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Abstract

The asymptotic distributions for large times of a variety of additive functionals of
planar Brownian motion Z are derived. Associated with each point in the plane, and
with the point infinity, there is a complex Brownian motion governing the asymptotic
behaviour of windings of Z close to that point. An independent Gaussian field over
the plane governs fluctuations in local occupation times of Z, while a further indepen-
dent family of complex Brownian sheets governs finer features of the windings of Z.
These results unify and extend earlier results of Kallianpur-Robbins, Spitzer,
Kasahara-Kotani, Messulam and the authors.
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Further Asymptotic Laws of Planar Brownian motion t

by Jim Pitman and Marc Yor.

0. Introduction.

This paper is a sequel to Pitman and Yor (1986), henceforth referred to as AL*, where
results on the asymptotic distributions of winding and crossing numbers were presented
as part of a larger framework of asymptotic laws for planar Brownian motion. To fol-
low the present paper in any detail, the reader should have at hand a copy of that ear-
lier work, to which frequent references will be made simply by an asterisk. For exam-
ple, (l.a)* refers to (l.a) of AL*, Section 1* means Section 1 of AL*, Knight (1971)*
refers to the paper by Knight (1971) in the references to AL *.

We attempted in AI! to unify as well as we could the known results on asymptotic
distributions of functionals of planar Brownian motion. Still, the richness of this sub-
ject seems unbounded. We now see no end to the possible degree of refinement of
such asymptotic laws. Our purpose in this article is to present some extensions of
results in ALC, linked in various ways to the most basic asymptotic laws for additive
functionals considered there. We have chosen to explore the asymptotics of these
functionals which seemed to us most natural from either an analytic or geometric point
of view, though this by no means exhausts the subject.

A focal point of this paper is the asymptotic behavior as t e oo of additive function-
als of Z of the form

t t

(O.a) (i) f (Zs) ds, and (ii) f (ZS)dZs
o 0

-for various functions f . The two studies are intimately related by Ito's formula, a con-
nection exploited already in similar contexts by Papanicolaou-Stroock-Varadhan
(1977)*, Kasahara-Kotani (1979)*.

In Section 1, we consider the asymptotic distribution of the stochastic integral (ii)
above in case f is holomorphic in Dj \ {zj } for a neighborhood Dj of each point zj,
1 < j < n. The result obtained here, previously announced as Theorem (8.6) , brings
out the fundamental role played by the winding processes DIo(t), and is an extension of
Theorem (6.1) governing the asymptotics of these winding processes.
Section 2 offers some developments of the concept of a log scaling law, introduced in
Chapter 8 to unify a large body of asymptotic laws. For martingale additive function-
als of type (ni) above, subject to a growth condition on f near 0, functionals which
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obey a log scaling law are characterised, and their limits identified.

Section 3 offers still further refinements for the asymptotics of winding-like function-
als. Thus we show that not only does

def t
11¢t 1 1Is (Xs dYs sd)
logr = lgt

converge in law as t -e 00, but so does

- f (e i(s)d (Dslog t i

for every bounded Borel function f: C -+ C. (Here, and throughout the paper, we
use C for the unit circle, and C for the complex plane.) In particular, the quadruple

t t t t

I(JZs[-2XsAdys; JIZs1-2Ysdy ;fIZs1-2xsdy;s 1-2Y.Y dY)
log t

converges in law as t -- oo, and so does the normalized process of windings in sec-
tors

t

(lj**7l(arg(zs) E (O,a)) d(); aE [O,2i ).

Moreover, as we show in Section 4, the convergence of these integrals of the winding
process about one point also holds jointly when one considers the same quantities,
relative to a finite number of points. Itb's formula then allows us to derive the asymp-
totic distributions of the normalized Riemann integrals

logti t .12 fi(e ),1 j < n,

for bounded Borel functions j C - C such that
2n
f af(e) = 0,Ida fj(ei=o

where (DJ is the winding number of Z around Zj up to time s for n distinct points
z1 z., Zn distinct also from the starting point z0 of the complex Brownian motion Z.

Section 5 provides a study of a different character for the asymptotics of occupation
times of variously positioned discs in the plane. A stiking feature here in the limit is
the whole Ray-Knight process of Markovian local times of one-dimensional Brownian
motion.
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Section 6 starts by spelling out the connection between results of Kasahara-Kotani
(1979)* for additive functionals of bounded variation and those of Messulam-Yor
(1982)* for martingale additive functionals. It is then shown how these "second
order" results are linked to the "first order" winding results in particular and log scal-
ing laws in general.

A key to many of our results is a criterion for the asymptotic independence of the
Brownian motions associated with two continuous local martingales. This criterion,
stated in an appendix, is a less restrictive version of a criterion developed in Le Gall-
Yor (1986)* and AL*. We expect this simple criterion to find applications in other
problems involving the asymptotic behavior of additive functionals of diffusions.
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1. Asymptotic residue theorem.

We begin by proving the following theorem, stated as theorem 8.6*, which is an

extension of the asymptotic joint distribution of windings:
Theorem 1.1.

Let (Zt, t 2 0) be a complex Brownian motion started at z0, and suppose that
ZO Z1, ,* * zn is a finite set of distinct points in C. Suppose that f is a complex
valued function such that

(i) f is holomorphic in Dj\{zj } for a neighborhood Dj of each point
zj, j = n .

(ii) f is bounded and measurable on the complement of the
borhoods,

union of these neigh-

(iii) f is holomorphic in a neighborhood of oo and lim f (z) = 0.
z *-4

Then, as t oo0,
t

(1.a) ~2 jfz)i d A(l.a) f(slogt)dZs - Res(f,zj)(- +iWJ) +

where (W+, WJ ,A) is an (n +2)-tuple of real random variables
(W+ ,WL ,A) is distributed as

a

Res (f A°°)(A _ 1 + iW+).

such that for each j,

a

01(P0AdHs (Ps<O)dO30 XO)

where [ and 0 are two independent Brownian motions, a = inf{t : Pt = 1 }, (Xt, t .0)
is the local time of [ at 0, and the variables W+ and (WJ , 1:s j . n) are conditionally
independent given A.

Before proving this theorem, we remark that, as a particular case, the asymptotic distri-
bution of the large and small windings around (zi; 1 < i < n) is easily recaptured from

it. Indeed, let f(z) = £ 1 1+j ) where gj are arbitrary
complex nwnbers, and ar(z-z)

complex "numbers, and rj are fixed positive reals. Let
t =sd

0J(t) = iml .1(IZ,-zil:srj); (D,(t) = Im dZ _1Zsz j
(IZ.,-z,Ikr,)'

Tj (t ) = Re - (IZ,-zjl5ri),Re(Zsof )

We call (Di the process of small windings of Z around zj and call (D)4 the process of
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big windings around zj. We then deduce from (l.a) that:

(l.b) -2((D!(t)(D4+(t); 'P1(t); 1 <j s n)
logt

converges in distribution to:

(WJ ,W+, A; 1 <jn)

By Tanaka's formula,

(l.c) Ti (t) = -(loglZt -Zj I -logrj)-+ 1 Ljt

where Li is the local time at level log rj of the local martingale (log lZt - zj; t .0).

As a consequence of (l.c), we may replace J (t) by jLJ (t) in the expression (l.b).

Thus

2
(l.b') -(DL (t),D+(t); LJ(t); 1 . j <n)

log t

converges in distribution, as t -o oo, towards:

(WJ, W+, A; 1 < j < n ),

This special case of Theorem 1.1, established already as Theorem 6.1*, will be used in
the following proof.

Proof of Theorem 1.1:

1) During the proof, we shall use several times the fact that for any Borel function
yf : C -+ C which is locally bounded, the properties:

(l.d) 1sup (Zu)dZu 10, and (1 du I2(Zu) 0

are equivalent This is a particular case of lemma A.1*. Hence, we deduce from the
Kallianpur-Robbins law (1.a)* that for any locally bounded function re L 2( C, dxdy),
the property (1.d) is satisfied.

2) We first assume that f has compact support. We then deduce from 1) and our
hypotheses on f that:

-supIJ (ZU)dZu -J(ZM )l(z1D)dZuI ~O 0
log t s st Xf j l 7,t- Dj

3) Moreover, for each j = 1,2,...,n, there exists a strictly positive number £j such
that f restricted to D (zj ,ej )\{zj }, where D (zj ,ej ) is the open disc with center Zj and
radius £j, admits a Laurent expansion:
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f (z) = hj(z)+gj

with hj holomorphic in D (zj, ej), and gj an entire function with gj (0) = 0. Therefore,
if:

gj(z)= ICcmzm
m=1

is the Taylor expansion of gj, we have: c 1 = Res (f ,zj), and

(l.e) gj (z) = Res (f ,zj)z +z2 j(z ),

with another entire function.

Using the equivalence of (l.d) again, we obtain, for each j < n:
s

lgsutp l(Z.)-gi( 1](zyeDj)dZul °1
4) With the help of Tanaka's formula as in (l.c) above, and (l.b') above, to prove

the theorem in the case where f has compact support it now remains to show that the
function gj in (l.e) does not contribute to the limit. That is to say,

(1.0 A-..jdZu1 1 1,Z ) -Ir.j0.(l.f) logt 0dUlz-jsj (zu z )2 Zu(zjtz) O

LetG1 be the primitive of such that Gi (0) = 0. Then, from Itds formula:
t

G,(Z , ) j( I z1)2 z=).kiZt -zjZ O-zj (Zu -zj Zuas-zi
1 PSince -o 0, we have:

Zt-zj tooo

t

log dZu 1
logt I(Z -Z )2 g} _ yO

Consequendy, in order to prove (.0), we may replace l(0 zIf,,-j) by 1(Iz,I-Zjl£j) in the

left hand side of (.0). The proof of (1.) is now ended by remarking that the function
of z

1 1
(z _zj )2 (|Z-ZjiC )

is bounded, belongs to L2( C, dxdcy ), and so satisfies (l.d).
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5) In the case where f is holomorphic in a neighborhood of co, and
limf (z) = 0, the above proof is easily modified by remarking that f may be written
z-+00

as:

f (z) = -Res (f ,oo)1+-g(-)

with g holomorphic in an open neighborhood of {z Iz I < 1/T }, for some Ti >0. It then
remains to prove, as we have just done, that:

t

1 P(zln) 0
logttzgZ)(Zil) >O

This completes the proof of Theorem 1. 1. 0

Remark. Note that in (1.) the integral from 0 to t cannot be replaced by the
supremum over s in (0,t) of the modulus of the integral from 0 to s.
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2. Log scaling laws.

In the course of obtaining asymptotic distributions for various functionals of complex
Brownian motion, we realized that we were performing the same operations again and
again, namely a certain time change followed by Brownian scaling. To avoid repeti-
tion, and speed up procedure, we introduced the notion of log scaling laws (Chapter
8*). We now recall the basic notation related to this notion.

Brownian motion Z = (Zt, t > 0), starting at zo, can be expressed as

Z, = zoexp(4(Ut))

where 4 = , + i 0 is a complex valued Brownian motion started at 0, and
t
d

o IZs2
is the logarithmic clock. A Brownian functional G (t) = G (t, Z) can always be rewrit-
ten as

(8.r)* G(t,Z) = R(Ut,,)
for some process 17(u) = F(u, 4). Now, let 17(h) be obtained from r by the Brownian
scaling operation

rTh)(U )= !r(h2U,), h >O.
h

In definition (8.3)*, we say that the Brownian functional G is logarithmically attracted
to the process y = (,y (u, 4); u .0) if

(8.s)* v)u)-(u
h -0oo

where the convergence is uniform on compact sets. Equivalently, by Brownian scaling

(8.t)* i-'h)(. 9 Vlh)) ap>(
h -.o

in the same sense. We may also say that y is the logarithmic attractor of G.

As a consequence of this definition, we obtain in particular:

2 d
(2.a) ogt.G (t Z)og
where ca = inf{u : f(u) = a }. See Theorem 8.4 * for more consequences.
We turn now to the question of what processes y may arise as logarithmic attractors,
and what functionals G are attracted to them. We restrict our attention to continuous
processes G. Roughly speaking, the attractors y are functions of 4 which commute
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with Brownian scaling.

Proposition 2.1. A continuous process y is the logarithmic attractor of some
Brownian functional G with continuous paths if and only if there exists a random vari-
able I such that

(2.b) oy(u, ) 4u(C(X for all u a.s.

Proof. Suppose y is the logarithmic attractor of G. From (8.t)*, for each fixed u,

1 ~~~p
(2.c) - r( uh2, C(Ilh) _ 'y7(h

Therefore, for every fixed k > 0,
P

l(uh2k2 4(Ilhk)) > (UC)hk

By Brownian scaling, this implies

(2.d)
hk

I-(uh2k2,(lIh)) - y(ua(k)) -O 0.

Replacing u by u 1k2, (2.c) and (2.d) yield

y(u,?) = ky(u/k2, (k)) for all u a.s.

Finally, (2.b) follows by taking k = 'U.

Conversely, if a continuous process y satisfies (2.b), then for all h > 0,

± Y(Uh2,1/h)) = Y(u,4), u > 0, a.s.,

indicating that the process y satisfies

7(h)(4) =,y( (h ) ) a.s.

Thus G (t)=y( Ut, ) is logarithmically attracted to y. 0

To illustrate the above proposition, suppose for example that the process y is of the
form

u

y(u,?) = Jdpv(v,4)
0

with Tj(v, 4) a continuous adapted process such that
u

E(JdvT1(v, )2) < 00, u >0.
0
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Then the identity (2.b) implies that y is the logarithmic attractor of some continuous
process G iff for every v > 0

WlU T1=(u/v V()) du a.s.,

so by continuity of rj( , 4), for every v > 0

(2.e) rl(v 4) (1,4W) a.s.

Conversely, if rl(l,)eL2(0a(4 ,u < 1)), then by the monotone class theorem there
exists a modification of

(v,o4)<n(l,I
which is predictable, and the process

u

0
is a logarithmic attractor. In case Tl(u, = f (P. ), it is necessary for (2.e) that for
every v >0

f(x)=f(xlU) dx a.e.,

which implies that

(2.0 f (x) =f l(x:O)+f +1(X 2o) dx a.e.

for some constants f - and f +.

The following theorem, which was stated as Theorem 8.5 *, provides a further
development

Theorem 2.2. Let
t adZ

G (t) = Jf (Zs ) z , for a bounded Borel function f.
0 s

Then the following are equivalent:

(i) G is logarithmically attracted to some process y.

(ii) f [exp(h (x + iy ))] converges in Ll (dxdy ) as h -+oo

(iii) There exist constants p+ and p such that as R oo,

1 j dxyi z)p-+
logR D (R,±) Iz 12

where

D(R,+) = {z: lIIzI<R} and D(R,-) = {z : R-1.IzI. 1}.

If these conditions are satisfied, then the logarithmic attractor y is
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u

y(u) = JP(Dv)d v

where

p(x) =p+l(x .0)+pJ1(x .0),

and there are the alternative formulae

= lrnR dxdyf(z)
R -4o 2ilogR D (R,±) I z 12

= lim 1 dr 1 dz f()

R-oo logR I(R,±) r 2ltic Z

whereI(R,+) = [1,R], I(R,-) = [R-1,l1, and Cr = {z: lzI= r}.

Remark. A discussion of the similarities and differences between Theorem 1.1 and
Theorem 2.2 is given in AL*, before Theorem 8.6 *

Proof. Time changing G via the logarithmic clock U,

G (t, Z)=r(Ut, 4

where
u

r(u 4, =f (exp Cv )d Cv .

According to (8.t)*, if G is logarithmically attracted to some y as h coo, the process
u

1vh)(U, ;(lIh)) = hjf (exp(h v ))d Cv
0

converges, uniformly on compact sets, in probability, to y(u). By Lemma (A.1)* such
convergence takes place iff

s P

(2.g) fdul4(h[3u; e ih )P-(kpu; eix)12 ap 0 as h,k -+oo

where we have used the notation ¢(x; ei) = f (exp(x +i0)) and Cu = u +iOu. The
proof is easily completed using the following lemma, which indicates the only possible
limits in L2([0,sJ,du) for processes 0(hP.; ei^x).

Lemma 2.3. Let 4: RxC -* R be bounded. The condition (2.g) is satisfied if and
only if there exist two reals p+ and p_- such that, for p(x) =p+l(x >0)+p-J(x <0),

s P

(2.g') JduI+(hI3;eihOn9)p(pu)12 0O as h - co
0
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Proof. Since 0 is bounded, (2.g) is equivalent to

s

E ( 1duI4(htu; ea")-o(kfu; ei/c)12) -4 0 as h, k 4oo.
0

This expectation is identical to

|dxdyA( I) (hx; e ")- (la e )/'Y
S

with

co

(2.h) A(r) L uexp( - )

a strictly positive function in L l(dr). Therefore, there exists a function p (x, y)
defined a.s. dxdy such that for all compact subsets K of R2,

fdxucdyj1(hx; eiY) -p(x,y)I-+O as h - oo.
K

Replacing h by h It for t >0 and letting h -) co, we obtain

(2.i) for all t >0, p (x, y) = p (tx, ty) ddy a.s.

Much in the same vein, since y -) 4(x; eLY ) has period 2i,
(2.j) p(x,y) =p(x,y+2t), dxdy a.s.

It remains to show that for p satisfying (2.i) and (2.j), there exist p+ and p_ such that

(2.k) p (x,~y ) = p+l1(x > 0)+p_l(x <O0), dxcdy a.s.

Clearly it is enough to deal with the existence of p+. From (2.i), we deduce

00 00 00

|dx |dcy dt ip(x y)-p (tx t)l = 0.

Make the change of variable u = tx, and then change the order of integration to obtain

00 00 00

tduIccdx dyIp(x y)-p(u u(y/x))l = 0,
-00

so that there exists at least u+ such that

p(x,y) = p(u+,u+(y Ix)) dxdy a.s., x >0.

Let p+(r) = p(u+,u+r) for r e R. Now, using (2.j)

p+(y ) =p+ () ,dxdy a.s., x >0, so that
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co 0O0

|dx |a!y |p+(
y )p_p+( y+2: |= 0. Change x into (lit) to get

0 ~x x
°-00

00 00

dt J dyIp+(y)-p+(t(y+2t))l = 0, so that
0 --c

co 00
00 00

Jdt fdy_p(y)-p+(y+t-0 =0O, hence
-00

Jdydkip+(y)-p+(X)l =0.
00 Y

Switching the roles of x and y, then adding the results, gives

0M0 00

T 7cidy dX[p+(y)-pQ+(X)l = 0.
-00-00

Finally, for at least one X, p+(y) = p+(X), dy a.s. This proves (2.k), and the rest of the
proof of the lemma is routine.

Remark. The above proof shows that the characterisation given in the lemma has lit-
tle to do with Brownian motion, and may simply be understood as a variant of the fol-
lowing fact:

Let 4: R-+R or C be locally integrable. Then O(h ) converges in Ll([0,1],dx) as
h

h - oo iff there exists a constant 4 such that j dxl4(x) - I -40 as h - oo.

The last condition is reminiscent of the following basic property of an almost periodic
function 4:

h
1 jdx ¢(x )converges as h -* oo.
h0

However, if 4)is almost periodic, so is 4()( - a, for any constant a, and also
h

I4)Q) - a I. But unless 4() - a is identically 0, the limit of I4dxl)(x) -a is strictly
0 S

positive. See e.g. Katznelson (1976).
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3. Refinements of the Asymptotic Laws for Windings.
The asymptotic distribution of

logt 0

can be radically different from that described in Theorems 1.1 and 2.2. We now sup-
pose that zg (z) is a function of the argument of z.

Theorem 3.1. Let f be a bounded measurable complex valued function defined on the
2rc

unit circle C, with J f (e a )da = 0. Then
0

2 tdM)( d a 2n

log-t z-Zf(e -) f fdr(s,a)f (eia),

where a=inf{u : ,8(u) = 1} is defined in terms of the real part 0I of t = p+i0, IF is a
complex valued Brownian sheet with intensity dsda /2r, and 4 and r are independent.
Remarks.

(i) This convergence holds jointly with all log scaling laws governed by 4.
(ii) In case f does not have mean 0, after writing f = fc + (f - fc), where

fc = 2J f(z) = J da f (eia),

the constant term gives an extra contribution in the limit of fc Q,a, due to the
asymptotics of windings. Stated in this manner, Theorem 3.1 now appears as an
extension of Spitzer's theorem (l.c)*.

(iii)As in the case of windings, this limit theorem can be split into action at 0 and
action at oo, and this is the basis of extending results to several points of origin.
(See next section). More precisely, our method shows that for two bounded Borel
functions f and f + on the circle, each with mean 0,

*2 f_ (e__)l , f+(ei4))
d a 2c a 2rc
> (| dr"-(s,a f -(eia )l(p,<O, | d 1-(saaXf+(e ia ) I(,,o0)

0 0 0 0

where r1 and r' are two independent copies of F.

This limit could also be written with d r(s,a) twice instead of d I(s,a) and dIs
but we find the ± presentation more convenient for the extension to several points.
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(iv)An interesting aspect of Theorem 3.1 is that it gives the joint limit in law of a fam-
ily of functionals of the complex Brownian motion. However, if one is interested
in the convergence result with respect to just one function f, the next Corollary
may be of some interest, if only for checking constants.

Corollary 3.2:

Let f , g: V -e C be two functions which are holomorphic on a neighborhood V of
the unit disc, and such that f (0) = g (0) = 0. Then, using the notation of Theorem 3.1,
the triple

( 2 Id u 2 ( 2 JddI( g(Dul))
logt0Z logt0 iogt

converges in law, as t -4 o, to

(09 -\2 1f1270,r_1918
where C, y and 8 are independent complex Brownian motions and

If 112 = (±JdaIf12(eia&a

Proof: From Theorem 3.1, an expression of the limit in law for the triple is:
a 2n cr 2n

~(q00s|d(,a)f (eia)q dD(t,a)9 (eia)
o ooi

where 17 = B + iD. Now, the Corollary follows from the fact that, say
27c

St(g) = fdaD(t a)g (ea)
0

is a Gaussian, complex-valued martingale which admits a continuous version. More-
over, if we write g1 (z) = Reg(z), g2(z) = Img(z), then for any i,j e {1,2}:

27c

0< 80(gi), 8-(gj)>t 2 | da (gi gj) (ea).

However, since g is holomorphic, and g (0) = 0, we have:

1 22 2s
0 = 2(o) = Ida g2(eia) =- da [g2(ea) - g2(e) + 2i(g1g2)(ea)0 2g

so that
2n 2rc 2rc
J da g (e) = Jda g2 (ea) and Jda (g9g2)(eia)=0°
0 0 0
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Finally, - St (g) is a standard complex Brownian motion, from which the state-
1g9112

ment of the Corollary clearly follows. 0

Remark. Assuming f and g satisfy the hypotheses of Corollary 3.2, the processes
(St (f ), t 2 0) and (8t (g ), t 2 0) are independent if and only if both

2n 27c

Jdaf(a)g(a)=0 and fdaf(a)g(a)=0,
0 0

where g-(a) is the complex conjugate of g (a). For example, the processes
2n

(42 daD (t,a) e , t 2 O) for n = 1,2,... are independent complex Brownian motions,
0

from which the entire sheet D can be recovered by a Fourier series. [J

Proof of Theorem 3.1 This is a straightforward consequence of the following theorem,
which is a slight modification of Theorem (3.5) in Yor (1983). See also Borodin
(1986), Csaki-F6ldes-Kasahara (1987). 0

Let P2. be the set of bounded Borel functions f: R -R, which are periodic, with
period 2it. We use the notations llf 112 and fc for functions f e P2,, as if they were
functions defined on the unit circle C, as considered above. To illustrate: for f e P2,

12a 2n

fc = f1f(a)da, and If -fc 112 = ((a)_fc)2 )

Theorem 3.3. Let J3 and 0 be two independent real valued Brownian motions, each
starting from 0. Let f , g E P2g. Then

(i) As c -* oo, the continuous processes in t ER+,
t t

ty ot' |dfSf CS)9 |dsg(ces) ),
0 0

converge in law to
t 2n t 2rc

(Pt 9 ot, fc Pt +J dB(sa)f(a)-fc] gcOt +J JD(s,a)[g(a)-gC])
0 0 0 0

where 1, O, B, and D are independent, and B and D are Brownian sheets indexed

by R+x[0,2nc]) whose associated Gaussian measures have intensity dda

(ii) In particular, as c - oo the quadruple
t t

(Pt, 0e, JdPsf(C0S), JdOsg(cOs))
0 0
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converges in law towards

(Pt. Ot , fcPt + If -fc 12St gct +Ig -gc112i )t
where (0,f, e) is a four-dimensional BM, starting from 0.

(iii) For a e [0,21] let Sa be the sector 0. arg (z) <a. As c -4oo the quadruple
of continuous processes in (t, a)

t t

( t ot d3s l(e ' eSa ), 1dQ(ei' E Sa))

converges in law towards

(3.a) (p,ft,60 --B, +B(t,a), 2g Ot +D (t,a)

where

B(t,a) = B(t,a)#B(t,2R), D (t,a) = D (t,a) 2F (t,27t)

Remarks.
(i) The processes B (t,a) and D (ta) are Brownian motions in , and Brownian bridges

in a. The third and fourth components of the limit in (3.a) are independent
Brownian sheets in (t,a), both with intensity dtda/2n. For future reference, we
introduce the notation

(3.b) E(t,a) =2- t +D (t,a)a

for the fourth component in (3.a).
(ii) The convergences in law refer to the weak convergence of the associated distribu-

tions on C (S ,Rd), equipped with the topology of uniform convergence on compact
subsets of 5, where S = R+, or R+x[0,2n].

(iii)The proof of Theorem 3.1 (or that of Theorem (3.5) in Yor (1983)) hinges on
Knight's theorem (1971), and the following basic fact:

t a.s.
(3.c) forf e P2,p, dsf(c80) - tfc as c -+oo.

0

Applications of Theorem 3.1

Recall that the differential of the winding number (D(t) derived from Zt = Xt + iY, is

Xt dYt - Yt dXtdeD, = Z 12
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Spitzer's theorem (1.c)* asserts the convergence in distribution of 20,/logt, as
t -+ °°, to a standard Cauchy variable. We show, in the next theorem, that the 2-
dimensional variables

.L(I Xs dYs Ys As )

logt s )Zs12 o 1Zs12

converge in law, and we identify the limit, thereby reinforcing Spitzer's result (l.c)*.
In fact, let:

t t= yXsdX/I Zs 12; bt - j'YsdYs/IZs l;

t t

Ct=lXsdys/lZs 12; dt= YdX/ZI

Theorem 3.4. There exists a four-dimensional BM (Pt Ot 5t, et; t >0) such that, as
t - 00, the four-tuple

2-(at, b, ct, dt)logt

converges in law to

-(1 +5c; 1-5a; 0 + EC;48 + £cs)

where a = inf {t: P = 1}.

Remark.

(i) + i 0 is the usual 4 for log scaling laws, and the convergence holds jointly with
such laws.

(ii) From the theorem, we recover in particular the following log scaling laws:

2 2d- loglZtl= - (a+bt) - 1 as t-oo,
logt logt

2 Dt 2 "d~l2ogtt = logT (ct-dr) aas t-+oo.

Proof of Theorem 3.4.

Linear operations on the identities

XU dYu + Yu dYu XU dYu Yu dUUu
IzuI2 Izu ZU

Xu dXu - Yu dYu Xu dYu + Yu dXu dZ u)Z2
IZu 2 U . zu 2 Zu IUZUI

give formulae for dau etc. in terms of the right hand differentials above. Hence, if we
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use the notation in Theorem 3.1 and introduce the standard complex Brownian motion
27i

6t + i £t = Jdar(ta)e2ia
0

we find as a consequence of Theorem 3.1 that

2
.2(at , bt . ct , dtlog t

converges in law towards:

- (1 + 68s, 1-6 s, 0< +e<, -0O + 8en).

Here is a second application of Theorem 3.1:

Theorem 3.5. Let r >0. The pair of continuous processes in a E [0,2i]

2 t
logt 0

converges in distribution as t -> oo to
cy a cs a

dE(s,u)1(Ps < ); | dE(s,u)1(PS >0))
00 00

where we use the same notation as in (3.b) above, and where

a = inf a : Pa = l}.
In particular, the finite dimensional distributions of the continuous process

--Jtid Ds l (Zs E Sa), a e [0,2ic],log t

converge as t -+ oo to those of
1/2

where (Ba, a e [0,27L]) is a Brownian motion independent of (Pt, t > 0), hence also
independent of a.

a1/2
Remark. Let Xa = (2) Ba a E [0,22] . Then for f e L2([0,2x1], da)

2n
E(exp i f (a )dXa) = exp - If 112

,0

In particular, for O<u <v<2i, Xv-Xu has a Cauchy distribution, with parameter
U2 1/2
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Finally, we give an application of Theorem 3.1 to the asymptotic distribution of func-
tionals of the type

| IZ 12f(e ')

for certain bounded Borel functions f : C -+ C. Recall the notation

dz= 1 f(eia)da,

Theorem 3.6.

1) Let f : C -* C be a bounded Borelfunction such that fc = 0. Then,

(3.d) ~log tI Zs 12 f log t (c )(s) s

a
where F (a) = Jf (e ib)db, a e R, is a 27r-periodic function and

0
2rc 2nFc =

fJFa)a
1=|F(a )da =- |af (ea)da.

2) Moreover, one may incorporate in both the Riemann and the stochastic integrals in
(3.d) either the indicator 1(Iz lr) or the indicator 1(IZIzr)*
3) Consequently, iff ,g : C -+ C satisfy the hypothesis stated for f alone in 1), and
if 0 < r < r' < co, then the C2-valued random vector:

t t

(3.e) logte0 jZg 0(3.e) ~log t zsi 2 f e )lZ,lsr ; i IZ (Ig(io(Zs 12r'))

converges in law towards:
a 2n a 2i

(3f) ( | | dD(s, a ) Bg5) (Fc - F ) (a ), ||dD (s ,
a ) 1(ps zo) (Gc - G )(a))

oo oo00

where we use the notation in Theorem 3.1, with D = hn r.

Proof: 1) The fact that F is 2x-periodic is an immediate consequence of the
a

hypothesis fc = 0. Now, let F(a) = fdx F(x), a e R. We have, from Itb's for-
0

mula:
t t

(3.g) F (Dt) = F((DO) + JF ((Ds)d(Ds +TIZf4E ""e)
0 02 sz12
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Due to the periodicity of F, F (x) - x Fc is 2ir -periodic and continuous, hence a
bounded function, so (3.g) immediately implies (3.d).

2) In view of (3.d) we need only consider ds
f (e i Os

Since fc = 0, the Kallianpur-Robbins law implies that as far as the limit in law of

1 | dsf (ei,

is concerned, the indicator 1(IZ,ISr) can be replaced by X(log I Zs I), where X: R - R+
is a C2 function such that x(x) = 1 for x < logr, and x(x) = 0 for x 2 logr + E, for
some £ > 0. Keeping the notation from the beginning of the proof, apply Ito's for-
mula to the product X(log (lZt I)F#((Dt), where F#(x) = F(x) - xFc, to obtain

(3-h) X (log IZt 1)F (0t,) - X (log I z0 1)F ((DO)

= x(logIZs )[(F - FC)(Ds)dDs + 2I2 f (ei') + |F*(Ds)d[X(logjZsj)]
0 ~~~~~~~~~~~~~~~0

Now divide both sides of this identity by (log t). Clearly, the left-hand side does not
contribute to the limit. Next,

t P

(3.i) lO F# (Ps ) d [ X (log I Zs 1) ] .

log t 0 t-

Indeed, we have:

d [ X (logIZ)] = X (logIZs l) d (logIZs 1) + 2jX (log I Zsi)
ds

Two applications of the Kallianpur-Robbins law now show that

a) the stochastic integral (with respect to d (log I Z, I)) is of order 4log t in law, while

b) the Riemann integral is o (log t) in law.

Indeed, the periodicity of F# implies
t

1 F#((Ds)X (log I1Zs)-log t IZ~

converges in probability to 0 as t -4oo , because the function of Zs in the integrand
has an integral over the whole plane of

00

FC I (log p) = FC#{X(+oo) - X'(-oo)} = 0
o P
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since x' has compact support. Hence, (3.i) is proved. Going back to (3.h), we now

find:

xi(log IZs1)( d f2(e ¢+ (F - FC)((Ds)d<Ds) o
°

logt0 2141l t-400

and, much as above, we may replace X(log I)Zs by 1GZ.sr)*
3) The last assertion of the theorem is an immediate consequence of Theorem 3. 1. 0

The particular case when the functions f and g featured in the statement of Theorem
3.6 are traces on C of functions f , g : V -+ C which are holomorphic in a neighbor-
hood V of the unit disc and such that f (0) =g (0) = 0 is most interesting.
Indeed, for such a function f , say f (z) = Z fn zn, there is the expression

nz1

F(a) = hf(eia),where hf(z)=-i Z-z
n1 n

We find that fc = Fc = 0, and from the discussion in the proof of Corollary 3.2, the
limit variables (3.) may now be represented as:

(3.i) lif II*dys1(p,so); hg II*fdyfs 1('3a0))
where 'f and Y' are two independent complex Brownian motions which are also

independent of , a = inf{u:Iu =l}, and IIf I* =(
f 12 )

n1 n2
Two simple interesting examples are: f (z) = z and f (z) = z2 in which cases we
deduce:

(3.k) 2
t

%
Zs
Z

,
log t ZsI

and

(3.1) og2 j ds d 1,

where, according to the Remark after Corollary 3.2, y' and y" are two complex
Brownian motions independent of each other and of a.

Local Times on Rays
We now present a complement to Theorem 3.6, which gives a more geometric
interpretation of the asymptotic Brownian sheet D. We begin with the fact that if Z
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starts at zo * 0 there is a jointly continuous process

(Lt; t > 0, a e [0,2x]),

such that for every bounded Borel function f : C e C,
t

d i
27c

(3.m) f Js2f(e 1,) = J daf (ea)Lt.

Such a process (La) is defined by

(3.n) 1t = la+2n7
neZ

where (Ub; t 2 0, b E R) is the jointly continuous version of the local times of the
local martingale (QDt, t > 0). Since I is continuous and has compact support in a, it is
immediate that the formula (3.n) defines a jointly continuous process.

Theorem 3.7

With the notation introduced in Theorem 3.1, define

8a = Imr(a, a) =D (a,a)' a e [0,2t].
1) The finite dimensional distributions of

(1 (4ta _-LO°); a e [ 0, 2iI)log t

converge weakly towards those of

(8a F 2 a E [0, 2X])

while, for every a E [ 0, 2ic],

(3.o)
(log 4 -2r

2) For a E [0, 2c], let Nta be the number of crossings of Z, up to time t, inside the
sector Sa, from the half-line {z: arg (z) =01 to fz: arg (z) = a}. Then, with the
notation introduced in Theorem 3.5, the finite dimensional distributions of

log( (aN 2 ) a E [ 2

converge weakly towards those of

ly1/2 a a

((2) Ba = (X--a0+ a -2 ; a E [0,2X]).
Remark: In view of the approximation of Brownian local times by downcrossing
numbers, aNta -e LO as a -+ , so (3.p) is the limiting case as a -0 of the
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following result of Burdzy-Pitman-Yor (1987): for every a e [0, 2],

8 d a8(aNta) >
(log t 2(Nt

->
2

Before the proof, we give a slightly heuristic explanation of the first statement in
Theorem 3.7, with the help of Theorem 3.6.

Let f : C -e C be a bounded Borel function such that fc = 0. Then, from (3.d), we
obtain

27c d 2n1~~~~~~~
(3.p) 1| daf(a)(I-Lta) - dBa(Fc-F)(a).

og0 t-~C 0

Expressing F in terms of f, and using integration by parts, we may write (3.p) as
2n d 2c

(3.p'*) l |daf (a)(Lta - LO) d daf (a)( - 2a

which renders the first statement of Theorem 3.7 very plausible. A proof of this state-
ment could presumably be obtained following these lines. But we shall give an alter-
native approach.

Proof of Theorem 3.7.

1) We imitate the proof of the first statement of Theorem 3.6, the role of Itb's for-
mula (3.g) now being played by Tanaka's formula.

More precisely, for a given a e [ 0, 2K ), let
x

1%(x) =
n

'(2n <x<2n2r+a)' and F a (x) =J yF1(Y).
neZ 0

The second derivative of F a' in the sense of Schwartz's distributions, is the measure

Fa" (dx)= £ {-Ie2n+a(dx) +e 2nx(dx)}
neZ

where e£ (dc ) is the Dirac measure at 4 E R.

The analogue of Itb's formula (3.g) is now
t

(3.q) Fa(Dtt) = Fa(%()+J%(Os)d(Ds + 2 (Lt°I).

We then deduce, much as in the proof of Theorem 3.6, that

2 t1 2)
log tL -t log to

(F F c) 0 D
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meaning that the difference between the two sides converges in probability to 0. We
immediately deduce, with the help of Theorem 3.1, that

-(Lta - LO) bPa 2
log t t)t-coa-n8

Consideration of linear combinations gives convergence of finite dimensional distribu-
tions as a varies.

2) For any bounded Borel f: C -+ C, we have, with the notation of (2.h)* and
(3.h)*, and h = 'logt

t ~~~~U,#2U,
4 ____ds 14.u i ih 0(hgiSf(w5) = - |ds f (e0') = dvf (e

(log t) o IZ'IS h

which, from (3.c), converges in law towards fc a. On the other hand,

4j dsf(e ') Jdaf(eia) 1 0a-Lo)+ 1 (Id IeiLo
(logt)2 0IZ1zs i2 )=(ju 0

Since the first integral converges to 0 in probability, we obtain (3.o).

3) From the usual asymptotic study of downcrossings of Iinear Brownian motion
using Tanaka's formula (see N. El Karoui (1978), Kasahara (1980)), we obtain, from
formula (3.q)

t

1 1F og0

which, using again Theorem 3.1, yields the convergence in law of -2(aN 2

towards the limit indicated in the second part of the theorem.
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4.Extensions to Several Origins.
Our first aim in this section is to obtain an extension of Theorem 3.1 to stochastic
integrals whose integrands have singularities at n distinct points Z1,z2, .. . , Zn
assumed also distinct from the starting point zo of the complex Brownian motion Z.
Let Dji be the winding number of Z around zj up to time u, and let
fj: C -+ C ,1 < i < n, be a sequence of bounded Borel functions. We want to
show, under some suitable assumptions on the fi 's, that the random vector

(4.a) (Lo2t dZu fj (e" X j n)

converges in law as t - oo, and we want to describe the limit law.

The case when the fi 's are constant was the focal point of our study in AL*; the result
then may be summarized as follows. Introduce 2n strictly positive real numbers rj,
rj', 1 . j S n, and let

D7 = {z: IZ -zjI < rj}, DJ = {z: Iz -zjI > rj'}.
Then there exists a continuous Cn valued process 5 consisting of n complex
Brownian motions Cj = ,j + i Oj , 1 . j < n, whose joint law is described in Theorem
(6.2)* (using a superscript oo notation which we now drop), such that

(4.b) log < j < n 2
log t oZs -

j logt i Zs - z scD+'

converges in law towards
aj a,

(4.c) (d ,j (s) l(j (s)5o) , d j (s)l(qj (s) >o); 1 < j < n
o 0

where Cj = inf {t:.-j (t) = 1 }. (Note that we have already presented the convergence
in law of the imaginary parts of (4.b) in (l.b') above). The study of the limit law of
(4.a) thus reduces to the case where fj has mean 0 for each j. In this case we have
the following:
Theorem 4.1 Let fj, gj: C -+ C(1 < j < n) be 2n Borel bounded functions such
that

2-n 2n

(4.d) J d fj (ei0) = J dOgj (ei0) = 0, for every j.
o 0

Then, the C2n-valued random vector
t(iZu tj(e au1(Z"SD.), dZ

du fj (el )1(Z.-Di-), Jgj (e )1(Z,,Ec.D:) .5n)log t o Zu - Z J 0Z. - zj 1.



4.2

converges in law towards

cj 2n (yi 2n

(4.e) (fIJIdr1 o (Pi (S)o)f(e )f | l(p, (s) > o)gj (e ) 1<j n)

where j and a;j are as in (4.c), and rF-,l . i s n, and F' are (n + 1) independent
dsdO0complex valued Brownian sheets, with intensity - independent of the 4 process.

Before proving Theorem 4.1, we describe in more detail in a particular case the law of
the random vector in (4.e). Assume now that the n functions gj are identical to a sin-
gle function g, that f1 for 1 . i < n and g are the traces on C of functions which are
holomorphic on a neighbourhood of the unit disc, and that (4.d) holds. We also
assume, without loss of generality, that If 112 = II9 112 = 1. Let Al denote the left hand
component in (4.e), A+ the common right hand component in (4.e) with g instead of

gj, and A the value (which does not depend on j ) of the local time at 0 of 13j at time
aj. Then the n + 2 complex valued random variables (Al, 1 < j < n, A/+, A) are such
that for each j the triple (AI, A+, A) is distributed as

a ~~a
(4.f) (1(P <_ o)d8s, 1(P > 0)d6Bs,f

0 0

where 13 and 8 are independent real and complex valued Brownian motions respec-
tively, both starting at 0, a = inf{t: Pt = 1}, (t, t . 0) is the local time of 13 at 0, and
the n + 1 variables Al, 1 . j < n, and A+ are mutually conditionally independent
given A. This dependence structure, which is very similar to that described in
Theorem (6.1)*, comes from the fact that the Brownian motions 13j have independent
negative excursions but identical positive excursions, as described in Theorem (6.2)*.

First step in the proof of Theorem 4.1
t dZu o

Let WVk(g,t)=fZ-Zk g (e N)1(ZED ). As a first step in the proof, we shall

show that, for all j, k ! n, and all bounded Borel functions g,

(4.g) l -sup IWk (g, s)-Wj (g,s) |O .
log t Ss~t ++ )I

(Note that it is not necessary to suppose g has mean 0 for this step. The mean 0
assumption is made in the theorem just to focus attention to the contribution of the
Brownian sheets.)

From (l.d), (4.g) is equivalent to
t P

(4.h) (log t)2 JdsfkJ(ZS) e 0
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where

fk,j (z) =
kY)1(zc (Dz)g 12Y1ZED

(z g ((z kZk)) (zeD,) (z z1)g( z z -iz) ) 1(zeD/)

and we write simply 4' for 4 /14 1. We may as well replace fkj by

k,j ( -) | (z zk) g((z Zk)) (z gj((z -z)) |(lz I R)

for R large enough, since the difference fk,j - f k,j is a bounded, integrable function.
But the function

( 1 1
Z -Zk Z _ Zj I Z IR

is bounded and belongs to L2 ( C). Therefore, it suffices to show (4.h) with fk,j
replaced by

fk (Z ) _-g z g ((Z -gZk )') 12kj ~ IZzj-z 2 -zY-(z-k) l(z I >R).
In case

g is the trace on C of a continuously differentiable function g on a neighborhood V
of the unit disc,

we may write

I((z - zj) ) - g ((z - zk) )l S Yj(z - zj)' - (Z - Zk)'l, where y = sup IVg(V)I

yI(z -zj)1Z Zkl-(Z -Zk)IZ -Zj1I
Z -Zj I IZ - Zk I

= 0( L), as z I C .

Thus f * (z)=O(=0) as I z I -+ oo, and f is therefore integrable. The case

where g : C -+ C is only assumed to be Borel bounded is more delicate to handle, for
the following reason: under the hypotheses we have made up until now, much more
than (4.h) is true. In fact,

t

logt d fkj (Z,) converges in law.

In the general case, which we now turn to, we shall only be able to prove that
t L'1

(4.i) 1 fdsf (Zs) o.
(log t ) o t-O

4.3
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Our main tool to prove this result will be the following:
Proposition 4.2. Let (Z) beBM ( C) startingfrom zo, with lzol R. Then, for every
Borel function u : C - R+ which is locally integrable in {z : I z I 2 R }, the following
inequality holds:

t 2n
lim 1 E [Jds 11Z51R U (Zs)] < 4 lim {r2 J dOu(rei0)}.

t ~0 (logt)2 o r-+co 0

The reverse inequality holds with lim replaced by lim.

In fact, we shall prove (4.i) by using the two following straightforward consequences
of Proposition 4.2.

Corollary 4.3. (i) If u : C -* R+ is a locally bounded Borel function such that

2s
lim r2 du (rei) _ ,

r-oo 0

then
t

lim 1 E [ds u (Zs)] = 0.
t o0 (logt) 0

(ii) Let (Zr) be complex Brownian motion starting from z0 with Iz0I < R, and let
Zt' = Zt /1Zt 1. Then, for every positive Borel function u: C - R+,

1 t dis l(2Zlim (logt)2E [ Z 12 1Z I 2 R) U (Zs) < ,j dOu(eiO).

The reverse inequality holds with lim replaced by lim.

We now prove (4.i). In the case when g: C -* C is continuous, the function u = fk#j
clearly satisfies the hypothesis of part (i) of Corollary 4.3, and this gives (4.i) in this
case.

Consider now the case when g is only assumed to be bounded Borel. Plainly, it is
sufficient to show

t L I

(4j) 2 ds h (Zs) 0 °3,
(log t)2 t-o+o

where (Zt) is complex Brownian motion starting at 0, and

h (z) = -
1 1g ((z + a)') - g (z')Il1 R) for some a . 0.

Izi1 l I>R

Now approach g in L2 (C ,dd) by a sequence (gp ) of continuous functions. Let hp be
the function h with g replaced by gp, and let

4.4
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(8 (Z) _-g (Z') 121(lZI R)1p,R(z lZ 12 11z12 )

Then, for some universal constant c,

(4.k) h (z) < c {lp,R-a (Z + a) + hp (z) + Ip,R (z)}

Finally, let: I (h) = lim E [Jds h (Zr)] Then, from (4.k) and Part (ii) of
t-"O (log t)2 o

Corollary 4.3, we obtain
2rc

I (h) < c(. dO g -gp

Since gp is continuous, we already know that I (hp) = 0; moreover, as
2-n
J delg _ gp 12 (e'0) can be made arbitrarily small, we have: I (h) = 0, which proves
0
(4j), hence (4.i) in full generality. 0

Proof of Proposition 4.2.

Define
t

It (u) = E [Jds 1(lZ,IR)U (Zs)]
0

Then,

co 2ic Irei0-zli2
It (u)= r dr dOu (reiO))A()

R 0

where A(x) = ±j der/2

is the same function as in (2.h). Since A is a decreasing function,

00 2n ~ (r-_Iz,1)2
It (u)s r dr dOu (reio)A (( Z )

R 0

Now, let R'> R. Then,

4(u) < R rdrdOu(rei)A( (R lzol)2)
R t

2 1 oodr (r _Izol1)2)
+ suN (r2 td u (resi)) t

Now, it is easily seen that:

4.5
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1 (R - Izo 1)2 CO

d (r I1Zo 1)21-A_- ) 1 and 1 - A- ( ) 1
log t t t0 2TC (log) Rt r t -*Co 4n

so that, making use of the local integrability of u, we obtain:

1
~~~~~~2n

(lo t12i(u) 4L sup(r2 f dOu (reiO)).

The proof of the first inequality is completed by letting R' tend to 00.

On the other hand, we have:

002n ~~(r+ IzIl)2
It(u)2 r dr JdOu (reiO)A((+ O")

R t

and, for R' > R:

It (u) 2
R

r dr
i dOu (reio).A(R' + IzoI)2

R t

+ inf (r2 Jd0u (reiO ))J dr ((r+Izo)
r 2R' 0r t

which, much as before, implies:

lim_____ 1 (reie)). Q2n
lim 2 It (u) 2 - lim (r2 JdEJu (re O
to_0 (logt)2 4cr-~oo 0

Second step in the proof of Theorem 4.1.

This second half of the proof is very similar to the proof of Theorem (6.1)*, so we go
at a quick pace. Thanks to the equivalence (l.d) and the Kallianpur-Robbins law, we
may assume the rj's to be so small and r1' to be so large that the (n + 1) sets
Dj-, j = 1,2, ... , n, and D t are disjoint. Also, from the first half of the proof, we
only have to consider the Cn+I-valued random vector:

2dZu i (Dj
Sjfl; 2jt au icD,(og 4z e'¢s sn logt 0 zj -Z1 g (e ) l(Z3eD ))

for (n + 1) real-valued functions f,g which satisfy (4.d). Let
t dZu ~~~~t dZu 0

M_(t) =i0 (Z~,1) 4 (e ")1 (Z4E Djg) ; M (Z9Z g (

The processes MJ , 1 s j s n, and M+ are conformal martingales (see Getoor-Sharpe
(1972)* ), hence time changes of complex Brownian motions which we denote by mJ

4.6



-7- 4.7

and m+. Because the sets Di and D+ are disjoint, mJi (1 < j < n) and m+ are
(n + 1) independent complex Brownian motions, from Knight's theorem (1971)*.
Moreover, if we denote by tJ the complex Brownian motion which is the time change

t ds
of J z , then the random vectors

,=(41, , t) and m (m . . .M3,m+)
have the following asymptotic property:

-+h +h d --___
(4 , m ) -> ( , m )

h -+0

where the superscript h indicates rescaling space by h and time by h2, as in Theorem

(6.2)*, 4 and m are independent, m is a Brownian motion in Cn+l, and the

distribution of 4 is described in Theorem (6.2)*.

In order to prove this result, it suffices - following the proof of Theorem (6.1)* - to

replace the vector E by (1 ... , n, +) which is the C'+1-valued Brownian motion
obtained by time-changing the conformal martingales

t dZ dtZ
iz5 1Zi(Z,eD); (Zs S D(Z5eDl) ,1 Sj S nfl

with their respective increasing processes, and to show ((U.h, ... , mh,+h); mh)
converges in law, as h -+ oo, to a C2(n+') valued Brownian motion. In fact, thanks to
the orthogonality properties of the various martingales involved, and with the help of
our appendix, this all boils down to problems involving only one singularity which
have already been dealt with in Section 3.

Next, the normalized vector of clocks,
____ du .ji du1g12ei-

(log ( I j 12 (e ) l (Z o) , < i -z I B 1 (ez ) l(Z3Dt

converges in law towards:
OSj 01

(Ilj 12 ds l(Ij3(s):O), 1 <j < n jig 12 |ds 1(p,(S)20))
0 0

Putting all these results together, the limit in law of

.2... (Mi (ta), 1 1j < n ;M+(t)loga -
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may be expressed as
( aj a1

11fj 112 Jd S (s) 1(.(s)SO)' 1 5j . n ; Ig 121 d8+(s) 1(I3 (S)2O))
0 0

where 7, 8+ (1 < j . n) are (n + 1) independent complex Brownian motions,

independent of the 4-process. Finally, a linearity argument enables us to present this
in terms of a Brownian sheet, as in the statement of Theorem 4.1. 0

Asymptotic Distributions for Some Riemann Integrals.

To make our story shorter, we shall only consider the extension of Theorem 3.7 to
functions with several singularities in the case when the functions are holomorphic.
The relationship of the next Theorem 4.4 to Theorem 4.1 is the same as that of
Theorem 3.7 to Theorem 3.1; in both cases, what is achieved is the reduction of the
asymptotic study of a Riemann integral to that of a stochastic integral.
Theorem 4.4 Let fj, 1 < j < n, and g be n + 1 functions from V to C, which are
holomorphic in a neighbourhood V of the unit disc, and such that f1 (0) = g (0) = 0.
Then, the CO -valued random vector

24 du i (Du" du o
rf1(e M)~.D) g(e u)l l. n)log t I z - Zj P o ZU - Zj|

converges in law towards

Oj (I1
(4.1) (42 j fj'g dyI ((f.(s) o) dg,2 *lg dyd l(P (s) > .);l :5j .z n)

0 0

where ( y,; 1 < j < n) are (n + 1) independent complex Brownian motions,

which are independent of the C,-process, in terms of which the real Brownian motions

,j and the hitting times aj are defined, as in (4.c).

Proof: We have shown, in the proof of Theorem 3.7, that

1 du 2 fj (e ) 1eD- ) . fdcD? hj (e1) 1(Z.eDfl
logtfIzu - z4 J e) -0 log t

where hj is the h-function associated with fj as in the discussion following the proof
of Theorem 3.7.

An analogous result holds for the integral depending on g. The final result now fol-
lows from Theorem 4.1, provided we represent the Brownian sheets integrals as we did
in Corollary 3.2, and formula (3.j). 0

4.8
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To illustrate Theorem 4.4, we look at the n -point extension of the examples (3.k) and
(3.1). Then, the C4 -valued random variables

t ~~~~~~~~~~~~~~~t
{
logt

( dulz l3 (Zu -rz) l(z eDj-)| du (Zu - z1) 1(Ze );

2__ du 1(E t) du 1Ze~) 11.f

log t o (zu -Zj)2 (zu _) )2

converge in law, as t -4 °o, towards

{4( dSti- (Pi (s) < o)q|dy 1(Pi (S) > O) )
(4.m) °y 0

42( I dsi l(pj (s) s 0) |6 l(Pi (s) > 0) )

where (.y1, y J,&", +; 1 < j < n) are 2n + 2 independent complex Brownian

motions which are independent of the 4-process. Moreover, the distribution of the
Cn+1-valued variable featured in each line of (4.m) is that of a constant ( 4 or 1t/ )
times (Al, A+, 1 .j < n), where we use the notation introduced after Theorem 4.1.
These calculations lead to the next theorem, which concerns the asymptotic distribution
of

t

ds f (Zs)
0

when f belongs to a class of meromorphic functions. This theorem should be com-
pared with Theorem 1.1, which dictates the asymptotic distribution of

t

JdZs f (Zs)
0

for another class of meromorphic functions.

In order to fully justify our choice for the class of functions considered in Theorem
4.6, we present the following elementary statement, the proof of which is left to the
reader.

Lemma 4.5: Let C denote the Riemann sphere and let f: C - C be a mero-
0000 00

morphic function such that:

(i) lim z f (z) = 0,
z -+00

(ii) The poles off are of at most second order.

4.9
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Then f has at most a finite number of distinct poles, call them z1 ... , zn, and there
exist 2n complex numbers r1, . , rn, Pi' * Pn, such that

Z, rj = 0 and f(z) = E. rj 1 + P.j J - +j jPJ (Z-_Zj)2
Moreover

def
(a) p (f,oo) = lim z2f(z) exists, and p (f,oo) = j pj + Zj ri zj .

Z-400

def
(b) if} = lim J dz f (z) exists

C-+0
R -+oo

n
where £e R is the complement of u {z: I z - zj I <. } utz:IZz I R }, and

j=1

{f} = 2 £Y rj zj .

In the sequel, we shall refer to this class of functions as M2.
Theorem 4.6: Let (Zt,t > 0) be a complex Brownian motion started at zo, and sup-
pose that z, z 1, . .. , Zn is a finite set of distinct points in C. Suppose that f is a
complex valuedfunction such that

(i) in a neighborhood Dj of each point z 1,.. ,Zn,, andfor z e Di \ {z; },

f (z) = h. (z) + Pj 1i ~~(z _zj)2
where hj is integrable in Di,

(ii) f is bounded and measurable on the complement of the union of these neighbor-
hoods,

(iii) in a neighborhood D of cc,

f (z) = hinf(z) + g(z),
where h is integrable in D , g is holomorphic in D u {oo} and

lim z g (z) =0; we denotep = lim z2g (z). Then
z-400 z -400

def
1) {f} = lim dzf(z) exists, where£,R is as in Lemma 4.5

E-)0
£eR

R -4oo

2) As t - OO, 2 ds f (Zs) converges in law towardslog t }+

-{f1A+-EjpjAl +-p2-
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where the (n + 2)-tuple (A, AJ, A; 1 < j < n) is distributed as indicated after
Theorem 4.1.

Remarks: 1) The case where f is bounded and integrable on the entire plane is a
particular case of Theorem 4.6. Then Uf I fc, pj = p

0
= 0, and we recover the

Kallianpur-Robbins law (L.a)*.

2) In the case when f E M2,
= lim (z _ z )2f (z); p = lim z2f (z).

Z 4-Zj z -400

Then, from Lemma 4.5, the limit variable in Theorem 4.6 may be written as

(4.n) Y rj ( j-zjA +++yzj4 +)+ 1 + A+).

Proof of Theorem 4.6:

a) We may choose e SO small and R so large that:

hE-R (z) = f (z) - £pjP 1(z-z|)PO IZ 12R(z _z1)2 z z150 0 z2

is an integrable function.

Therefore, the Kallianpur-Robbins law combined with the illustration of Theorem 4.4

given above yield the second part of the theorem, with 21 {f I replaced by

2dz hE,R(z).2n~~~~~~~~~~~~~~~~~~~~~

b) The first part of the theorem and the equality: If } = J dz h ,R (z ) are proved by

remarking that for e'< £ and R ' > R,

J f(z)dz = Jh~,~ R(z)4dz Jhe,R(z)dz 0
R'-oo C

The following Corollary of Theorem 4.6 plays a key role in the study of the speed of
convergence of renormalized local times of intersection of complex Brownian motion
towards Varadhan's renormalization, which is undertaken in Yor (1987). This Corol-
lary exhibits a family of functionals of complex Brownian motion whose limits in law
are the random components in the linear combination (4.n).
Corollary 4.7. The C2a -valued variable

lgt t2
(Zs - z)Zs ;log i (Zs _ j<n)

converges in law towards
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(- zi 2 + i,,;2 E2L (A!+ A+); 1 <j< n)

with the same notation as in Theorem 4.6.

Proof: Let l*, **. n , VI,) * , Vn , be 2n complex numbers. Then

)j (z zj )z (z )2)

belongs to M2, and rj = gj, pi = v1. The result now follows immediately from the
remark following Theorem 4.6. 0

Additive functionals derived from Singular Integrals

We now apply Threorems 4.1 and 4.4 to the asymptotic study of

jds (Kf)(Zs)
0

where f : C -+ C is a bounded Borel function with compact support, and

Kf (z) = principal value of fdtf ) k ((zE-
Iz - 412

with k : V -+ C a holomorphic function defined on a neighborhood V of the unit disc,
such that

(4.o) kc = 0.

In the particular case k (z) = z, Kf = Rf is the (complex) Riesz transform of f.

Theorem 4.8 Assurne that the above hypothesis on k and f are satisfied. Let

fc=JdLf(4). Then

2 d
(4.p) Jds Kf (Zs) +4FfclHklI*JdYs 1(P,>0),log t ...) 0

where y is a complex Brownian motion independent of 3, and a = inf {s : Ps = 1 }.

Remark:

(i) Our motivation for this theorem comes from the study undertaken by T. Yamada
(1986), who shows

( iJ lds Hf (Bs), t 2 0) D (fRH,t 2 0),

where (Bt) is now a 1-dimensional BM, f: R -* R a bounded Borel function with
compact support, fR is the Lebesgue integral of f over R, Hf the Hilbert transform
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of f, and
t

Ht =lim i- (|Bs |J> £),

(ii) In comparison with Theorem 4.2, only the "large" component featured in the
limit (4.m) is present in (4.p). This may be explained heuristically by the smoothing
out of singularities at finite distance by the kernel K.

Proof of Theorem 4.8:

1) We only need to show that, for r large enough, and z * such that Iz < r,
z* . zo, we have

(4.q) dsKff (Zs)
fc -

|z* >'logt0 t -*OOldgSl(IIZz_I>r)1
Indeed, once (4.q) is proved, then (4.p) follows from Theorem 4.2.

2) In order that (4.q) be satisfied, it is sufficient that the function of z

Fr,z* (z) = 1(Iz..z.zI<r)Kf(z)+ 1(z.z*1 <r)(Kf(z)-fC kz - z*)2 )

belongs to L 1 ( C, dz ), and that its integral with respect to Lebesgue measure be 0.

3) We first show that Fr, z *EL 1 ( C, dz).

Firstly, the function z -+ l(Iz( z*z<r)Kf(z) belongs to L2( C,dz), hence to
L1 ( C, dz ). Secondly, we have

| dz IKf (z) - fc k((z -Z* )
Iz -z*I>r Iz -Z*|

< dz dJ4 If (4) k((z zz*)) kk((z-z))
I Z - Z*I>r, IZ- I Z -_Z*1

For clarity, we write k (z) = k ((z - )'). Then, we have

) _ k (z) 11+ I1, where

I
k (z) kz(z) and II = Ikz*(z)l It -*(Iz -z*1 2+ )

Let A be such that supp (f ) c {4:I141 < A }. Then, we have

II < IC (A + Iz*l) (21z l +A + Iz*a)
(l ZI-A )2(IZ I - Iz*I)2

IZ - 412 Iz _ 41 Iz _Z*l
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< lZ I 14 - Z* I + 14-1 Iz - Z
IZ_ 413 Iz - Z* I

c'IZ I (A + IZ*)D+A (IZ 1+ Iz*l
(lz I -A )3 (IZ I - jz*j)

where x = sup Ik (z)l, and ' = sup Ik'(z)l. It is now immediate from these esti-
IIZ=1 Izl=1

mates that

J dz IKf (z) - fc k((z - z*)) < o.
Iz -z*I>r | z-z*l|

4) We now show

(4.r) JFr,z*(z) = 0.

From the dominated convergence theorem, we need only prove

(4.r') lim J Fr,z *(z)dz = .

MU+oo Iz-z*I<M
Now, for any M > r, we have, using (4.o)

f dZFr,z*(Z) = J dzKf(z),
Iz-z* <M Iz-z*I<M

and, in fact, we shall prove

(4.s) fzS Kf(z) =O(M), as M- oo.
Iz - z ISM

We may as well assume that z * = 0, which is done by translating the function f and
changing z into z - z *.

Consider M as fixed for the moment. Then

dz Kf (z) = lim dz df ()
k ((Z -)')

IzI<M £40 IZI<M IZ-EI>c IZ -412

= lim dtf (4)HH4m (4)E-40

where

HE'M( = J dz k((z la)') M)

Now, the trick is that we also have

HI=a dz k((z
- a

(l(Is M)- lz - 41 5 M))

We introduce a fixed A > 0 such that supp (f ) c {z : I z I . A }. We now remark
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that, for 141 < A,

1(1(Z SM) 1(IZ -R41<M)I< 1(M!Siz -R S1<M + E>I) + 1(M - 141 S IZ - 41 SM)-
Consequently, we have, for 1 , . A,

JHE,m (4)1 < (M [(M _A2M2] + (M A2[M2 (M - a)2]) sup ik (z) 1(M+A)2 ~(M -A)2 IzI=1

The right-hand side does not depend either on £ or 4, so that we have finally shown

(4.s). 0



5. Occupation times of circles

Let
t

A(r,t) = 1(R, <r)ds, where RS = IZs 1
0

be the occupation time of the circle of radius r centered at 0, up to time t by the
Brownian motion Z starting at z0*0. The Kallianpur-Robbins law (l.a)* describes the
asymptotic distribution of A (r,t) as t - coo for each fixed r. But a more interesting
result is obtained by letting r vary as a function of t. Put t - e2h as usual. Antici-
pating that A( ,e2h) will behave like A( ,T(eh)), where T(r) = inf{t = r}, con-
sider that by the occupation density formula for local time (A.7)*,

r (h)

A (r (h), T(eh)). f L(R,r,T(eh))dr
0

where by (A.8)* and (B.2)*:

L(R ,r,T(eh)) = rL(logR ,logr,T(eh))
= rL (3,logr, oh )

= hrL (j(h), (log r )/h ([3((h))).
This suggests taking r(h) = eah to obtain

ea

A (e ah, T (e a)) = J hrL (3(h),(log r)/h ,a(p(h)))dr
0

co
00

=ihe2ha JL (P(h),a -y ,a(p(h)))2he-2hy dy.

The continuity properties of Brownian local time show that the supremum over all a,
of the difference between L (p(h),a,a(13(h))) and the integral in this last expression,
tends to 0 in probability as h -4 oo. That is to say, the process

(2A(eah,T(eh)) / he2ha9 -oo<a <oo)

viewed as a random element in the space C [(-oo,oo),R], with the topology of uniform
convergence, has log scaling limit the Brownian local time process

(5.a) (L (f,a,), -oo < a < oo).

According to the Ray-Knight theorem, the distribution of this process may be
described as follows. Let X (v) = L (j3,l-v ,). Then, the process X is an inhomo-
geneous Markov process, homogeneous on each of the intervals (-oo, 0], [0, 1] and
[1, oo), with



X(v) =0, v .0,

(X (v), 0 v < 1) the square of a two-dimensional Bessel process, and

(X (v), 1 < v < oc) the square of a 0-dimensional Bessel process.

See for example Walsh (1978).

Transforming in the usual way from time T(eh) to time e2h, and putting h = -logt,2
we obtain the following log scaling law:
Theorem 5.1: For a Brownian motion Z starting at z0*0, and A (r ,t) the occupation
time of the circle of radius r by Z up to time t, as t -4 oo the process

(5.b) {4A (ta1a2't) -oo<a <oo}
talogt

converges in distribution in the space of continuous functions with compact support,
with the topology of uniform convergence, to the Markov process

(5.c) {X (1-a), -oo < a <oo}

described above.

Remarks.

(i) For each t > 0, the process in (5.b) is strictly positive over the random interval

It <a <Jt

and otherwise identically zero, where

It = inflogR, /log t, Jt = sup logR, /log t.
OSS <t O5S <t

The same is true for the limiting process (5.c), for

I= infj, J = 1.

According to (8.d2)*, I4 converges in distribution to I, and Jt to J, which
strengthens still further the already strong mode of convergence.

(ii) The tieorem suggests that the functional

Ga(t) = 2A(ta/2,t)/ta

must be logarithmically attracted to some process Ya. After writing

Ga (t) = ra (Ut 4)9
the process Ya can be calculated as in (8.t)* as



Ya(U,4) = r Ta(h)(U,V(l/h) )
h -~oo

After some calculation, it emerges that

(5.d) Ya.(u,) = L (f,af3,u ),
where fu = sup 3s. The convergence is uniform on compacts, as required

for Theorem 8.4*. The appearance of the factor u in (5.d) is explained by
the necessity for Ya to commute with Brownian scaling. (See Proposition
(2.1)). Interestingly, the factor [u is suppressed at the time u = a which is
relevant to the asymptotics of Ga (t) for fixed times t. But this factor appears
in the asymptotics of Ga (Th) as h -÷ oo for any family of times Th in Table
8.2*, whose asymptotic time is not c. The limiting process as a varies seems
then to be rather hard to describe explicitly. Some related questions are taken
up in Le Gall-Yor (1987).

(iii) The previous remark and Theorem 8.2* give a result for occupation times

Aj(r,t) of circles of radius r centered at points zj, i = 1, * * * , n, distinct
from the starting point z O. The limit processes Xj (v ) are then given by

Xj (v) = L (p ,1-v,(,3))

where the ,J are the real parts of the linked asymptotic complex Brownian

motions CJ, denoted Ci °' in Theorem 6.2*. From the description of the CJ in
that theorem, the processes Xj (v ) are identical to a common process X+(v ) for
v < 1, and move conditionally independently given their common value X+(1)
for v . 1. The value X+(l) is identical to A, the asymptotic local time vari-
able governing the Kallianpur-Robbins law (l.a)*.

(iv) If we let
t

;Dj(r.t) = dDj(s ) 1(IZ, -zj I r)ds, -oou<r <oo,
0

a similar argument shows that the above mentioned convergence holds jointly
with that of the processes

(2cD,(ta/2,t)/logt, -oo<a oo, j = 1, n* )

which converge in the same sense to
aj

( fdJl(eiJa), -oo<a <oo, j = 1, n..,n ),
0

where a1 = a(, ). For a = 1 and a = 0 this includes the previous results for



big and small windings. If we let a = 1-v as before, and write
(aj

Oj(v)= Jdjl(1j11-v),
0

then it can be shown that

j(v) =O, v O

= B+(JX+(u)du), O<v < 1

1 v

= B+( X+(u)du )+Bj( X,(u)du ), v > 1,
0o 1

where the processes X+ and Xi were described above, and B+,B1, ,B are
n independent Brownian motions independent also of the processes X+ and

Xj.
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6. Asymptotic theorem for square integrable martingale additive functionals.

Kasahara-Kotani (1979) show that if f : C -+R is a bounded Borel function such that

(6.a) Jdx x lalf (x)l < oo, for some a > O, and dxf (x) =O

then
t

(6.a') (log t)1/2jdsf (Zr) converges in distribution as t -0oo.
0

Messulam-Yor (1982) prove that if u and v are bounded Borel functions from C to
R, and

(6.b) Jdz (U 2(Z) +V2(Z)) < 00.

then

def t

(6.b2) (log t)-1/2 Mt,,v = (log t)-1/2J(u (Zs)dKs + v(Zs)dYs)
0

converges in distribution as t -4 oo.

We first remark that the two results are closely connected. More precisely, the limit in
law for (6.a') can be obtained as a consequence of (6.b'). Indeed, recall that if

g(x) -Clog 2, then: jAg (x) = 80(x), in the sense of Schwartz distributions. There-
def 1

fore, if F =f * g, we obtain -AF = f, and Ito's formula gives:
2

t t

(6.c) F(Zt)=F(Zo)+J(VF(Zs),dZs)+ f (Zs)ds.
0 0

Replacing z by (z -zo), we may assume zo = 0. Now the hypothesis: fdxf (x) = 0
implies:

F (Z -,|Zf (Z )log Iz1--lX 0.°

Hence, we deduce from (6.c) that:

(6.d) 1t)(1dsf (Zs) + j(VF(Zs),dZ) O.
0

The following theorem gives the asymptotic distribution of the stochastic integral
featured in (6.d), hence also of the Riemann integral featured in (6.d).
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Theorem 6.1:

Let z1 ... ,zn be a finite number of distinct points in C, and let u,v: C -* R be
two bounded Borel functions such that fdz (u2 + v2) (z ) < oo. Then, as t - oo,

2 1/2

log t

converges in distribution to:

A1/2 {I (u) + x (v)}

where A, rl, and X are independent, A has the same meaning as in Theorem 4.1, and
Tl and X are two independent gaussian measures on R2, with intensity dz / 2Lc.

Moreover, this limit in law holds jointly with all limits in law already encountered in

the present paper, and Tl and X are independent from the vectors C, r = (rJ;
1 . j < n ) and I+ featured in the limit laws stated in Theorems 1.1 and 4.1.

Proof: 1) By linearity, it is sufficient to show that, for a given pair of functions u,v
2 1/2

which satisfy the above hypotheses, the family of variables ( ) Mu,v converges
log t

in law, as t -- oo, towards:

(u2 + V2)12 IIL2( C) BA,

where 8 is a one-dimensional Brownian motion which is independent of the vectors 4,

r and r+.
2) Call (gU.v; t > 0) the real valued Brownian motion such that

MuvI= <'V (t> 0).<Mx- >I

Thanks to the Kallianpur-Robbins law (l.a)*, we know that:

2 d2~<Mu,v>t -, 1 (Jdz (u2 +2 )(z))A

so that it now suffices to show:
d

(6e) (4,a;h; a e A ; AU'V;^) e 6a a e A; v)
h-,

where:

(i) A is the finite set of conformal martingales (Na; a e A) of the form:

t dZ
|z,_ 1(Z5ED'.)' 1 <.j . n,

6.2
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t dZs

dZs
| ZdZ 1 ZDi-)fj (ei&, 1 < j < n, where (fj)c = ,

z| -Z' 1(ZED')8 (e i(), where gc = 0.

(ii) for every a e A, 4' is the complex Brownian motion associated to Na;
(iii) for every a e A, S' is a complex Brownian motion, v is a real-valued Brownian
motion and 8a (a e A) and v are independent.
3) To prove (6.e), we shall apply the results of the appendix to the family of mar-

tingales:

- N and - M, as h - oo,
h~~~h/

where we have dropped the superscripts a, u , v.

With the help of the appendix, what we have to prove is that

<N>hp
id<NN>^2 ~P

h12 1 Id<N,M>s - 0,

which is easily seen to be equivalent to:
t P

(6.0 1 34 Id < N0M >s .

< N>t°to<NN>0,-o

Since we know that: converges in distribution, as t-<oo, towards a strictly
(log t)2

positive random variable, (6.0 is equivalent to:

1 p

(6.g) (<3Jd<NM>sI O 0

4) For simplicity, we may assume that Zj = 0, so that we obtain, in all cases:
def i

Id<M,N>,I s (Iul+lvl)(Zt)dt = w(Z)dt,
Izt I Izt I

where: w(z) = (Iu I + Iv 1) (z). Hence, it suffices to show

(6.h) 1 3n E d[|slz | O(6.h) 1lg0/ E [f- w(z')] . 0.
(log:)3 l Zs I t-+oo

6.3



- 4- 6.4

This is an immediate consequence of the following proposition, which is a close rela-
tive of Proposition 4.2. 0

Proposition 6.2: Let w: C -+ R+ be a locally bounded Borel function. Then, there
exists a universal constant c such that

t ds1/2lim E [ f w (ZS)] . c lim ( J dz w2 (z))

In particular, if jdz w2 (z ) < co, then
t

lim E LJw(Zs)J = 0.

Proof: Thanks to the Kallianpur Robbins law (l.a)*, we may restrict attention to
t

Then, using the same notation as in the proof of Proposition 4.2, we have, for any
R) > R :

Jt (w) dr JdOw(rei)A(-

R o 2t
R|w (r _ I zo 1)2

5 Jdr JdOw(reie)A( -IzoI)
R O

< R| dr |n dOw (re io)A -
(R -_I zo0 1)2

R O

+( dz_w (z) (12(dr( (r _Izo)2\ 1/2
IzIR' r t

Now, it is easily seen that

1 ((RI_OI)o)11
log t t t_+00 2n

and

(logt)3 .r(2()( _

2 ) converges as t-4oo,
so9 Ra wr 2t

so that we obtain

lim j134(w).c( f dzw2(z))
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The proof of the inequality stated in the Proposition is now completed by letting R'
tend to oo. Q

In fact, Proposition 6.2 appears as a special case (p = 2) of the following set of ine-
qualities (6.i) indexed by p e (1,co), while Proposition 4.2 is the limit case p = 1.
The only change to be made in the proof of Proposition 6.2 in order to prove (6.i) is
the replacement of the Cauchy-Schwarz inequality by H6lder's.
Proposition 6.3. Let w: C -4 R+ be a bounded Borel function, and let p, q satisfy
1 + 1 = 1, with p E (1,oo). Then there exists a universal constant cp such that
p q

(6.i) fi 1 Ed( w(Z)))< c lim( dz Wq(Z))
t-+o (logt)1 + 11p 0 IZsI12p" r-4oo IzI.r

In particular, if fdz wq(z) < oo then the limit of the left side of (6.i) as t -4oo is 0.

Apart from those examples considered already, we do not know any interesting appli-
cations of these inequalities, e.g. to prove asymptotic independence, because we do not
know how to get limits in law for additive functionals with normalization by (logt)a
except for a = 1, 1 or 2.

Application of Theorem 6.1 to Winding Numbers in Annuli.
Consider again the winding processes eDj for a finite number of distinct points zj,
1 . j S n, distinct also from the starting point zo of the complex Brownian motion Z.
Theorem 6.3 (Messulam-Yor (1982)*, Theorem 4.3)
1) For each j, there exists a jointly continuous version of the family of variables

def I

MJ(t,a) = J1(a ..z_jtl)dDJ;t: 0, ae(0 ]
0

2) As t-+ooo, the n-tuple of C(0,1] valued random variables

( (.2.l))Mi (t a) a e (0,1]; 1 .j n)

converges in distribution towards

A1 a( logaOga,a (0,1]; 1 Sj n )

where A is as defined in Theorem 4.1, and (ca/; 1 1j . n, t . 0) is a Gaussian
process independent ofA with covariance determined by the identity

E(aclog a acxlogb) = A(iIbj)-I -zi).(z -Zd)
wZ-Ai' b{ iz Zi 12iz-zi2 - 12

where A(i,a,b,j) = la . Iz - zil . l}n{b .5 Iz z- . 1},

6.5
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and uev is the scalar product in R2 of u and v. In particular, for each j,
(a/, t 2 0) is a standard Brownian motion, and ci and aj are independent if
izi - zj I >2.

Remark. We prove this result here, since in Messulam-Yor (1982)* the proof of the
first assertion was skipped, while the proof of tightness given there is in error. The
last line of that paper appealed to the finiteness of E (aF'2)for a p > 1, where
a = inf{t:3Pt = 11. Of course, this is wrong. As is well known, E(aP'2) < oo iff
p < 1.

Proof. It is natural to break the proof into three parts.

(i) The joint continuity 1).

(ii) Convergence of finite dimensional distributions in 2). This is an immediate appli-
cation of Theorem 6.1.

(iii)For each j, and each £e (0,1), tightness of the laws of

( 1 In Mi(t,a), a E [e,1]), for t 2 2, say.
(logt 12

Both (i) and (iii) can be established using Kolmogorov's lemma. To do so, it
suffices to show that for each ec= (0,1) there exist p > 0, 5 > 0, and a constant c
such that for e < a <b < 1

sup ( E supiMi (s, a - M. (s, b)r ) c la - bI18.
t;,-2 (log t)p 2 E( supM(ta

Using the Burkholder-Davis-Gundy inequalities, it suffices to show

(6.k) sup 1 E[ ( la1 g - zjl b)) ] c la - bIt.2 (logt)P2 o IZs z 12
where c changes from line to line. This is an immediate consequence of the fol-
lowing estimate:

For each n = 1, 2, and R > 0, there exists a constant Cn,R such that for every
Borel function f: C-+R+ with support in {z: I z I . R },

(6.1) sup E [( |ds f (Bs)) ]5 Cn,R(|dxf 2(X))t z2 log t ~f

Consider the case n = 2. By the Markov property, and using the notation (2.h),
t 2 t

E[ (dsf(BS))] S 2E[fdsf(Bs) f dyf(Bs +y)A(iy12/t)]
0°0 bIy2R

. 2E[fdsf(Bs)] (Jdyf2(y))1( J dyA2(ly12/t))
0 IyI 2R

6.6
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. CR(logt)E fds f (Bs)J |dyff2(y)) 11

0

and the same estimate leads to (6.1) for n = 2, and finally for each n by repeated
application of the Markov property. 0



Al

Appendix: An asymptotic version of Knight's theorem on continuous orthogonal
martingales.

1. Introduction.

Let (Ml) and (N") be two sequences of continuous local martingales defined over
a right continuous complete filtered probability space (Q, F, (Ft )t _,P) , and such that
for every n:

Mn =Nn =O and<M n> =<N>N = °oo.

Let n _inf{u : < Mn> > t} and vn -inf{u : < Nn> > t} be the right-
continuous inverses of the increasing processes associated respectively with Mn and
Nn. According to Dambis (1965) and Dubins-Schwartz (1965), Bn Mn (,4n) (t . 0)
and Ctn" Nn (v n) (t . 0) are real-valued Brownian motions.

The aim of this appendix is to refine criteria depending on < Mn,Nn >, < Mn >, and
< Nn >, and stated in AL! and Le Gall-Yor (1986) which ensure the convergence in
distribution of (B", Cn), viewed as continuous R2-valued processes, towards either
(1,7), or ([3, [), where [ and y are two real-valued independent Brownian motions. In
the first case, we say that Bn and Cn are asymptotically independent, while in the
second case, we say that they are asymptotically identical.

The criteria obtained in this appendix apply not only to the asymptotics of winding
numbers and connected questions, but also to many studies of limits in law such as are
to be found in Papanicolaou-Stroock-Varadhan (1977).

2. Asymptotically independent Brownian motions.

Our main result is the following
Theorem 1: If, for every t,

lim < MnNn >, = lim < M",Nn >v, = 0
n--oo n__*

in probability, then B" and C" are asymptotically independent.

Proof: 1) The laws of the one-dimensional processes Bn and Cn are all equal to the
one-dimensional Wiener measure. Therefore, the laws of the sequence (B", C") of
R2-valued continuous processes are wealdy relatively compact, and it remains to prove
that the finite dimensional marginals of (B",C") converge weakly towards the
corresponding marginals of a 2-dimensional Brownian motion.

2) Let 0 = to < t << tp = t and consider real numbers f1, .. . ,-f and

9 1, * * * , gp -i. We set:



f = sIfJl(t},tj+1]; Bn(f ) = 1;jfj(B7 Bn)

g = Yjgj l(tj, tj+lB;C (g) = Zgi(Cg1 -Cn).
Next, observe that, if we set:

s s

Us= ff(< Mn > )dMn and Vsn = g(<Nn> )dlV,
0 0

then:

Bn(f) = Un and Cn(g) = Vn.

Therefore, the identity:

E [exp{i (UE + Vn ) + < U+V> }] = 1

yields:

(2.a) E [{expi (Bn(f) + C(g))}H] = exp-1 (f2 +g2)(t)dt,

where:

Hn= expJf (< Mn >5 )g(< n >5 )d < M,Nn >5.
0

3) We now remark that:

on one hand, the estimate:

Hn < exp(llf 12 lIg 112)

follows from Kunita-Watanabe's inequality, and

on the other hand, since

Hn = exp ;fj g (< Mn Nn >9J A -< Mn Nn >p/Ivvf)l(p$vvfl< Avr
j+ +1 Vkkj"+d

the hypothesis clearly implies that H" converges to 1 in probability, hence in L1, by
application of the dominated convergence theorem. Looking back at (2.a), we find
that:

lim E [expi (Bn(f) + C(g))] = expjJ(f2 +g2)(t)dt
n -oo

which is the desired result. 0

Of particular interest to us, is the case when Mtn = Mt, and NAI = -4 Nt,since
then the one-dimensional Brownian motions Bn and Cn are obtained from B and C by
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the Brownian scaling operations

Bt = >{n Bnt, Crt=-# Cnt

We then obtain the following

Corollary: IfM and N are such that:

(2.b) lim <M,N>t/<M>t = lim <M,N>t/<N>N = Oa.s.
t -400 t -400

then Bn and Cn are asymptotically independent.

Proof: We remark that 4n t(nt), and v n = v (nt), so that (2.b) gives for every
t >0:

1 a.s.
<Mn Nn> = -<M,N>1nt) > 0,

n n--*00

and likewise for v instead of p. The conclusion now follows from Theorem 1. 0

3. Asymptotically identical Brownian motions.

We now present analogues of Theorem 1 and its corollary in the case when Bn
and Cn are asymptotically independent; however, the contents of these are the same as
in AL and Le Gall-Yor (1986), to which we refer the reader for proofs.

Theorem 2: Iffor every t,

lim <Mn >Nn>, = lim <-M_N>Vn =0
n-Oco n- ooo

in probability, then Bn and Cn are asymptotically identical.
1 1

In the case when Mtn =- Mt and Nt" =T/;Nt, we obtain the following:

Corollary: IfM andN are such that

lim <M -N>t/<M>t = lim <M -N>t/<N>< = Oa.s.
t-)00 t-400

then Bn and C" are asymptotically identical.
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