded in Pg , probability no matter what B, = B (8,)
does, one can approximate q;f(i,, B,) by the expressions used above for —8 w, (1/2).
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In case B this leads to an approximation of the type

" —8blog2 + 8blog ‘\/%+*\/% .

-cC
Since ——ﬁ-—f- is approximately distributed as a gamma variable with exponent b, this
n

does not seem to behave like a chi-square. For case C the variables q',f(_x'n By) seem

to behave in the same manner as log By Proposition 4 this must stay

n Xa
logB,  Bn’
bounded in Py_, probability for B, = Eg X. If 6, is replaced by a t,=(1-§.)0,

n X,
log B, logB, = Bn
tion with a mass 1 — €™ tending to infinity. This should be taken into account in the
construction of confidence intervals.

such that

log(1 — &,) — b, then log will have for P,_, a distribu-
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4. Some heteroschedastic gaussian cases.

As seen in Section 2 heteroschedastic gaussian experiments occur routinely in
asymptotic theory. In fact the conditions (A) to (E) of Section 2 provide for a situa-
tion where the experiments E;, = {Pg ,; 6 € ©,} are such that A(E_,,G,) — O for the
heteroschedastic experiment G, of condition (D). For this reason we shall study here
the behavior of some heteroschedastic gaussian experiments. However, for simplicity
we shall only use parameters 6 that run through an interval of the real line, say
© = [a, ) where a is a large positive number.

Let X be a normal variable whose distribution depends on a parameter 0 € [ a, o),

1
Y©)

Assume that, given 0, the variable X has expectation 6 and a variance G2 (0) =

The family so obtained defines an affinity

s = { 4Y(9) () }"“exp[ L_Y@0Y0 |, _gp)

[Y() + YO 1 4 Y+ Y@
yielding
q2(s,t) = —8logp(s,t)
[y + Y® 12 Y Y® 2
= 1 2 - .
2 °g{ 1Y Y0 }+ Yo +ym S

We shall be interested in situations where vy is a smooth decreasing function that
tends to zero rapidly as ® — o=. For a first example let us take y(0) = €28, Then
e—(s+1)

) (t - s)29

2
,t) = 41 h(t -s) + ———
q°(s,t) ogcosh (t — s) cosh (i — s

indicating that, for s and t large, the main contribution to q2 (s,t) will arise from the
first term. This is the term that takes into account the difference between the variances
at s and t.

The negative of the logarithm of the likelihood function is

-%-(x —0)2e® 40 = —;- [X - 12logv2v! + %logv,

. The maximum likelihood equation is

exp (26} = (X -86) + (X - §)2.

where v is the variance v = e2°

In terms of the variance v this becomes
v = X- —;-log\‘/) + (X - -;—log\“')z,

showing that, for | X| large, ¥ will behave approximately like X2 + X. Approximate



- 19 -

solution of the likelihood equation shows that, for | X| large, 8 (restricted to (a,<°), a
large) behaves approximately like log|X|. Some standard methods of constructing
confidence intervals can lead to very different results. The standard ‘‘equal tails’’
intervals with probability of coverage near .955 would be given by inverting the ine-
qualities 8 — 2¢% < X < 0 + 2¢2%. However, for X > —(1 + log2) the lower barrier is
ineffective. The resulting intervals would be half infinite, of the form [c(X),=). A
similar phenomenon occurs for X negative but | X | large.

If, on the contrary, one uses intervals of the type X — 28 < 0 < X + 28 where & is
estimated then the intervals would take the form [a,c; (X)] with an ineffective bound-
ing for small values. For instance if one estimate 6 by log|X| for | X| = 1 one would
estimate & by | X| and get intervals of the type X — 2|X| < 8 < X + 2|X]|. The lower
bound is always negative and therefore ineffective since we assume 6 > a with a > 0,
large. As |X| — oo these intervals produce an instance of the Hauck-Donner-Vaeth
phenomenon. They accept any finite value of 6.

For confidence intervals based on the function q the situation is different. Let us
take some estimate 8. If v = o2(D) is large, the main contribution to q(t,8) will be
4logcosh (t — ). Thus the intervals will be given approximately by an inequality of
the type {0: cosh (8 — 8) < e}, that is |® — 8| < cosh™! (e¥4) = c.

1

For simplicity, let us use the crude estimate v = X2 so that § = 3 log X2 = log| X |

with | X | assumed > 1. Then we have intervals equivalent to |0 — log|X] | < c. For 6
very large these intervals have a probability of coverage about equal to P {log|&| < c}
for a & with a N(0,1) distribution. Thus one can consider intervals obtained from a
value c of the order of log2. Note that these have a fixed length as | X| — . This is
in sharp contrast with the intervals obtained from chi-square type formula.

The situation described above is rather extreme in that one would not expect to
encounter very often observations X whose standard deviation is an exponential func-
tion of their expectation. However, the same kind of analysis can be carried out for a
variety of other cases.

One could object that, for the normal family N (0, ¢?®) used above, there is nothing
‘‘asymptotic’’. However, the same kind of analysis will apply for each fixed n to a

family of the type {N(Q,%J"); 0 > 1). This shows that for many densities f(x, 6)
that are sufficiently smooth functions of 0, the analysis will apply for n i.i.d. observa-

tions X, ..., X, provided that the Fisher information decreases exponentially fast as
0 — oo,
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5. The choice of estimates and the range of q,.

As noted in Section 2, the use of confidence sets of the form {0: q,f(Tn, 0) < b}
must rely on an appropriate choice of estimates T,. To avoid various complex prob-
lems, let us consider only the case where we have product measures Py ; 6 € ©
obtained from n independent identically distributed observations, X, ..., X,. A
prime candidate for T, is the maximum likelihood estimate 6,. However, one cannot
limit oneself to én for many reasons. The m.l.e. én is known to misbehave for very
many common families {Pg ,}, for instance for families obtained from mixtures. In
1973, 1975 and 1986 we proposed estimates T, obtained by a complex construction.
Another construction was proposed in Birgé (1983). In both cases the estimates T,

have the following desirable property. Let h2(s,t) = %I(\]dps — /dp)? where Pg is

the distribution of individual X; under 6. Then Egnh?(8,T,) < CD(t,) where C is a
universal constant and where D is a metric dimension function for @, and h, evaluated
at some suitable number T, selected roughly so that C; nt? = D (t,) for a coefficient
C, approximately equal to 64. Since the relation between g, and h is given by
q,%(s, t) =-8nlog[1 - hZ(s,t)] one sees that for sets ©, that have bounded metric
dimension one will be able to assert that q2 (T, 8) will remain bounded in Py, proba-
bility uniformly in 6. Thus one may contemplate the use of such estimates.

The arguments of Le Cam (1986), Chapter 16, also give bounds for the probabili-
ties Py, {nh? (Tp,0) 2c} that can be converted into inequalities for
Pe,n[q,%(Tn, 0) = b}. However this gives only inequalities and not approximate values
for the probabilities in question.

The arguments of Le Cam (1986), Chapter 16, can be applied to i.i.d. sequences
Xim -+ - » Xy Whose individual distributions, say pg n, are the same for all X;,
j=1,...,n, but may be allowed to depend on n. In some cases (see Le Cam
(1986), Chapters 16 and 17) one can use estimates based on empirical cumulatives to
the same effect but with the same or similar difficulties relative to the approximate
evaluation of probabilities. Since Wald’s construction was intended for the case of
asymptotically normal families, it would be pleasant to find estimates T, that are such
that g2 (T,, ) is not only bounded in Py , probability uniformly for 8 € @, but also
asymptotically distributed as a chi-square. As already noted in Section 2 the combina-
tion of the conditions (A) (= asymptotic normality for T, and (B1) (that T, € ©,) is
not likely to be satisfied at boundary points of the closure of ©,,.

In such cases one may want to extend the domain of definition of the function q,,.

There are situations where an extension is immediate. For an instance consider the
binomial B (n,p) with p restricted to lie in an interval [a,b] < (0,1). There is then
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some € >0 such that 0 <a—-e<b+€<1. One can then let the estimate T, take
values in (a — &b + €) and use the function q,, relative to the binomial.

Such extensions raise the question of whether one can extend the definition of the
family {Pg ,; 0 € ©,} to a larger set 6: 2 ©, and let T, take values in 9,:' . The
problem is essentially the same as the following: Let ¢ be a map from @ < R¥ t0 a
Hilbert space X. Let ®* > @, when can one extend ¢ to ©* in a reasonable way and
what is a reasonable way? In many cases the map will be uniformly continuous on ©,
Then it extends to a uniformly continuous map in the closure ® of ©. To extend it
further one could take for 6 ¢® a t(8) € © closest to 6 and let $(8) be ¢[T(0)].
However, this need not yield a continuous map. Other possibilities need to be investi-
gated.

Another form of extension is discussed in some detail in Le Cam (1986), Chapter
11, It is as follows: One ignores totally the Euclidean structure of ®, including the fact
that RX is a vector space. Instead one uses a space M (©,) defined as the space of
finite signed measures that are such that 1 (®,) = 0 and have finite support on ©,. For
each 6 € ©, one defines on My(®,) a positive quadratic form I'g ;, obtained from a
“best fitting’’ Gaussian shift experiment to E, g = {P, : q2(t,0) < b,}. Thus, for
each O one obtains an approximation Iy ,(5; — &) to g2 (t,s) for q2(t,6) < b, and
q2(s,0) < b,. This approximation is then extended to all of My (®,). Under suitable
circumstances (described in Le Cam (1986) Chapter 11) that involve finite dimensional
restrictions locally on M, (©,) normed by ~>+Tp , (1) and existence of appropriate
estimates, one can form centerings Z,;, with values in the space M, (®,) of finite signed
measures | with finite support such that p(®,) = 1. These will be asymptotically nor-
mally distributed and I'g ,(Z, — 8¢) will be asymptotically distributed like a chi-
square. Use of the expressions Iy, , (Z, — 8g) where @ is an estimate of 6 can lead to
the phenomenon described by Vaeth (1985) and Hauck and Donner (1977), but here
one can take precautions since the estimates Z;, and ® need not be or cannot be the
same. This suggests, however, that it may be preferable to use the formula given in
Section 2 for the heteroschedastic Gaussian case. Here it would take a form of the
type

g2\, u) = —2logdet[I- M 1A?2]+T, (A -

where M corresponds to --%-(I‘m'n + T ) and A to —;—(l"w'n —Ig,n)- The T, would
correspond to (M — AM™1A). This can be made to have a perfectly well defined
meaning with operators on the Hilbert space completion of M (®,). (See Appendix).

There are occasionally other possibilities. For instance in the i.i.d. case of observa-
tions X, ..., X, with individual distributions {pg: 6 € ®,} or {pg ,; 6 € ©,}, one
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can use the square distance HZ(s,t) = nh2(s,t) with h? = 1 — [\/dp,,dp.,. One can
then use .on M, (©,) the quadratic form | defined by
= —4] IH,?(s,t) H(ds)p (dt). According to Le Cam (1986) Chapter 11, Section 6
page 265 s.q.q. this gives a positive global substitute for the local I'g ;. Then one can
use approximation of E; = {Pg ,; 6 € ©,} by a Gaussian shift experiment in which the
Hauck-Donner-Vaeth cannot occur. Note however that this procedure imbeds ©, into
a Hilbert space that can be infinite dimensional.

It is tempting to use instead of the I, defined above a l“: defined by
Iy = —% [a2 (s, ds)p(dY). However, there are difficulties due to the fact that

I‘: (W) may be negative. Also, if q, can take infinite values, I“: (1) may fail to be
defined. Under the conditions (A) to (E) of Section 2 the use of I';, appears to be safe.
However since part of the purpose of introducing the centers Z, and the quadratic form
', is to avoid the restriction (B1) of Section 2, one should consider conditions weaker
than (A) to (E). Here is a possible set of conditions. The square norm I, defines a
metric or pseudo-metric on My (®,). For measures m carried by Mg (®,) (or its com-
pletion) let ||m|lp_be the corresponding dual Lipschitz norm

(A¥) For any sequence {T,}, T, € ©,, if I';(3q,8;) remains bounded, then the dual
Lipschitz distance between L(Z, — 8y |6,) and a centered normal distribution Gg_,,
with inverse covariance form I',, tends to zero as n — oo.

(B*) For sequences {t,} and { B,} as above I',[Z, — &g 10,] stays bounded in Pg_,
probability.

(C*) There is an integer k with the following property: Let {t,} be as in (A®). Then
there are linear subspaces H, (t,) © My (®,) of linear dimension at most equal to k,
such that, for any sequence 6, such that I', (8 — 8, ) stays bounded, there are ele-
ments W, € H; (t,) with the following properties:

1) T'y(Sg, = 8;, — Hy] tends to zero as n — oo
2) The L;-nomms ||\, || stay bounded.

If these conditions are satisfied the distance A (E,, G,) between E, = {Pg ; 6 € ©}
and the Gaussian shift experiment attached to I';, (with parameters restricted to Jg,
0 € ©, ) will tend to zero.

The conditions given above yield uniformity of all convergences, as needed for
Wald’s properties (A) to (E) described in Section 2. There are many examples that
would satisfy (A) to (E) but with uniformity of convergence only on certain subsets of
the parameter spaces ©,. This create problems, but, at least in certain cases, the prob-
lems can be more of an aesthetic mathematical nature than a real practical impediment.
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The real problem is that the convergences occur ‘‘as n tends to infinity’’ while the
practical questions occur for fixed finite n. What seems to be a reasonable procedure
is as follows: Proceed in two steps. First narrow down the range of possible values of
6 by a trustworthy method that may be far from optimal. Then check that in the range
in question the approximations by Gaussian shift experiments implicit in (A™), (B,
(C*) above are reasonably good.

To give an example let us take Vaeth situation as described in Section 3. That is,
assume that one observes X, ..., X, independent and all distributed according to a
density

e—ex

F1(0)

£(x,0) = % x>1, 8>0.

Let us assume that n is very substantial, say n = 1600. Then one can construct an
empirical cumulative distribution function by H, (x) = —rll-é:l I(X; < x). Let H(x,0) be
the cumulative corresponding to f(-,0).

Define a restricted range for 0 by the recipe
R, = {0: */Hsulen(x) - H(x,0)| < 4}. For any 6, the probability under Py , that
R, does not c:)ntajn 8, is of the order of 10713, This does not tend to zero as n tends
to infinity but is close enough to zero for many and perhaps most practical purposes.
For n = 1600 this limits 0 to a range R, = {0: 51)1(p|Hn(x) -H(x,0)| < —4%}.

For the densities f (x,0) in question the Kolmogorov distance is just one half of the

L, distance between densities. Since this is larger than the square Hellinger distance
one sees that two values s and t that belong to R, must be such that

h2(s,t) = -.’1).— j | Vf (x,8) — VE(x, 1) Pdx < ﬁ giving for the one observation value of

-8log[1 — h2(s, 0] = q2 (s,t) a bound approximately equal to 1/25. This restricts 0 to
an interval [/, 1, ] that cannot be very long unless r,, happens to be very large.

The first thing to do is to check that R, is not empty. If R, is empty, as will hap-
pen often, the modelling by the densities f(-,0) is not credible and one should rethink
the whole problem anew. If R, is not empty and if one is sufficiently convinced of
the validity of the model, one might want to try the inequality of Section 3 that says
that for the maximum likelihood estimate 6, one has Po n (nq?@,,0) = 222} < 10712,
Here this may not narrow the possible range of © materially.

The next step would be to check whether on R, a Gaussian shift approximation

seems appropriate. Now one can try Gaussian shift approximations whose random
term is linear in the parameter 6 itself or in the expectation B (8) = EgX or in any
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other parametrization that seem suitable. To check the reasonableness of a linear
parametrization in 6 one would just have to check that in the range 6 € R, the vari-
ance Varg X does not change too much. Since we have not defined ‘‘reasonable’” or
“‘too. much’’ this cannot be taken to make precise mathematical sense, but the idea
should be clear.

One may be tempted to use the parametrization proposed by E. Mammen (1985).
For this, let /;, be the left extremity of R, and let r,, be the right one.

One could use the parameter & (t) = q(t,/,,) for t € [/, r,]. This would not affect
at all the approximability of a pair (P, P,;) by a Gaussian experiment [ G;,, P, ] but
would affect the approximability of {P,,;te [/, r,]} by a Gaussian experiment
whose log likelihood has a leading random term linear in &(t) instead of t. It also
would affect the construction of chi-square type statistics. Unless one uses our pro-
posed nq?(,,0) formula, one may want to look at expression of the type
n(én - 0)2J (én), for the Fisher information J computed on one observation, or the for-
mula n[X, - B(8) >/ Varg X or a formula of the type n[q (8, /) —q(8,/)1*C(6,)

with an appropriate coefficient C(én).

In the final analysis there does not seem to be any possibility of escaping a check
on the reasonableness of the chi-square distribution approximation for the expression
retained. However it needs to be checked only for 0 in the range R,
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6. Reduction to the homoschedastic case.

We have just seen, in Section 5 above, that one can occasionally imbed the param-
eter space ©, into a Hilbert space and obtain approximations by Gaussian shift experi-
ments. This is what is done as a matter of routine, when ©, < R, by variance stabiliz-
ing transformations. Then ©, remains a subset of the line R. Vaeth (1985) shows
that such transformations will prevent the misbehavior of Wald’s criterion at least for
exponential families.

When ©,, is a subset of R, k > 1, the situation is vastly more complex.

Under the conditions (A) to (E) of Section 2 one can approximate the experiments
E, = {Pg,n; 8 € ©,) by heteroschedastic Gaussian ones, say G, = {Gg ,; 0 € O,}.
Such an approximation yields for each 6 a quadratic form on RE, using as a matrix the
inverse covariance matrix at 6. Thus we obtain on ©, a structure of a Riemannian
manifold. A transformation that leads to a Gaussian shift experiment amounts to an
isometric imbedding of this Riemannian space into a Euclidean space R™. Now there
are theorems that indicate the possibility of such embedding: E. Cartan says that such

manifolds of dimension k can locally be imbedded in R™ for m = -:lzk(k + 1). This is
a local result. There is a global result of Nash that says that the entire manifold, if it
is of class C3, can be isometrically embedded in R™ for m = % (3K + 14k2 + 11k].

(See for instance J.T. Schwartz (1969) page 43 and J. Dieudonné (1971) volume 4
page 341.)

Unfortunately, the dimension m of the imbedding space is very much larger than
that of the original ®, < RX. Thus ©, becomes a very thin subset of R™,

The problem of stabilization of covariances is also related to the problem of selec-
tion of a ‘‘best‘fitting’’ local Gaussian shift experiment. E. Mammen (1985) argues
that, for one-dimensional exponential families around a point 6, the optimal choice is
one in whicb the expectation & (t) of the normal approximation is such that

a7 80,0 = 15() — E(©O) P
(if the standard deviation is taken equal to unity). We do not know of extension of
such results to multidimensional families, but they may involve the same kind of
difficulty as the embedding of Riemannian manifolds described above.
When feasible, the Hilbert space imbedding by Ty () = —4 [ [HZ (s, t) . (ds) p (dD)
described above seems simpler, although perhaps not optimal.
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7. Conclusion.

An examination of Wald’s asymptotic tests or confidence intervals shows that they
can exhibit. distressing behavior. This is partly due to differential approximations that
replace the expression g2 (s,t) = —8 log [ /dP,dP, by approximations that are quadratic
in (s — t). That can be justified only within the confines of sets where a good approxi-
mation to the log likelihood of the type

logﬂ ~ (f -s)W - L t=5s)YT(t-s)
dpP, S 2

holds for a constant matrix I'. For larger sets one needs to take into account the varia-

bility of the matrices I". '

Using instead confidence sets of the form {0: q2(T,,6) < c} one can avoid many
of the difficulties provided suitable estimates T, can be constructed. If asymptotic
normality of the estimates cannot be achieved with T, that take values in the parame-
ter space, palliatives are sometimes available.

One should also refrain from expecting too much from asymptotics. In the case
discussed by Hauck and Donner there were a total of 455 observations. The analysis
used effectively classifies them into 512 different boxes. This does not allow enough
observations per box to induce faith in the applicability of asymptotic theory. It also
can result in confusion over what the data try to say and what they are made to say by
features that have been inserted, inadvertently perhaps, in the mathematical formulas.
‘The use of multiple chi-square like tests under such circumstances can be hard to
defend, for obvious reasons and for the added reason that the tests in question are
based on a formula that does not measure adequately the difference between the postu-
lated distributions at different values of the parameters.
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Appendix
The affinity for two Gaussian measures

In Section 2 and Section 4 we have used a formula for the Hellinger affinity
J'\/d—G;TCE between two Gaussian measures that may have different means and covari-
ance matrices. The formula goes back at least to C.H. Kraft (1955). However, in the
published version of Kraft’s thesis it was misprinted and is barely recognizable. The
derivation of the formula is not difficult but its implications are many. Thus we shall
present here two derivations. One is intended for finite dimensional situations. The
other is meant for arbitrary dimensions.

Let P and Q be two gaussian measures on a finite dimensional vector space RX.
Assume that P has expectation 0 and that the inverse of its covariance matrix is I" so
that it has a density

(detD)V2
(2m)*2

with respect to the Lebesgue measure of RK. Similarly, let Q have expectation t and
inverse covariance matrix K.

CWF%Q-QT@—Ml

Multiplying the square root of the densities will yield, in the exponent, a quadratic

form that, except for the coefficient (—%), is equal to

x-0Tx-0+x-t)Kx-1).

To reduce this to a tractable form assume that I' and K are both invertible and intro-
duce a centering v by

T+K)v = T'o+ Kt
Then the above quadratic becomes
x-vVVITC+KEx-VVV+v-0)THvV-0+v-0K(v-1.

The term (v —0) can be expressed as (v—0) =T+ K)'1K (t - 6). Similarly
v-t)=C+K)1Ir®-u.

Let M be the matrix M=—;-(I“+K) and letA=%(F-—K) so that T =M + A
and K=M - A. Then (v — 0) takes the form (v—9)=%(t—6)—%—M‘lA(t—9)

and v — t is obtained by changing A to —A. Then the sum of the two terms of the qua-
dratic that do not involve (x — v) will yield a quadratic in (0 —t) with a matrix

% (A-MTAYTA-M1A)+ I+M1A)KJ+ M1A)}. Direct computation shows

this to be equal to —;—[M — A’M™1A]. Thus the term in the exponent of the square
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root of the product of the densities is

—% (x = vy (T + K)(x — v) — %(t ~8Y[M—=AM1AI(t-6).

N'ow:integrate out the variable x. One will get a term equal to [detL-'z'—Iﬂ 2

multiplied by exp {—% (t—0[M-A'M1AJ(t-96)}. Combining this with the
determinantal coefficients of the densities yields an affinity equal to
[ (detT) (detK) M4
[detM ]2

and the result quoted in Section 2 follows by using the fact that the determinant of a
product of two matrices (square of same order) is the product of the determinants.
This shows that j'\ldP dQ is a product of two terms. One of them involves differences

between expectations in the form

exp {-% (t-0)[M - A'MA] (t - 0))

exp {"fls' (t—0)[M—A'M1A](t - 6)).

The other involves only the inverse of the covariance matrices in the form

{(det[I - M 1A} 14

For many uses this determinantal form is not convenient. A form using the covari-
ances themselves can also be used. Let A = I'"! be the covariance matrix of P and let
B = K1 be the corresponding matrix for Q. The determinantal term in I‘/dP_dQ can
also be written

-1 -1
[detA ] Y4 [detB ]V (det[ 2—F B )12

2
Its fourth power is
-1 -1
{[detA][detB]det([A—tB" j2)y-1 - _detAB
2 A+B .,
det( )
2
Write =%(A+B), =—;—(A—B). Then A=S+D, B=S-D and

AB = S2 — D2. Thus the determinantal term can also be written as fourth root of
det[I - (S D)?].

This form is particularly convenient for passage to infinite dimensions. To look at
such a case, take a vector space V over the real numbers. Let X and Y be two
processes v ~> X (v) and v ~> Y (v) indexed by V and linear in v. Assume that X (v)
is Gaussian with expectation zero and variance E|X (V) 2= AW). Similarly let
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EY(V)=0 and E|Y(WV)|> = B(v). These are squares of Hilbertian seminorms on V.
The processes X and Y yield distributions that can be represented by measures P and
Q on the algebraic dual of V.

If. V. -contains sequences {v,} such that A (vp) + B (vp) stays bounded away from
zero but min[A (v,), B (V)1 > 0 then P and Q are obviously disjoint. Thus if
IVdeQ =p(P,Q >0 the two seminorms A2 and B2 must be equivalent in the
sense that there exists numbers a, b, 0 < a < b < o such that aA(v) <BW) < bA (V)
for all v. This shows that there will be no loss of generality in assuming that if
S= -:,12- (A + B) then S(v) =0 only at v =0. Also one can assume V complete for the

norm $Y2 so that (V,8!2) is a Hilbert space. Let X be the dual of V for the norm
S¥2 1t is clear that the inner product [-|-], defined by A on V can be represented as
[u]v]s = <u,Av> where the bracket < u,x> is the evaluation of the linear function
xe Xatue V and A is a linear map of V onto X such that < u,Av> =< v, Au>.
Similarly, the inner product corresponding to B can be written < u, Bv> and the inner
product defined by S is < u, Sv> where S is the canonical identification of the Hilbert
space (V,SV?) with its dual. The inverse S7! of that identification map sends X onto
V. We shall also denote the norms of (V, $12) and of its dual by the symbols || v|], so
that ||| = S (v).

Consider then a finite dimensional subspace H of V. For the processes X and Y
restricted to H we have distributions Py and Qy. It is clear that

JNdPydQy = [VdPdQ.

Let II be the orthogonal projection of V onto H in the Hilbert space (V, SV 2). Let
IT' be the transpose of IT on the dual space X of V. One can show that IT'SIT = SII.
Indeed, let H® = {x: < v,x>=0, all v € H} be the polar of H in X. For any y € X
one has < (1 - IDv,y>=<v,(1 -ID'y>. Thusif ve H <v,(I-II)'y>=0 and
therefore (I — IT)'y € HO. The defining relation for H® can also be written
<Ilv,x>=0=<v,II'x> for all ve V. This means that if x € H® then IT'x = 0.
Therefore H® = (I - IT)'X.

Now take any veV and consider
<w,SIIv> =< w,II'STIv> + < W,(1 = II)!'STIv>. The second term on the right
is equal to < (I-IDw,SIIv>=[(I - IDw|IIv] where [-|-] is the inner product
corresponding to S on V. Thus < w,STIv> =< w,II'STIv> for all v, implying
SII=IT'STI and SH = IT'X. Let [-1-]a be the inner product defined on V by A.
The map A from V to X is such that < u,Av> = [u|v], for all pairs (u,v) of ele-
ments .of V. By the same argument there is also a map Ay from H to the space
H’ = SH = IT'X such that < u,Agv> = [u]v], for all pairs (u,v) of elements of H.
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This gives < u,Agv>=<u,Av> for all such pairs. Equivalently
<TIIu,Agv>=<Ily,Av> for all ue V and ve H. Therefore Axv=IT'Av.

Defining By in a similar manner, we get a difference Dy = —;— (Ag - By).
(Note that AH need not be in SH=H’". An example is given by the matrices

1 1 -
A= [p ?]’ B = [—p lp]} on the plane). Considering Py and Qy as measures on
H’ = SH the formula derived above shows that [p (Py, Qy) 1* = det[I - (S} Dy)?]

> p*(P,Q) =B, say. Let m be the dimension of H and let Ay, Ay, . .., A, be the

m
eigenvalues of s! Dy. Since l'Il a- ij) > B and since Iljl < 1 one must have
= g

m m m

0< ).jz <1-p and JZ.‘.I ljz < -log . However 351 ij e j§1 1S Dy u; 2 for any orthog-
onal base {u;; j=1,...,m} of H. since s1 preserves the norms, this also means

m
that T || Dyuy;|* < —logP.

=1

This is true for any H and any orthogonal sequence {u;,u,, . . ., ug,...} in V yield-
ing 2‘.1 ||Duj||2 < —logB. Thus, if P and Q are not disjoint, D and S~!D are Hilbert-

=
Schmidt operators and (S~! D)? is an operator with finite trace.

A consequence of this is that one can find in V a basis {u;; j € J} that is orthogo-
nal for the norm SY2 and also for the norms A2 and B2. To obtain it, let u; be such
that A (u,) is maximized subject to ||u; || < 1. This is the same problem as maximizing

% [A@)-B@)] subject to -% [A@w)+B@] < 1. Equivalently again, subject to the

same condition, we are to maximize < u,Du>. Since D is a compact operator, there
does exist a u; that achieves the maximum. If u, ..., u, have been determined, one
selects u,,; to maximize A (u) subject to |lu|| < 1 among those u’s that are orthogonal
touy, ..., u, For this basis S7!D is represented by a diagonal matrix and there is no
difficulty 'in writing the determinant of I—(S!D)> as a product
{1 =2 j e« T} =p* (. Q.

A corollary of the above is that if p(P,Q)‘> 0 then P and Q are mutually abso-
lutely continuous. From this it is easy to derive the Hijek-Feldman theorem: Two
Gaussian measures are either mutually absolutely continuous or disjoint.
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