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Abstract

The asymptotic distributions for large times of a variety of additive functionals of
planar Brownian motion Z are derived. Associated with each point in the plane, and
with the point infinity, there is a complex Brownian motion governing the asymptotic
behaviour of windings of Z close to that point. An independent Gaussian field over
the plane governs fluctuations in local occupation times of Z, while a further indepen-
dent family of complex Brownian sheets governs finer features of the windings of Z.
These results unify and extend earlier results of Kallianpur-Robbins, Spitzer,
Kasahara-Kotani, Messulam and the authors.
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Further Asymptotic Laws of Planar Brownian motion t

by Jim Pitman and Marc Yor.

0. Introduction.

This paper is a sequel to Pitman and Yor (1986), henceforth referred to as AL*, where
results on the asymptotic distributions of winding and crossing numbers were presented
as part of a larger framework of asymptotic laws for planar Brownian motion. To fol-
low the present paper in any detail, the reader should have at hand a copy of that ear-
lier work, to which frequent references will be made simply by an asterisk. For exam-
ple, (1.a)* refers to (1.a) of AL¥, Section 1* means Section 1 of AL*, Knight (1971)*
refers to the paper by Knight (1971) in the references to AL *,

We attempted in ALY to unify as well as we could the known results on asymptotic
distributions of functionals of planar Brownian motion. Still, the richness of this sub-
ject seems unbounded. We now see no end to the possible degree of refinement of
such asymptotic laws. Our purpose in this article is to present some extensions of
results in AL*, linked in various ways to the most basic asymptotic laws for additive
functionals considered there. We have chosen to explore the asymptotics of these
functionals which seemed to us most natural from either an analytic or geometric point
of view, though this by no means exhausts the subject.

A focal point of this paper is the asymptotic behavior as ¢ — oo of additive function-
als of Z of the form

t t
©a) () [f@)as, and (i) [f(Z,)dz,,
0 0

for various functions f. The two studies are intimately related by Ito’s formula, a con-
nection exploited already in similar contexts by Papanicolaou-Stroock-Varadhan
(1977)*, Kasahara-Kotani (1979)*.

In Section 1, we consider the asymptotic distribution of the stochastic integral (ii)
above in case f is holomorphic in D;\{z;} for a neighborhood D; of each point z;,
1 < j < n. The result obtained here, previously announced as Theorem (8. 6)* brings
out the fundamental role played by the winding processes (Di(t ), and is an extension of
Theorem (6. 1) governing the asymptotics of these winding processes.

Section 2 offers some developments of the concept of a log scaling law, introduced in
Chapter 8" to unify a large body of asymptotic laws. For martingale additive function-
als of type (ii) above, subject to a growth condition on f near O, functionals which
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obey a log scaling law are characterised, and their limits identified.

Section 3 offers still further refinements for the asymptotics of winding-like function-
als. Thus we show that not only does

s 2(X.dY. - Y.dX
—_— = —|IZ, -
logt D(t) Tog g X dYy - Y, dX,)

converge in law as ¢t — oo, but so does

x<b
logt I fe
for every bounded Borel function f:C — C. (Here, and throughout the paper, we
use C for the unit circle, and C for the complex plane.) In particular, the quadruple

t t t t
1 _ " —
ng(g'zsl 2X, dYs;£|z,| 2y, dx,;£|z, 22X, dxs;£|zs| 2Y, dY,),
converges in law as ¢ — oo, and so does the normalized process of windings in sec-
tors
1 t
( Tgt { l(arg(zs) € (O,a»d q)s; o e [O, 21t] ).
Moreover, as we show in Section 4, the convergence of these integrals of the winding
process about one point also holds jointly when one considers the same quantities,
relative to a finite number of points. Itd’s formula then allows us to derive the asymp-
totic distributions of the normalized Riemann integrals
t

1 ds i .
fite™),1<j<n,
J‘lzs _zjl2 J

logt g

for bounded Borel functions fj:C — € such that
2r
[ da fie™) =0,
0

where @/ is the winding number of Z around zj up to time s for »n distinct points
Zy,  ° * ,2, distinct also from the starting point z of the complex Brownian motion Z.

Section 5 provides a study of a different character for the asymptotics of occupation
times of variously positioned discs in the plane. A striking feature here in the limit is
the whole Ray-Knight process of Markovian local times of one-dimensional Brownian
motion.
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Section 6 starts by spelling out the connection between results of Kasahara-Kotani
(1979)* for additive functionals of bounded variation and those of Messulam-Yor
(1982)* for martingale additive functionals. It is then shown how these ‘‘second
order’’ results are linked to the ‘‘first order’’ winding results in particular and log scal-
ing laws in general.

A key to many of our results is a criterion for the asymptotic independence of the
Brownian motions associated with two continuous local martingales.b This criterion,
stated in an appendix, is a less restrictive version of a criterion developed in Le Gall-
Yor (1986)* and AL*. We expect this simple criterion to find applications in other
problems involving the asymptotic behavior of additive functionals of diffusions.
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1. Asymptotic residue theorem.

We begin by proving the following theorem, stated as theorem 8.6%, which is an
extension of the asymptotic joint distribution of windings:
Theorem 1.1.

Let (Z,,t 2 0) be a complex Brownian motion started at z,, and suppose that
20,21, " ' ' »2, i a finite set of distinct points in C. Suppose that f is a complex
valued function such that

@) f is holomorphic in D;\{z;} for a neighborhood D; of each point

Zj,j = 1,...,".
(i) f is bounded and measurable on the complement of the union of these neigh-

borhoods,
(iii) [ is holomorphic in a neighborhood of oo and lim f (z) = 0.

Z —00
Then, as t — oo,
t
2 d A . A .

(1.a) To;t- ‘(’;f(Zs)dZ_‘. —_—> ?Res(f, zj)(—i— +iW!) ‘+ Res(f,OO)(-z— -14+iW)).

where (W, Wi ,A)is an (n +2)-tuple of real random variables such that for each j,
(W, Wi A) is distributed as

(o] ()

(gl(ﬂ.zmdess J;l(s.w)des’ As)

where B and © are two independent Brownian motions, 6 = inf{t : B, = 1}, (A,,¢ 20)
is the local time of B at 0, and the variables W, and Wi, 1< J Sn) are conditionally
independent given A.
Before proving this theorem, we remark that, as a particular case, the asymptotic distri-
bution of the large and small windings around (z;;1<i <n) is easily recaptured from
Lgz—z15r)) Lz—z;pr))
H;

(z-2)) (z-2))

complex numbers, and r; are fixed positive reals. Let

it. Indeed, let f(z) = _i‘l(lj ) where A; p; are arbitrary
j=

DJ@r) = Imj' 1(|Z —2,lsr)) O{(t) = Imj 14z, 12r;)

\Pf (t) = RCI ) (|Z ‘ZJIS’J)

We call @/ the process of small windings of Z around z; and call ®{ the process of
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big windings around z;. We then deduce from (1.a) that:
Lb)  —@Ie), @) W () 1<) <)
logt :
converges in distribution to:
Wi, W, L5 15j<n)
By Tanaka’s formula,
(1.c) Wi () = —(log|Z, —z;| - logr;)™+ —L’ ()

where L/ is the local time at level logr; of the local martingale (log|Z; —z;l; ¢ 2 0).
As a consequence of (l.c), we may replace Wi (t) by le (t) in the expression (1.b).

2
Thus

(b)) —2—(@I), ®i(e); Li(r); 1<) sn)
logt

converges in distribution, as ¢ — oo, towards:
Wi, W, A;1<j<n),
This special case of Theorem 1.1, established already as Theorem 6. 1*, will be used in
the following proof.
Proof of Theorem 1.1:

1) During the proof, we shall use several times the fact that for any Borel function
y: C— C which is locally bounded, the properties:

° jdumnz(z ) —>0

s
1 P
(1.d) —— swp|[y(Z,)dz,| —>0, and
0 t o0 (logt {—00

logt s«

are equivalent. This is a particular case of lemma Aq* Hence, we deduce from the
Kallianpur-Robbins law (l.a)* that for any locally bounded function ye L?( C,dxdy),
the property (1.d) is satisfied.

2) We first assume that f has compact support. We then deduce from 1) and our
hypotheses on f that:

supl,[f(z )iz, Ejf(z MgepyiZal —> 0

t-—o00

log t

3) Moreover, for each j = 1,2,...,n, there exists a strictly positive number €; such
that f restricted to D (z;,€;)\{z; }, where D (z;,€;) is the open disc with center z; and
radius €, admits a Laurent expansion:
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f@ = h@+g; (=),

J
with h; holomorphic in D (z;,€;), and g; an entire function with gj(0) = 0. Therefore,
if:

; = E c,zm
gj(z) ol mZ
is the Taylor expansion of g;, we have: ¢| =Res (f ,z;), and
(Le) gj(z) = Res(f ,z)z +2% (),

with g; another entire function.

Using the equivalence of (1.d) again, we obtain, for each j <n:

Togt s sup”[f(z )= gl( )] l(z,ep,)dZ, I 2 0

4) With the help of Tanaka’s formula as in (1.c) above, and (1.b’) above, to prove
the theorem in the case where f has compact support it now remains to show that the
function §j in (1.e) does not contribute to the limit. That is to say,

1

(1.f) Togr {dzu 14z,—z1s¢;) .-

1

1 P
z;)? gj(zu"zj ) - >

Let Gj be the primitive of g; such that Gj (0) = 0. Then, from Itds formula:
6= 6(

P
—> (0, we have:
t ~Zj t—oo
t

1 dz,
——> 0.
logtl(z —])2 gj( ) t—oo

Consequently, in order to prove (1.f), we may replace 1z _, <) bY lgz,—z ¢ in the
left hand side of (1.f). The proof of (1.f) is now ended by remarking that the function
of z

t

)1[ L (=),

Zy—2))t 7" Zuz

20 —Z]

Since

1
—_—
(z-z;)? Gz

is bounded, belongs to L%( C,dxdy), and so satisfies (1.d).

~z;l2¢€;)
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5) In the case where f is holomorphic in a neighborhood of oo, and
lim f (z) = 0, the above proof is easily modified by remarking that f may be written

Z—oo
as:

£ = —Res (f oort+ =56 (1)

with g holomorphic in an open neighborhood of {z : |z] < 1/m}, for some N >0. It then
remains to prove, as we have just done, that:
t

1 (49 (1 P
—_— —))N —> 0.
logt ! ZSZ 4 ( Zs ) (1Z,12m) f oo

This completes the proof of Theorem 1.1. 0O

Remark. Note that in (1.f) the integral from O to ¢ cannot be replaced by the
supremum over s in (0,z) of the modulus of the integral from O to s.
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2. Log scaling laws.

In the course of obtaining asymptotic distributions for various functionals of complex
Brownian motion, we realized that we were performing the same operations again and
again, namely a certain time change followed by Brownian scaling. To avoid repeti-
tion, and speed up procedure, we introduced the notion of log scalmg laws (Chapter
g* ). We now recall the basic notation related to this notion.

Brownian motion Z = (Z,,t >0), starting at z;, can be expressed as
Zt = ZOCXP(CV(U: ))

where { =B +i0 is a complex valued Brownian motion started at 0, and

t

= [

01Z,?

is the logarithmic clock. A Brownian functional G (¢) = G (¢,Z) can always be rewrit-
ten as

(8.0)* G(t,Z) =T(U,,%)

for some process I'(u) = I'(u,{). Now, let I'®) be obtained from I' by the Brownian
scaling operation

T, §) = T, ), h>0.

In definition (8.3)*, we say that the Brownian functional G is logarithmically attracted
to the process Y = (Y (u,L); u 20) if

P

(8.5)* ™, H-y@, {*)—>0

h—o0
where the convergence is uniform on compact sets. Equivalently, by Brownian scaling

P
(8.t)* rC, L) —sy(-,0)
h—oo

in the same sense. We may also say that y is the logarithmic attractor of G .
As a consequence of this definition, we obtain in particular:

2.) 2.6(,2) ~257(0,,0)

logt {00
where 6, = inf{u : B(¥) =a}. See Theorem 8.4 * for more consequences.

We turn now to the question of what processes Y may arise as logarithmic attractors,
and what functionals G are attracted to them. We restrict our attention to continuous
processes G. Roughly speaking, the attractors Y are functions of { which commute
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with Brownian scaling.

Proposition 2.1. A continuous process 7y is the logarithmic attractor of some
Brownian functional G with continuous paths if and only if there exists a random vari-
able ¥ such that

(2.b) Y@,0) =Vu L)) forall u as.

Proof. Suppose 7 is the logarithmic attractor of G. From (8.t)*, for each fixed u,
@0 Lrngm) s ywb.

Therefore, for every fixed k& > 0,

P
—= T(uh %%, L) —s y(u, ).

By Brownian scaling, this implies

P
2.d) —hl-k- T(uh2%2, LMY — y(u,t®) —s o,
Replacing u by ulk?, (2.c) and (2.d) yield

Y(u,8) =k y(uk?{®) for all u as.
Finally, (2.b) follows by taking & = Vu .

Conversely, if a continuous process 7y satisfies (2.b), then for all 4 >0,
_::Y(uhzx c(llh)) = Y(u,C)’ u 2 0, a.s.,

indicating that the process y satisfies

THO=7(§®)), as.
Thus G (¢)=Y(Uy,,{) is logarithmically attracted to y. 0

To illustrate the above proposition, suppose for example that the process Y is of the
form

Y(u,§) = (I)dBm(v,C)

with n(v, {) a continuous adapted process such that

E(J'dvn(v,C)z) < oo, u>0.
0
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Then the identity (2.b) implies that ¥ is the logarithmic attractor of some continuous
process G iff for every v >0

nw,H=n@m,;™)) du as,
so by continuity of (-, {), for every v > 0
2e) nw,0=n1,§")) as.

Conversely, if n(1,{)e L% o(C,.u < 1)), then by the monotone claés theorem there
exists a modification of

v, -1, ™))

which is predictable, and the process

Y, 8)=[dB,n(1, ™))
0

is a logarithmic attractor. In case n(u,{) = f(B,), it is necessary for (2.e) that for
every v >0

f&E)=f&xNv) dx ae.,
which implies that

2.0 F@)=f 1+ filxa00  dx ae
for some constants f_and f,.

The following theorem, which was stated as Theorem 8.5 *, provides a further
development.

Theorem 2.2. Let

s

t
dz
G@)= If Z) 7 for a bounded Borel function f .
0

S

Then the following are equivalent:

(i) G is logarithmically attracted to some process .

(ii) flexp(h(x +iy))] converges in L,olc (dxdy) as h > oo .
(iii) There exist constants p . and p_ such that as R — oo,

1 dx:_iz
- 0
losRmL) "° If @)-pd—

where
DR+)={z:1<)z|]<R} and DR,-) = {z:R“lslzlsl}.

If these conditions are satisfied, then the logarithmic attractor vy is
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Y(u) = gp (B,)d¢,

where
p(x)=p,1(x 20)+p_1(x <0),

and there are the alternative formulae

p. = f dxdy f (z)
= 21tlogR by |zIP
= lim — arf L f( )}

R—soo lOZR I(R;t) r 21c1
where IR +)=[1,R], IR,-) = [R-1,1], and C, ={z:|z|=r}.

Remark. A discussion of the similarities and differences between Theorem 1.1 and
Theorem 2.2 is given in AL¥, before Theorem 8.6 *.

Proof. Time changing G via the logarithmic clock U,
G(t,Z)=T(U,;,

where
u
T, §)=[f (exp&,)dg,.
0
According to (8.t)*, if G is logarithmically attracted to some Y as A — oo, the process
u
", E) = h[f (exp(h§,)dE,
0

converges, uniformly on compact sets, in probability, to y(#). By Lemma (A.l)* such
convergence takes place iff

s , . P
2.8) [dulohB,; e**)~0kB,; e**)PF —> 0 as h,k >eo
0

where we have used the notation ¢(x; ‘®) = f(exp(x+i0)) and , =B, +i6,. The
proof is easily completed using the following lemma, which indicates the only possible
limits in L2([0, 5], du) for processes ¢(kPB,; e

Lemma 2.3. Let ¢: RxC - R be bounded. The condition (2.g) is satisfied if and
only if there exist two reals p, and p _ such that, for p(x) =p, 1(x >0)+p_1(x <0),

’ . ih®, 2 P
28" fdulohB,; e**)—p B,)F —> 0 as h oo
0
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Proof. Since ¢ is bounded, (2.g) is equivalent to
E( }du|¢(hﬁ,,; e™0) _okB,; e™™)2) >0 ash,k — oo
0
This expectation is identical to
l{za!xdyz\(-'-’s'—z)lc:»(h:c; &™)~ llr; )P,
with
(2.h) A(r) = 2_11: ?-‘%‘-exp ——2“-)

a strictly positive function in L(dr). Therefore, there exists a function p(x,y)
defined a.s. dxdy such that for all compact subsets K of R?,

[dxdyl0(hx; e™)=p(x,y) >0  as h — oo.
K

Replacing & by h/t for t >0 and letting A — oo, we obtain

(2.1) forallt>0, pkx,y)=p(x,ty) dxdy as.

Much in the same vein, since y — ¢(x; e"”) has period 2w,

(2.j) px,y)=p(x,y+2m), dxdy a.s.

It remains to show that for p satisfying (2.i) and (2.j), there exist p, and p_ such that
(2k) px,y)=p, 1x>0)+p_1(x <0), dxdy as.

Clearly it is enough to deal with the existence of p,. From (2.i), we deduce

gdx | dygdtlp(x,y)-p(vc,ty)l=o.

—oo

Make the change of variable 4 = #x, and then change the order of integration to obtain

{du{dxjdyuz(x,y)—p(u,u@/x»l =0,

so that there exists at least u, such that

P(x:)’) =P(u+,u+(y/x)) dXdy as., x>0.
Let p(r) = p(u,u,r) for r e R. Now, using (2.j)

p+(%) =p+(%); dxdy a.s., x>0, so that
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J'dx j' dylp,,(%) —p+(-ux2—u-)| = (. Change x into (1/¢) to get
0 —00

[dt [ dylp (y)-p.(e(r+2m)| = 0, so that
0

-—00

Id’ I dylp,(y)-p.(y+t)| =0, hence
0 —-00

[ dv[arp.o)-p. M) =0.
-0 Y

Switching the roles of A and y, then adding the results, gives

| [ & dMp.0)-p.MI=0.
Finally, for at least one A, p.(y) = p,(A), dy as. This proves (2.k), and the rest of the
proof of the lemma is routine.

Remark. The above proof shows that the characterisation given in the lemma has lit-
tle to do with Brownian motion, and may simply be understood as a variant of the fol-
lowing fact: '

Let ¢: R, >R or C be locally integrable. Then ¢(h ) converges in L1([0,1],dx) as
h

h — oo iff there exists a constant ¢ such that -’ltgdx [6(x)~6] >0 as h — oo,

The last condition is reminiscent of the following basic property of an almost periodic
function ¢:

h )
—Il;;.;dx &(x )converges as h — oo,

However, if ¢ is almost periodic, so is ¢(-) —a, for any constant a, and also
h

I6() — a |. But unless &() — a is identically 0, the limit of % [axloe)-a | is strictly
' 0

positive. See e.g. Katznelson (1976).
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3. Refinements of the Asymptotic Laws for Windings.
The asymptotic distribution of

logt _fg( s)Z

can be radically different from that described in Theorems 1.1 and 2.2. We now sup-
pose that zg (z) is a function of the argument of z.

Theorem 3.1. Ler f be a bounded measurable complex valued function defined on the
2n

unit circle C, with I f(e“)da = 0. Then

c 2n

d .
logt J'Z ') — .([ .(’;dr(s,a)f(e'“),

where o=inf{u : B(u) = 1} is defined in terms of the real part B of { =B+i0, T is a
complex valued Brownian sheet with intensity dsda/2n, and { and T are independent.

Remarks.
(i) This convergence holds jointly with all log scaling laws governed by (.
(ii) In case f does not have mean 0, after writing f = fc + (f — fc), where

2n
1 ia
fc zzf(z)= o gdaf(e ),

- 21t1
the constant term gives an extra contribution in the limit of f (s, due to the
asymptotics of windings. Stated in this manner, Theorem 3.1 now appears as an
extension of Spitzer’s theorem (1. c)

(iii))As in the case of windings, this limit theorem can be split into action at 0 and
action at oo, and this is the basis of extending results to several points of origin.
(See next section). More precisely, our method shows that for two bounded Borel
functions £~ and f* on the circle, each with mean 0,

t
. z, .
_ d’. /] d’.
10gt ™ Ngzie) {z,;f e Nz ),

d c2n cn

— (g g AT 0)f (€)1, <o) » g (.[ AT ayf +(e"“)las.w))

where I'™ and I'* are two independent copies of T

This limit could also be written with dT ;) twice instead of dT"(, ;) and dT7 ),
but we find the + presentation more convenient for the extension to several points.
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(iv)An interesting aspect of Theorem 3.1 is that it gives the joint limit in law of a fam-
ily of functionals of the complex Brownian motion. However, if one is interested
in the convergence result with respect to just one function f, the next Corollary
may be of some interest, if only for checking constants.

Corollary 3.2:

Let f,g:V — C be two functions which are holomorphic on a neighborhood V of
the unit disc, and such that f (0) = g(0) = 0. Then, using the notation of Theorem 3.1,
the triple

t t t
2 4z, 2 id 2
, d Z vy, —=—
1ogt£zu 1gt£ (0g1Z,Df "™, 1= { @, g (€'®))

converges in law, as t — oo, to

1 1
(G 51 b% 5 18k3s)

where , y and & are independent complex Brownian motions and
1 2n s w2
Ifl = (5 [dalf Pe)
T o

Proof: From Theorem 3.1, an expression of the limit in law for the triple is:

oc2n cn

( Co» JIdB(:,a)f(ei“), deD(t,a)g (") )
00 00

where I' = B + iD. Now, the Corollary follows from the fact that, say
2n
() = [dD,a)8 (€™)
0

is a Gaussian, complex-valued martingale which admits a continuous version. More-
over, if we write g{(z) =Reg(z), g,(z) =Img(z), then for any i,j € {1,2}:

2r
<86 8.6)> = 5= J da @i g ™).

However, since g is holomorphic, and g (0) = 0, we have:
1 2n 2r
0=g%0) = [dag?e”)=-— jda [gf(e) - 83(e’) +2i(g182)(e™)]
0

so that

2n ) 2n . 2 )
[dag?(e®) = [dag}(e® and [da(g,82)(e®)=0
0 0 0
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Finally, _\/—__2_ d; (g) is a standard complex Brownian motion, from which the state-

lgl
ment of the Corollary clearly follows. O

Remark. Assuming f and g satisfy the hypotheses of Corollary 3.2, the processes
,(f),t 20) and (5,(g),t 2 0) are independent if and only if both

2r 2r
[daf(a)g(@)=0 and [daf(a)g(a)=0,
0 0

where g(a) is the complex conjugate of g(a). For example, the processes
2n

(‘5 I d,D ,a)e""“ 2 O) for n = 1,2,... are independent complex Brownian motions,
0

from which the entire sheet D can be recovered by a Fourier series. O

Proof of Theorem 3.1 This is a straightforward consequence of the following theorem,

which is a slight modification of Theorem (3.5) in Yor (1983). See also Borodin

(1986), Csaki-Foldes-Kasahara (1987). O

Let P,; be the set of bounded Borel functions f: R— R, which are periodic, with

period 2. We use the notations |f |, and fo for functions. feP,, as if they were

functions defined on the unit circle C, as considered above. To illustrate: for f € P,,,
2n

2r
fec===[f@da, and If ~fcly=( == [da(f @)-fc)* )2
2n 5 2n

Theorem 3.3. Let B and 6 be two independent real valued Brownian motions, each
starting from 0. Let f,g € Py, Then

(i) As ¢ —> oo, the continuous processes in t € R,

t _t
(B.. 0., [dB,f (c8,), J28,80,) ).
0

converge in law to

t 2n t2n

( Bt’ 6, fCBt +£ gdB(s,a)[f(a)_fC]’ 8c; +£ i‘;dD(s,a)[g(a)'gC]),

where B, 0, B, and D are independent, and B and D are Brownian sheets indexed

by R x[0,2n]) whose associated Gaussian measures have intensity

(ii) In particular, as ¢ — oo the quadruple

t t
(B:. 6, [dB,f(cB,), [d6,8(cB,))
0 0
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converges in law towards

( B, 6 feB+If —fchd:, 8cO: +lg —gcle ),

where (B, 0, 8, €) is a four-dimensional BM, starting from 0.

(ili) For a € [0,2n] let S, be the sector 0<arg(z)<a. As ¢ —> oo the quadruple
of continuous processes in (t,a)

t t
(B0, a1 %5, [d0,165% e s,))
0

converges in law towards

a = a <
(3.a) ( '3:’ et’ Eﬁt +B (t,a), Et—e‘ +D (t,a) )’

where
B,., =B 2B Dy, =D )
(t,a) — (t.a)“‘z';t‘ (t,2m) ¢ta) ~ (t,a)‘?n' (t.2n)-
Remarks.

(i) The processes B, 4 and D, ,, are Brownian motions in ¢, and Brownian bridges
in a. The third and fourth components of the limit in (3.a) are independent
Brownian sheets in (z,a), both with intensity dtda/2n. For future reference, we
introduce the notation

a -
(3.b) E(t,a) = 2—1:9, +D (t,a) >

for the fourth component in (3.a).

(ii) The convergences in law refer to the weak convergence of the associated distribu-
tions on C (S,R?), equipped with the topology of uniform convergence on compact
subsets of S, where § = R, or R, x[0,2x].

(iii)The proof of Theorem 3.1 (or that of Theorem (3.5) in Yor (1983)) hinges on
Knight’s theorem (1971), and the following basic fact:

t a.s.
(Bc)  forf ePyy, [dsf(cO,) — tfc as c —eo.
0

Applications of Theorem 3.1

Recall that the differential of the winding number @(t) derived from Z, = X, +iY, is
_ X, dY, - Y, dX,

T

do,
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Spitzer’s theorem (l.c)* asserts the convergence in distribution of 2®,/logt, as
t — oo, to a standard Cauchy variable. We show, in the next theorem, that the 2-
dimensional variables

(; .”")

1Z, |2 1Z,

log t

converge in law, and we identify the limit, thereby reinforcing Spitzer’s result (1.c)*.
In fact, let:

4 t
a, = J'oXstsIIZS % b, = IOstYs/IZslz;
3 t
¢, = ons dY N\Z,P; d, = joys dX, /| Z, .
Theorem 3.4. There exists a four-dimensional BM (B,, 6,, §,, €,; t >0) such that, as
t — oo, the four-tuple
10 t(at’ bts Ct’ d )
converges in law to
-%-(1+80; 1-84; Og+€g; —05+Eg),

where ¢ = inf {t: B; = 1}.
Remark.

(i) B+i0 is the usual § for log scaling laws, and the convergence holds jointly with
such laws.

(ii) From the theorem, we recover in particular the following log scaling laws:

T-zg_ og| ,l— (a,+b) 41 as t —oo,
2 2 d
Q, = -d, = 0 .
logr ' logt € ~d) o ID
Proof of Theorem 3 4.

Linear operations on the identities
Xu qu +Yu dYu . XudYu —Yu qu ‘Zu

+ i =
1Z, |2 1Z, I? Z,
X, dX, -Y,dY, +iXudY,‘+Y,,dX,, _ dZu(Zu )2
1Z, 2 1Z, P 1Z,|

give formulae for da, etc. in terms of the right hand differentials above. Hence, if we
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use the notation in Theorem 3.1 and introduce the standard complex Brownian motion

2r
o +ig = I d, lq(t,a)ezm,
0

we find as a consequence of Theorem 3.1 that

2
logt

(at’bt,ct’dt)
converges in law towards:
%(1 + 84, 1 = 84, 05 + €5, 04 +&). O

Here is a second application of Theorem 3.1:

Theorem 3.5. Let r >0. The pair of continuous processes in a € [0,27]
2 t ' t
et (£d¢sl(|zs| <r,Z,€S,); £d¢31(|zs| >r,Z, €S,))
converges in distribution as t — oo to

ga ca
(J [dE (s uyL(Bs <0); [ [dE (5,491 (B >0))
00 00

where we use the same notation as in (3.b) above, and where

o=inf{a:B, =1}.

In particular, the finite dimensional distributions of the continuous process
5 !
Toor gdd)sl(zs €S,), acel02n)],
converge as t — oo to those of

(—25'1'?)1/23,,, a < [0,2n],

where (B,, a € [0,2n]) is a Brownian motion independent of (B,,t>0), hence also
independent of ©.

172
Remark. LetX, = (f—;) B,,a <[02n] . Then for f e L%([0,2], da)

2
E(exp ijf(a)cD(a) =exp—Ifl
0

In particular, for O<u <v<2m, X,-X, has a Cauchy distribution, with parameter

v\ 12
( 2
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Finally, we give an application of Theorem 3.1 to the asymptotic distribution of func-
tionals of the type
} ds

iP,
bzEle

for certain bounded Borel functions f : C — C. Recall the notation
2n ’
1 dz 1 ia
= — —  — da,
fe == lf(Z) : 2n£f(e )

Theorem 3.6.
1) Let f : C — C be a bounded Borel function such that fo = 0. Then,

t
v, _ _2 _ P
(3.d) ') logt-(';(FC F)(®,)dD, 50,

logtj|z |2f

a
where F (a) = j' fe®)db,a e R, isa 2n-periodic function and
0

2n 2n

=L -1 ia
Fc == ‘(';F(a)da = oaf(e )da.

2) Moreover, one may incorporate in both the Riemann and the stochastic integrals in
(3.d) either the indicator 1,7 |, or the indicator 1z .,).

3) Consequently, if f,g : C — C satisfy the hypothesis stated for f alone in 1), and
if0<r <r’ < oo, then the C*-valued random vector:

3.e) ( j

t
i . [(_ds i@,
)z,sr 5 I——z g€ ™) 14z 12 )

logt 0 1Z; I2 0 1Zd
converges in law towards:
o2n c2n
G.H (M"D(s,a) 1p,<00(Fc — F)(a), MdD@,a) 18,200Gc — G)(@) )

where we use the notation in Theorem 3.1, with D = ImT.

Proof: 1) The fact that F is 2m-periodic is an immediate consequence of the
a

hypothesis f- = 0. Now, let F (a) = Idx F(x), a e R. We have, from Itd’s for-
0

mula:

t
3.8) F(@,) = F@) + [F (@,)d®, +—;-
0
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Due to the periodicity of F, IT"(x) - x Fc is 2n -periodic and continuous, hence a
bounded function, so (3.g) immediately implies (3.d).
t
2) In view of (3.d) we need only consider j I;slz
: 012,

o,
FE€) 1z1er)

Since f- = 0, the Kallianpur-Robbins law implies that as far as the limit in law of

fEe®)

1 } ds
log? g | Z,?

is concerned, the indicator 1,7, can be replaced by x (log|Z|), where : R » R,
is a C? function such that X&x)=1forx <logr,and x(x)=0 for x > logr + &, for

some € > 0. Keeping the notation from the beginning of the proof, apply Itd’s for-
mula to the product x (log (|1Z, |) F # (®@,), where F¥(x) = F(x) - xF ¢, to obtain

(Gh)  xQoglZ NF*(@,) - x (loglzol) F* (Do)

t t
=£xaog|zs|)[(F - Fc)(@,)d®, + FE®) + [F*@,)d [x(0g]Z])].
0

21z,

Now divide both sides of this identity by (logz). Clearly, the left-hand side does not
contribute to the limit. Next,

4
. 1 P
(3.) —— [F*(@,)d [x(log|Z,)] —> 0.
logt 0 t—o0
Indeed, we have:
’ 1 4 ds
d [x(og|ZD] =% (og|Zsd(log|Zs ) + 5 X" (oglZl) ZP
s

Two applications of the Kallianpur-Robbins law now show that

a) the stochastic integral (with respect to d (log|Z|)) is of order Vlogr in law, while
b) the Riemann integral is o (log?) in law.

Indeed, the periodicity of F* implies

t

1 # ’
— (0]
ogr @ Gog 12, 1)

ds
1Z,[?

converges in probability to 0 as r—oo , because the function of Z; in the integrand
has an integral over the whole plane of
7 d 44 4 4
Fé [ B Gogp) = Py (reo) = y/(-e0)} = 0
0
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since %" has compact support. Hence, (3.i) is proved. Going back to (3.h), we now
find:

t P
1 ds id
— log|Z.)) e ™)+ (F —Fo)@D,)dd. ) —> 0
lOgt‘!;X( gl s (2|Zs|2f C s s) oo
and, much as above, we may replace X (log|Z;|) by 1(z,<r)-

3) The last assertion of the theorem is an immediate consequence of Theorem 3.1. O

The particular case when the functions f and g featured in the statement of Theorem
3.6 are traces on C of functions f,g : V — C which are holomorphic in a neighbor-
hood V of the unit disc and such that f (0)=g (0)=0 is most interesting.

Indeed, for such a function f, say f (z) = Zl fn 2", there is the expression
nz2
ia . fn n
F(a) = he(e"), where  hp(z) =—i T —2".
nzl n

We find that fo = F¢ =0, and from the discussion in the proof of Corollary 3.2, the
limit variables (3.f) may now be represented as:

(¢} [+]
) 1 - 1
(39) (Tz \f II*ngs 1g,<0)5 V—i'llg II*ngf 1([3,20))

where Y~ and ' are two independent complex Brownian motions which are also

|fn B\12
) .

n2

independent of B, 6 = inf{u : B, = 1}, and |f Iy = ( z
nz

Two simple interesting examples are: f(z) =z and f(z) = z% in which cases we
deduce:

P dsZ
(k) 2 T D 2y
logz 5 |Z|
and
t
2 ds d 1 ’
3.1 —_— = 4 —

where, according to the Remark after Corollary 3.2, v’ and y’’ are two complex
Brownian motions independent of each other and of ©. -

Local Times on Rays

We now present a complement to Theorem 3.6, which gives a more geometric
interpretation of the asymptotic Brownian sheet D. We begin with the fact that if Z
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starts at zg # O there is a jointly continuous process
(Lf;t 20,a €[0,2rn]),
such that for every bounded Borel function f : C —» C,

t 2n
BGm  [-EfE'®) = [dafEe®)LL
0 IZsl 0

Such a process (L7) is defined by

(3.n) L = I |gtonT
neZ

where (l,b ;¢ 20,b € R) is the jointly continuous version of the local times of the
local martingale (®,,¢ > 0). Since / is continuous and has compact support in a, it is
immediate that the formula (3.n) defines a jointly continuous process.

Theorem 3.7

With the notation introduced in Theorem 3.1, define

8a = Iml"(o'a) = D(c,a)’ a e [0,2“].
1) The finite dimensional distributions of

1 a__10y.
(logt(Lt LY;a € [0,2x])

converge weakly towards those of

(Sa - 2_‘;8216 ae [O,21t]),

while, for every a € [0,2r],
4 4 4 o

3. _— -_—.
( O) (log ' )2 t m

2) For a € [0,2r], let N be the number of crossings of Z, up to time t, inside the
sector S,, from the half-line {z:arg (z) =0} to {z:arg (z) =a}. Then, with the
notation introduced in Theorem 3.5, the finite dimensional distributions of

2 @ave-Lpo
(logt(aN' LY, a < [0,21])

converge weakly towards those of
12
o a a
((215) Ba = T 96+8a - m 821;; a € [0,21!:]).

Remark: In view of the approximation of Brownian local times by downcrossing
numbers, aN? — %L,o as a — 0, so (3.p) is the limiting case as a =0 of the
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following result of Burdzy-Pitman-Yor (1987): for every a € [0,2r],

8 d c
(a@Np) —> —.
(103 t )2 ! t—o0 21t

Before the proof, we give a slightly heuristic explanation of the first statement in
Theorem 3.7, with the help of Theorem 3.6.
Let f : C — C be a bounded Borel function such that f- = 0. Then, from (3.d), we
obtain

2r 2n

1 a d
G3.p) —— [daf(a)Xf-L)) —> [dd,(Fc - F)(a).
logt  toee D
Expressing F in terms of f, and using integration by parts, we may write (3.p) as
3.p) szdaf(a)(L“—L% = 2ndaf(a)(éi - =8
logt T e B ¢ 2 r

which renders the first statement of Theorem 3.7 very plausible. A proof of this state-
ment could presumably be obtained following these lines. But we shall give an alter-
native approach.

Proof of Theorem 3.7.

1) We imitate the proof of the first statement of Theorem 3.6, the role of Itd’s for-
mula (3.g) now being played by Tanaka’s formula.

More precisely, for a given a € [0,2r), let

X
FG) = 2 lonnsy <nmay and Fo() = [dy F0).
€ 0

The second derivative of F a» in the sense of Schwartz’s distributions, is the measure
F”" (dx) = ,.Zz{_ez""*“ (dx) + &y, (dx)}

where € (dx) is the Dirac measure at § € R.

The analogue of Itd’s formula (3.g) is now
t

GD  Fa@) = Fu@) + [E@)d0, + = L0 - LD.
0

We then deduce, much as in the proof of Theorem 3.6, that

t

a_10~_2 (g -
@t~ L)) = 17 [ = Ede) @) d o,

1
logt
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meaning that the difference between the two sides converges in probability to 0. We
immediately deduce, with the help of Theorem 3.1, that

- (Lf - - LY 2 8, - — 82n

1 t—oo0
Consideration of linear combinations gives convergence of finite dimensional distribu-
tions as a varies.
2) For any bounded Borel f : C — C, we have, with the notation of (2.h)* and
(3.h)*, and h = Zlog¢

U,
U, h?
1 i0 ine®
= e— dS (] - d v
aogt)zjlz P i jaren = [ re™

which, from (3.c), converges in law towards f- 6. On the other hand,

2r

2r
2 FE®) = | daf(e‘“)-;ll—z-(L?—L,")+712-(J' daf (€))L,
0 0

(log 1)? ! 1Z, |2

Since the first integral converges to 0 in probability, we obtain (3.0).

3) From the usual asymptotic study of downcrossings of linear Brownian motion
using Tanaka’s formula (see N. El Karoui (1978), Kasahara (1980)), we obtain, from
formula (3.q)

1

t
1 1
—— (@Nf - =LY ~ — [E, (®,)d®
logt 2 log g d

which, using again Theorem 3.1, yields the convergence in law of l_ozg_t (aNg - % 9

towards the limit indicated in the second part of the theorem.
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4.Extensions to Several Origins.

Our first aim in this section is to obtain an extension of Theorem 3.1 to stochastic
integrals whose integrands have singularities at n distinct points z,z,, ..., z,,
assumed also distinct from the starting point zy of the complex Brownian motion Z.
Let &) be the winding number of Z around zj up to time u, and let
fj :C - €C,1<j <n, be a sequence of bounded Borel functions. We want to

show, under some suitable assumptions on the f;’s, that the random vector

t
2 dz, idj .
4. (e'™),1<j <
(4.2) 1ogz£z,,-z,-fl‘e ) j<n)

converges in law as ¢ — oo, and we want to describe the limit law.

The case when the f;’s are constant was the focal point of our study in AL™; the result
then may be summarized as follows. Introduce 2n strictly positive real numbers ris
r]-', 1<j <n,andlet

D = {z:|z - z| s}, Dt = {z:]z - z;|>r;’}.
._)
Then there exists a continuous C€" valued process { consisting of n complex
Brownian motions { j =Bj +i6;,1<j < n, whose joint law is described in Theorem

(6.2)* (using a superscript oo notation which we now drop), such that

t
2 dZ, 2 dZ;

4.b 1 -1, 1 a1 <
(4.b) logtgzs—zj (2. <D;) logtg';Z,—zj (Z, D) J n)
converges in law towards

O Oj
(4.c) ([ 48 ©) 1,000 [45 ) 10205 15 sn),

0 0

where 6; =inf{r: [31- () = 1}. (Note that we have already presented the convergence
in law of the imaginary parts of (4.b) in (1.b") above). The study of the limit law of
(4.2) thus reduces to the case where f; has mean O for each j. In this case we have
the following:

Theorem 4.1 Let fi» 8:C > €1 <j <n) be 2n Borel bounded functions such
that

2n piid
4.d) [0 (e® = [dog;(e'® = 0, for every j.
0 0

Then, the €% -valued random vector
dz,

t t
2 id] dz, i) .
logt (g Z, -z fi €)1z, py (I,—_Zu et €)1z cppy 1S Sn)




converges in law towards

O;2n O12n

(4.e) (] [drigig,mafi @, | [dTolp 0208 € 1</ <n)
00 00

where Bj and ©j are as in (4.c), and TV 1 < j sn,and T" are (n + 1) independent
_)

complex valued Brownian sheets, with intensity ds2_<11t9_, independent of the € process.

Before proving Theorem 4.1, we describe in more detail in a particular case the law of
the random vector in (4.€). Assume now that the n functions g; are identical to a sin-
gle function g, that f; for 1 < j < n and g are the traces on C of functions which are
holomorphic on a neighbourhood of the unit disc, and that (4.d) holds. We also
assume, without loss of generality, that |f;l, = lgl, = 1. Let AJ denote the left hand
component in (4.€), A, the common right hand component in (4.e) with g instead of
gj»> and A the value (which does not depend on j ) of the local time at O of B ; at time
;. Then the n + 2 complex valued random variables (AJ,1 < j < n, A,,A) are such
that for each j the triple (AJ, A, , A) is distributed as

(¢} [¢]
(4.9 (gl(p, <049, gl(a, > 0)4 O, Ae)

where B and & are independent real and complex valued Brownian motions respec-
tively, both starting at 0, o = inf{z: B, = 1}, (A, 2 0) is the local time of B at 0, and
the n + 1 variables AJ,1 </ < n, and A, are mutually conditionally independent
given A. This dependence structure, which is very similar to that described in
Theorem (6.1)*, comes from the fact that the Brownian motions j have independent
negative excursions but identical positive excursions, as described in Theorem (6.2)*.

First step in the proof of Theorem 4.1
t

Let Wk (g,0) =]

g (eid’:) 1z <py As a first step in the proof, we shall

Z, —z
0 “u k
show that, for all j,k < n, and all bounded Borel functions g,
) P
(4.8) L sup|WE (g,5) - Wi (g,5)| —> 0.
logt sst t =00

(Note that it is not necessary to suppose g has mean O for this step. The mean O
assumption is made in the theorem just to focus attention to the contribution of the
Brownian sheets.)

From (1.d), (4.g) is equivalent to

P

t
1

[ds frj @) - 0
0 t —>oo

(logt)?

(4.h)



where
2

frj@@) = | g8 (@ -z))1,cpy - 8z =2)))1gepy

(z -2) - z)

and we write simply &’ for £/]§|. We may as well replace f; ; by

_ 2
Foj@ = | g (@ - 7)) - ——2 @ - 2| 14212

1
(z-2%) (z = z;)
for R large enough, since the difference f; ; - f k,j is a bounded, integrable function.
But the function

z_)(z—lzk - z—lzj-)lu'ZR

is bounded and belongs to L?(C). Therefore, it suffices to show (4.h) with f k.j
replaced by

1
|z —Zj|2

fli@ = lg (2 = 2))) -8 (z = z)) P 1z 2 py

In case

g is the trace on C of a continuously differentiable function g on a neighborhood V
of the unit disc,

we may write

I8 @ =2)) =8 @ =2 $ V|G =) =G =2} where Y= qup V£ ©)|

|G = 2plz 21 - @ =21z - 51
<
lz =z;llz — z|

= o(l—;T), as |z| > oo.

Thus f£;(z)=0 (;) as |z]| — oo, and f#; is therefore integrable. The case

|z ¢
where g : C — C is only assumed to be Borel bounded is more delicate to handle, for
the following reason: under the hypotheses we have made up until now, much more

than (4.h) is true. In fact,
t
%gtgds fr,j(Zs) converges in law.

In the general case, which we now turn to, we shall only be able to prove that
1 t Ll
[ds fd; @) —>o0.

(4.4)
(logt)? 9 t =300
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Our main tool to prove this result will be the following:

Proposition 4.2. Let (Z,) be BM ( €) starting from z, with |zy| < R. Then, for every
Borel function u: C — R, which is locally integrable in {z : |z | 2 R}, the following
inequality holds:

t 2n
lim E[[dsl; gt (Z)]<— Tim {r2 [ dOu(re'®)}.
t—oo0 (IOgt)z g 122 : 4T, oo g '

The reverse inequality holds with 1im replaced by lim.

In fact, we shall prove (4.i) by using the two following straightforward consequences
of Proposition 4.2,

Corollary 4.3. (i) Ifu: € — R, is a locally bounded Borel function such that

2n )
lim r2 I dOu (re'® = 0,
r —oo 0

then

t
lim E[|ldsu(Z,)] = 0.
t—o0 (logt)? g ’
(i1) Let (Z,) be complex Brownian motion starting from zy with |zg| <R, and let
Z/ =Z,|Z,|. Then, for every positive Borel function u :C >R,
2r
1

t
— ds 1 .
im E[ lyz s @H] < —— [ d0u(E®).
t—o00 (108')2 £|Zs 2 (12128 : 4 g

The reverse inequality holds with lim replaced by lim.

We now prove (4.i). In the case when g:C — C is continuous, the function u = f ,f, j
clearly satisfies the hypothesis of part (i) of Corollary 4.3, and this gives (4.i) in this
case.

Consider now the case when g is only assumed to be bounded Borel. Plainly, it is
sufficient to show

t 1
1 L
4.)) £ds h(Z,) — 0,
(log t )2 : t —o0
where (Z;) is complex Brownian motion starting at 0, and
1
h(z) = ng ((z+a))-g )P lqzi2r) for some a = 0.

Now approach g in L2(C,d9) by a sequence (8,) of continuous functions. Let h, be
the function & with g replaced by g,, and let
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1 ’
Lr@) = ng,, @) -8 @)P1lgy 2 r)

Then, for some universal constant c,

(4.k) h(@z) <cil, R-aZ+a)+h,(2)+] bR (2)}

Finally, let: I (#) = lim

t—o0 (lOgt

Corollary 4.3, we obtain

t
~E [[ds h (Z;)] Then, from (4k) and Part (ii) of
0

2n
I(h) < c(-zl? [aelg - g, Pe®)+1 (1))
0

Since 8 is continuous, we already know that [/ (hp) =0; moreover, as
2n

[d01g — g, (e can be made arbitrarily small, we have: / () = 0, which proves
0

(4.j), hence (4.i) in full generality. O
Proof of Proposition 4.2.
Define

t
I, (u) = E [ [ds 1z, 1.py4 (Z)].
0

Then,

’

i0 |re —20|2
L (u)= jrdr Ideu(re )A(———)

where Ax) =—1-I dr -2
2n | 1

is the same function as in (2.h). Since A is a decreasing function,

oo a4

2
. r—i12
Lw)s [rdr[dou (re‘e)A(-(-——m-).
R 0 t
Now, let R’ > R. Then,

R’ 2n

o« f ® —120])?
I, (u) < jrdr Ideu(re )A(—-—-—-—-—)
R 0

E(ﬂjdeu (re“’))j A(—(-ﬂ)—)

Now, it is easily seen that:



27‘ (log t)2 J

((R |Zo|) ) A(("—IZOD ) 1

log t {00 47:

t 900

SO that, making use of the local integrability of u, we obtain:

2n
lim ———=1, (u) < — sup\r° | dOu (re'®)).
ro0 (log?)? ' 4n ,ZX'( { )

The proof of the first inequality is completed by letting R’ tend to oo.
On the other hand, we have:

L 2n )
; +
I, (u) 2 Irdr Ideu(re'O)A(_Sr__l_z_o_l)_)
R 0 t
and, for R >R:
R’ 2n , )
; R" +
I, (u) 2 err J-deu(re‘e)A((_____;!_fP__l_)__)
R 0

2n 2
+ inf, (r? f dOu (re'%) I & A("(:'I'i?‘l')")

which, much as before, implies:

2n

L) > — lim (2 [dOu (re’®). O
4n r —oo 0

lim 3
t—oo (logt)

Second step in the proof of Theorem 4.1.

This second half of the proof is very similar to the proof of Theorem (6.1)*, SO we go
at a quick pace. Thanks to the equivalence (1.d) and the Kallianpur-Robbins law, we
may assume the rj’s to be so small and r,” to be so large that the (n + 1) sets
Di,j=12...,n,and D are disjoint. Also, from the first half of the proof, we
only have to consider the €"*l-valued random vector:

T 2 au id)

logt I Z, -
for (n + 1) real-valued functions fj,g which satisfy (4.d). Let

t t
u

, dz, az .
ML) = grfl(e@)l(z.ep,-) ; M, @) = 'g'&:':z—l)'g G liz.D;)

The processes MJ , 1 < j < n, and M, are conformal martingales (see Getoor-Sharpe
(1972)* ), hence time changes of complex Brownian motions which we denote by mi



-7- 4.7

and m,. Because the sets DI and D, are disjoint, mi (1 <j<n) and m, are
(n + 1) independent complex Brownian motions, from Knight’s theorem (1971)*.

Moreover, if we denote by &/ the complex Brownian motion which is the time change
t

of =
g Zs -2z j

, then the random vectors

-
E=EL...,8") and m=(ml, ..., m" m,)
have the following asymptotic property:

->h  _ d -
(é:m)::”(Cs

—oo
m

)

where the superscript 4 indicates rescaling space by 4 and time by A2, as in Theorem

(6.2)*, E and m are independent, m is a Brownian motion in C**!, and the

distribution of —6 is described in Theorem (6.2)*.

In order to prove this result, it suffices - following the proof of Theorem (6.1)* -

-
replace the vector & by (€1, ..., E"E,) which is the C€**l-valued Brownian motion
obtained by time-changing the conformal martingales

t t ‘a

€ ; 1 € )1 < J sn,
.(’;Zs (ZD’) j(z_z)(ZD)
. . . . . LA nh gh. —h

with their respective increasing processes, and to show ((E-"%, ..., E""EM; m )

converges in law, as A — oo, to a C2*+1) valued Brownian motion. In fact, thanks to
the orthogonality properties of the various martingales involved, and with the help of
our appendix, this all boils down to problems involving only one singularity which
have already been dealt with in Section 3.

Next, the normalized vector of clocks,

t

t
4 du l‘b 2 i@'
i B @) 1gepp 1 5j sn lg B ®) 1, .p
converges in law towards:
Oj [+ }}

(Ilf,- 1 g ds 1@, (s)s0)» 1 S J sn; lg 17 gds 1(p, ()20) )
Putting all these results together, the limit in law of

logt(MJ @), 1<jsn; M)



may be expressed as
G; Oy

(1s; ﬂzfds () 1@, s)s0)> LS s 13 "3521"5 () 18, (57200)

where §;, & (1 <j<n) are (n +1) independent complex Brownian motions,

-_—
independent of the {-process. Finally, a linearity argument enables us to present this
in terms of a Brownian sheet, as in the statement of Theorem 4.1. O

Asymptotic Distributions for Some Riemann Integrals.

To make our story shorter, we shall only consider the extension of Theorem 3.7 to
functions with several singularities in the case when the functions are holomorphic.
The relationship of the next Theorem 4.4 to Theorem 4.1 is the same as that of
Theorem 3.7 to Theorem 3.1; in both cases, what is achieved is the reduction of the
asymptotic study of a Riemann integral to that of a stochastic integral.

Theorem 4.4 Let f;, 1 < j <n, and g be n + 1 functions from V to C, which are
holomorphic in a neighbourhood V of the unit disc, and such that f;(0)=g(0)=0
Then, the C¥ -valued random vector

t

j i)
log? (I . Iz ™) 1, epjy g #8 € ™), ppyl S Sn)
converges in law towards
o; o
4. (‘Elﬁll* g d ¥} 1@, )00 V218 1% gd Y g, s)20pl SJ < n)

where (yi ~,Y';51<j<n) are (n + 1) independent complex Brownian motions,
-
which are independent of the {-process, in terms of which the real Brownian motions

B; and the hitting times G; are defined, as in (4.c).
Proof: We have shown, in the proof of Theorem 3.7, that
1 j du
log 312, - z; P

id) - id)

fite ™)1z, pj —10 - d<I> i (e ) 1z, iy
t—>

where h; is the h-function associated with f; as in the discussion following the proof

of Theorem 3.7.

An analogous result holds for the integral depending on g. The final result now fol-
lows from Theorem 4.1, provided we represent the Brownian sheets integrals as we did
in Corollary 3.2, and formula (3.j). O
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To illustrate Theorem 4.4, we look at the n-point extension of the examples (3.k) and
(3.1). Then, the C**-valued random variables

t t

2 di d
{ (I uz‘ Zz, - Zj) l(z_s ) t';TZ'u—:l"zJ—P “, - zj) l(Z.eD,-*) );

t
2 d d .
logt(g(z,‘ -uzj)2 '@ <ppy {ru,j)zlaem Jit<j<n}

converge in law, as 1 — oo, towards

g; (o))
{2 ( [4¥ 15,6500 [d¥ 1) 20) ):
(4.m) o 0

)

Oy
1 . .
‘\,f(gdss” 18, (5) < 0y £d5§'1<a.(s)20) Ji1<jsn}

where (¥, v, 8,8% 1<j<n) are 2n +2 independent complex Brownian
—_
motions which are independent of the {-process. Moreover, the distribution of the

C**l-valued variable featured in each line of (4.m) is that of a constant ( V2 or 12 )
times (A7, A,, 1 <j <n), where we use the notation introduced after Theorem 4.1.

These calculations lead to the next theorem, which concems the asymptotic distribution
of

t
[ds £ @)
0

when f belongs to a class of meromorphic functions. This theorem should be com-
pared with Theorem 1.1, which dictates the asymptotic distribution of

t
[az, f @)
0

for another class of meromorphic functions.

In order to fully justify our choice for the class of functions considered in Theorem
4.6, we present the following elementary statement, the proof of which is left to the
reader.

Lemma 4.5: Let CN denote the Riemann sphere and let f : C - Coo be a mero-

morphic function such that:

@A) lim z f(z) = O,

(ii) The poles of f are of at most second order.
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Then f has at most a finite number of distinct poles, call them z,, . . ., z,, and there
exist 2n complex numbersry, ..., r,, P1, - - - » Pn,» Such that
_1 1
X.r. = 0 and (z)=2« +Z.p;, —
j 'y f 'j z -z j Pj (z_z]_)z

Moreover

def
(@ p(f,o0) = lim z2f(z) exists, and p(f,00) =Z; pj+2 rjzj

Z —00

def
) {f} = lLm [dzf(z)exists
-0 )
R —>00

where I, p is the complement of U {z |z —z;| <€}u{z:|z| 2R}, and
J—
{_f} = 2n EJ rj Z’ .
In the sequel, we shall refer to this class of functions as M.

Theorem 4.6: Let (Z,,t 2 0) be a complex Brownian motion started at z,, and sup-
pose that zy, z,, . . ., z, is a finite set of distinct points in C. Suppose that f is a
complex valued function such that

(i)  in a neighborhood D; of each point z, . . ., z,, and for z € Dj\{z;},

f@) = k@ +pj——

where h; is integrable in D;,

(ii) f is bounded and measurable on the complement of the union of these neighbor-
hoods,

(iii) in a neighborhood Dm of oo,

f@z) = hyppy + 8(2),
where h” is integrable in D_, g is holomorphic in D _uU{eo} and
lim z g (z) = 0; we denote p_= lim zzg(z). Then

Z—00 Z—00

def
1) {f} = lim [ dzf(z) exists, where I, g is as in Lemma 4.5
£—0 re'k

R—>co
t

2) Ast —> oo, -loz?fds f (Z) converges in law towards
0

1 1
2_1c{f}A+«F ]pJA +‘Ep°°A+,
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where the (n + 2)-tuple (A, A, A,;1 < j < n) is distributed as indicated after
Theorem 4.1.

Remarks: 1) The case where f is bounded and integrable on the entire plane is a
particular case of Theorem 4.6. Then {f} =fc, p; =p_ =0, and we recover the

Kallianpur-Robbins law (1.a)*.
2) In the case when f € M,,

pj = im ¢ - z))*f(z); p_ = lim z2f(z).

z2zj Z 00

Then, from Lemma 4.5, the limit variable in Theorem 4.6 may be written as

1 _ 1 1 ,;., 1
(4.0) z (—? G A+ A,) +%p; (7_£A1+ 7_£A+).
Proof of Theorem 4.6:
a) We may choose € so small and R so large that:

_ 1 1

her(z) = f(z)-Zp; (z_—zj)z L2215 = P“? L 2R

is an integrable function.

Therefore, the Kallianpur-Robbins law combined with the illustration of Theorem 4.4
given above yield the second part of the theorem, with 3!1? {f} replaced by

1
E jcgg he g (2).
b) The first part of the theorem and the equality: {f} = j_d_z heg (z) are prbved by
C

remarking that for €’<€ and R’ > R,

jjmg = kj'rhe,k @)dz ——> Lhak @)z O

R’'>0c0

The following Corollary of Theorem 4.6 plays a key role in the study of the speed of
convergence of renormalized local times of intersection of complex Brownian motion
towards Varadhan’s renormalization, which is undertaken in Yor (1987). This Corol-
lary exhibits a family of functionals of complex Brownian motion whose limits in law
are the random components in the linear combination (4.n).

Corollary 4.7. The C2 -valued variable

(2[5 —3 ds

j 2 j’ i
logt g~ (Z, —2)Z; "logt g (Z, - zj)z ’

1sjsn)

converges in law towards
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A,
(—z—,% ok ‘I—(A_+A+) 1<j<n)

with the same notation as in Theorem 4.6.

Proof: Letpu, ..., Hy, Vib - - ., V, , b€ 2n complex numbers. Then

C P (p—H— L
&= E (o=, +vig zj)z)

belongs to M, and r; = l;, p; =V j- The result now follows immediately from the
remark following Theorem 4.6. O

Additive functionals derived from Singular Integrals

We now apply Theorems 4.1 and 4.4 to the asymptotic study of

t
[ds &f)Z,)
0
where f : € — C is a bounded Borel function with compact support, and

Kf (z) = principal value of jg; f € kl((z _é I;)
z —
with £ : V — C a holomorphic function defined on a neighborhood V' of the unit disc,
such that

(4-0) kC = 0.
In the particular case k (z) = z, Kf = Rf is the (complex) Riesz transform of f.

Theorem 4.8 Assume that the above hypothesis on k and f are satisfied. Let
fe=[dEf (§). Then

t
(4p) li [ds Kf @) —>VTfclkly I d¥, 1,50y
0 t—oo

where 7y is a complex Brownian motion independent of B, and 6 = inf {s : B, = 1}.
Remark:

(i) Our motivation for this theorem comes from the study undertaken by T. Yamada
(1986), who shows

(— deHf(B )t 2 0) (fRH,,t > 0)

A > oo

where (B,) is now a 1-dimensional BM, f : R = R a bounded Borel function with
compact support, fg is the Lebesgue integral of f over R, Hf the Hilbert transform
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of f, and
t

. ds
H - llm —— 1 .
r =1 ong 18129

(ii) In comparison with Theorem 4.2, only the ‘‘large’’ component featured in the
limit (4.m) is present in (4.p). This may be explained heuristically by the smoothing
out of singularities at finite distance by the kernel K. '

Proof of Theorem 4.8:

1) We only need to show that, for r large enough, and z, such that |z, |<r,
2, # zg, we have

t t ’
1 fc k((Zs — z4))
4.9 —— |dsKf(Z,) ~ ——\|ds1,, _ T
q logt£ s t 00 l0E1 § (UZ, —z4|>7) |Z,—Z*|2
Indeed, once (4.q) is proved, then (4.p) follows from Theorem 4.2.
2) In order that (4.q) be satisfied, it is sufficient that the function of z
k((z -z
Fr0s@ = l4; sy <nKF @ + 1z _ 1<y (KF @) "fCH)
T L%
belongs to L1 ( C,dz), and that its integral with respect to Lebesgue measure be 0.
3) We first show that F, , e L1(C,dz).
Firstly, the function z — 1, _ Z4l< r)Kf (z) belongs to L2( C,dz), hence to
L1( C,dz). Secondly, we have

f gle(z)—fc"I“’Jﬁl
Z

2
Iz —z,0>r =z,

< | dfariren|tezn)) kG oz0))
Iz —24]>r |z - &} |z =z 4l
For clarity, we write kg (z) = k((z — §)"). Then, we have
| ke(z) N k, (z)
|z ‘§|2 |z =z,
ke(z)—k, (z - - -
I §(|,)_gz|;( Wooa o - Ik,,(z)llg itl(—lzélzl?-l-:le &b
Let A be such that supp (f) < {€:]1| < A}. Then, we have
(A +]z,D) 2lz|+A +1z4])
Uz1=-AP0z]-|z4)?
1 I z-&  z-z,

lz —ER " 1z =&l 1z —z4l

~ | s1+11, where

II <x

I <s¥
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o lzl18 -2y [ +1811z = z4]
|z _§|3 [z =zl
<¥ 2] (A +|z;|)+A(|z|+|zg&
Az1-AP (z]-lz4D)

where x = Is1|1p1 lk (z)], and ¥’ = 'Sl'l=pl |k”(z)]. It is now immediate from these esti-
Z = z

mates that

[ de|kf@)- X E2a)) | c oo

1z =z4l>r |z—z*|2

4) We now show

(4r) |F,,;,2) = 0.
From the dominated convergence theorem, we need only prove
(4r) lim [ F,@d =0

M—oo |z -z, |<M
Now, for any M > r, we have, using (4.0)

dzF,, )= [ dzKf(2),
|z —z,l<sM lz—z,0sM

and, in fact, we shall prove
@s) | akfe) =0(s) as Moo
|z -z,]sM ’
We may as well assume that z, = 0, which is done by translating the function f and
changing z into z — z .
Consider M as fixed for the moment. Then

dzKf(z) = lim [ dz | def e K@ =89)

lz1<M &0 ;<M 1z-€]2¢ lz - &2

= lim [dEf @ Hey @),
where

14z < M)

k((z —&))
He y©€) = d __(____é__
e,Mg |z-J|2£_z |Z'§|2

Now, the trick is that we also have

Hey® = _J dg X =5))
|z-€l2¢

lz —EP (l(lzlsM)_ 14, —§|sM))-

We introduce a fixed A > 0 such that supp(f) < {z:|z] <A} We now remark
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that, for |§] < A,

gzismy = 1gz-grsml < lor<iz -grsm+1gp + lr 181512 - g1 s My
éonsequently, we have, for |[E] < A,
T
M - A
The right-hand side does not depend either on € or &, so that we have finally shown
“4.s). O

|H p ©)] < (#[(M +AY -M?]+ [M2— (M - a)?]) sup 1k ()1



5. Occupation times of circles
Let
: t ,
A(rt) = [IRs<r)ds, where R, =|Z]|,
0

be the occupation time of the circle of radius r centered at O, up to time 7 by the
Brownian motion Z starting at zo#0. The Kallianpur-Robbins law (l;a)* describes the
asymptotic distribution of A (r,t) as ¢t — oo for each fixed r. But a more interesting
result is obtained by letting » vary as a function of . Put r = e2* as usual. Antici-
pating that A(-,e?*) will behave like A (-,T(e*)), where T(r) = inf{t : R, = r}, con-
sider that by the occupation density formula for local time (A.7)*,
r(h)
A(r(h),T(e*) = [ LR,r.T("*)dr
0

where by (A.8)* and (B.2)":
L(R,r,T(e")) = rL(logR,logr,T(e"))
=rL(B,logr,c;)
= hrL B™), (logr )k, 5(BP)).
This suggests taking r (k) = ¢®* to obtain

eall

A@E®,T(e) = [hLP®,dogryh,c(B®))dr
0

She?a [L(BMa-y ,cB®))2he 2 .
0

The continuity properties of Brownian local time show that the supremum over all a,
of the difference between L (B*),a,o(B*))) and the integral in this last expression,
tends to O in probability as # — co. That is to say, the process

(24 (e T(e?)) I he?h@ —oo<a<oo)

viewed as a random element in the space C [(—oo0,00),R], with the topology of uniform
convergence, has log scaling limit the Brownian local time process

(5°a) ( L (Baa 76)’ —oo<a< °° )

According to the Ray-Knight theorem, the distribution of this process may be
described as follows. Let X(v) = L(B,1-v,0). Then, the process X is an inhomo-
geneous Markov process, homogeneous on each of the intervals (—oo, 0], [0, 1] and
[1, o0), with



X(v)=0, v <0,
X(v),0<v £1) the square of a two—dimensional Bessel process, and
X (v), 1£v <oo) the square of a O—dimensional Bessel process.

See for example Walsh (1978).

Transforming in the usual way from time T (e*) to time e2*, and putting 4 = %logt,
we obtain the following log scaling law:

Theorem 5.1: For a Brownian motion Z starting at z(#0, and A (r ,t) the occupation
time of the circle of radius r by Z up to time t, as t — oo the process

{ 4A (2972 1)

, —oo<a <oo}
t%logt

(5.b)

converges in distribution in the space of continuous functions with compact support,
with the topology of uniform convergence, to the Markov process

(5.) {X(1-a), —oo<a<oo}

described above.

Remarks.

@) For each ¢ >0, the process in (5.b) is strictly positive over the random interval
I, <a<J,

and otherwise identically zero, where

I, = Oérsy; logR Nogt, J, = Ogls’tIOSRs/IOSt-

The same is true for the limiting process (5.c), for

I =1 y J =1
ot B

According to (8.d2)*, I, converges in distribution to I, and J, to J, which
strengthens still further the already strong mode of convergence.

(ii) The theorem suggests that the functional
G,(t) = 2A (192,t)11°
must be logarithmically attracted to some process Y,. After writing
G, (1) =T, (U,.0),

the process Y, can be calculated as in (8.t)* as

S-2
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(iii)

(iv)

Y, @,8) = lim T, ®(u 4

h—o0

After some calculation, it emerges that

Ya (u ,C) = L(B,a Eu ,u )’
where B, = O.iup Bs. The convergence is uniform on compacts, as required
<s<u

for Theorem 8.4%. The appearance of the factor B, in (5.d) is explained by
the necessity for y, to commute with Brownian scaling. (See Proposition
(2.1)). Interestingly, the factor B, is suppressed at the time u = ¢ which is
relevant to the asymptotics of G,(¢) for fixed times ¢. But this factor appears
in the asymptotics of G,(T,) as h — oo for any family of times T, in Table
8.2*, whose asymptotic time is not 6. The limiting process as a varies seems
then to be rather hard to describe explicitly. Some related questions are taken
up in Le Gall-Yor (1987).

The previous remark and Theorem 8.2" give a result for occupation times
Aj (r,t) of circles of radius r centered at points z;, j =1, - --,n, distinct
from the starting point z. The limit processes X;(v) are then given by

X;(v) =L 1-v,0p))
where the B/ are the real parts of the linked asymptotic complex Brownian

motions ¢/, denoted {/*° in Theorem 6.2%. From the description of the {/ in
that theorem, the processes X f (v) are identical to a common process X _(v) for
v £1, and move conditionally independently given their common value X (1)
for v21. The value X (1) is identical to A, the asymptotic local time vari-
able governing the Kallianpur-Robbins law (1.a)*.

If we let
t
Qi(r,t) = t[d(bj(s)l(lzs ~zj|Sr)ds, —oo<r<oo,
a similar argument shows that the above mentioned convergence holds jointly
with that of the processes
(20;(t*2t)/logt, c0<a<eo, j =1, ,n)

which converge in the same sense to
]
( IdOsjl(Osta), —oo<g<oo, j=1,""",n),
0

where o; = o(B/). Fora =1 and a = 0 this includes the previous results for

&3



big and small windings. If we let a = 1-v as before, and write
Cj

0;(v) = [d6j1(B{<1-v),
0

then it can be shown that

¢;(v)=0, v<0

=B ([X,(u)du), 0<v<1
0

1 v
= B,( [X,(u)du )+B;( [X;j(u)du ), v21,
0 1

where the processes X, and X; were described above, and B,,B;, - - - ,B, are
n independent Brownian motions independent also of the processes X, and

X;.

sS4
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6. Asymptotic theorem for square integrable martingale additive functionals.
Kasahara-Kotani (1979) show that if f : € — R is a bounded Borel function such that

(6.2) [dxlx|*|f (x)] < eo, for some & >0, and [dxf (x) =0
then
t
(6.2%) (logt)~12 Idsf (Z,) converges in distribution as ¢ — co.
0

Messulam-Yor (1982) prove that if 4 and v are bounded Borel functions from C to
R, and

(6b)  [dzu*(z)+v(z))<oo.
then

def t
(6.b%) (log t) 12 M = (log )™V [(u (Z;)dX, + V(Z, )dY)
0

converges in distribution as ¢ — oo,

We first remark that the two results are closely connected. More precisely, the limit in
law for (6.a’) can be obtained as a consequence of (6.b’). Indeed, recall that if

glx)= %log Ix], then: lAg (x)=8¢(x), in the sense of Schwartz distributions. There-

2
def
fore, if F =f % g, we obtain -;—AF = f, and Itd’s formula gives:

t t
(6.0) F(Z,)=F Zo)+[(VF (Z,),dZ)+ [ f (Z;)ds.
0 0

Replacing z by (z —zp), we may assume zy=0. Now the hypothesis: Idxf x)=0
implies:

F@Z) = Ldef ()loglz, - 2| —> 0
‘ T ! ‘/t_ t—oco .
Hence, we deduce from (6.c) that:

1 ( p P
4 ——([asf @) + [(VF(2,),dz, :
(6.d) aog:)“’-(g f (Z,) + g( @) dz,) —>0

t—o0

The following theorem gives the asymptotic distribution of the stochastic integral
featured in (6.d), hence also of the Riemann integral featured in (6.d).



Theorem 6.1:
Let zy, ..., z, be a finite number of distinct points in C, and let u,v: C - R be
two bounded Borel functions such that IQ U2+ v¥)(z) < oo. Then,ast — oo,
(2 )"2 M
logt !

converges in distribution to:

AV2{n(u) +x ()}

where A, M, and Y, are independent, A has the same meaning as in Theorem 4.1, and
1N and ¥, are two independent gaussian measures on R?, with intensity dz [ 2m.

Moreover, this limit in law holds jointly with all limits in law already encountered in

- - .
the present paper, and M and 7 are independent from the vectors {, T = (T'/;
1 <j < n)and T, featured in the limit laws stated in Theorems 1.1 and 4.1.

Proof: 1) By linearity, it is sufficient to show that, for a given pair of functions u,v

12
which satisfy the above hypotheses, the family of variables (-l-ézg—t) M/**¥ converges

in law, as t — oo, towards:

1
FN I (u? + v3)1n2 "1}( ) 3,

-_)
where 8 is a one-dimensional Brownian motion which is independent of the vectors (,
=
I'_and T',.

2) Call (i*Y; ¢ = 0) the real valued Brownian motion such that
uyv - u,v
M, B M, (t 20).

Thanks to the Kallianpur-Robbins law (l.a)*, we know that:

2 d
—_— < MEY> — 2 2
gt <MY — (G A ENA
so that it now suffices to show:
d
(6.€) E%*oed; vty 5 (% 0ed;v)
h—oco
where:

(i) A is the finite set of conformal martingales (N®; o € A) of the form:

t
iz,
=

s zj

lzepiy, 1sjsn,



,&

,Rr

I(ZeDl)f] (e"b'), 1<j<n, where (fj)c =0,

t

{ Z. - 1(z D})
t

{ Zi -

17, 1(2501 g(e '), where go =0.

(ii) foreverya e A, F,“ is the complex Brownian motion associated to N%;

(iii) for every o € A, 8% is a complex Brownian motion, Vv is a real-valued Brownian
motion and 8% (o € A) and v are independent.

3) To prove (6.e), we shall apply the results of the appendix to the family of mar-
tingales:

1
';l-N and —hT/;M as h—)OO,

where we have dropped the superscripts o, u,v.

With the help of the appendix, what we have to prove is that

<N>, | ,
1
i (j) |[d <N,M>| : 0,
which is easily seen to be equivalent to:
1 P
(6.9) ——ﬁj|d<1vM>|—>o

<N>,
<N>,

Since we know that: converges in distribution, as ¢ — oo, towards a strictly

(log?)?
positive random variable, (6.f) is equivalent to:
1 P
(6.8) ——£|d<N,M>|—->O
g (108 t )3,2 : t—o0

4) For simplicity, we may assume that z; = 0, so that we obtain, in all cases:
def

1

d<M,N>| < —(ul+|vD(Z)dt = ——w(Z)adt,

| s Qi+l A
where: w(z) = (u | + |v])(z). Hence, it suffices to show

t
1 ds

(6.h) E w(Z)] — 0.

(log1)*? [ilzsl 0] =300
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This is an immediate consequence of the following proposition, which is a close rela-
tive of Proposition 4.2. O

Proposition 6.2: Let w: € — R, be a locally bounded Borel function. Then, there
exists a universal constant ¢ such that

172
wZ)]sclim ([ dzw?())

r—oo (|z|2r)

m
o (logt)3’2 ” 1Z, |

In particular, if It_lg w2(z) < oo, then

t
1 ds
lim E w(Z)] = o.
100 (logt)? [£ 1Z | @]

Proof: Thanks to the Kallianpur Robbins law (1.a)*, we may restrict attention to
¢ ds
Jyw)=E [J’-I-Z--—I lgz,1:0yW @) ], with R > Jz.
0 s

Then, using the same notation as in the proof of Proposition 4.2, we have, for any
R'>R:

oo 2n

io _ 12
jdr fdew(re"e)A(———Ire‘ 5 2ol )
R 0

Jy (w)

©o 2
< jdrjdew(re‘e)A((—lz-(i)
R 0
k= ion . ( ® =120D?
< [dr [dow(re )A(————-)
R 0

([ awo) (; o Az(E:_E’i'l.))

|z |2R’

Now, it is easily seen that

logt t—o0 2T

((R "|Zo|)2) - 1

and

zol)?
—_t_) converges as t—o0,

2(—|
j = ema? (—;

(log 1) R

so that we obtain

lim —-—1-—-—1, w)<c ( I dz w2(z))ll2
t—o0 (1°gt)3,2 lzi2R*
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The proof of the inequality stated in the Proposition is now completed by letting R’
tend tooco. [

In fact, Proposition 6.2 appears as a special case (p = 2) of the following set of ine-
qualities (6.i) indexed by p € (1,00), while Proposition 4.2 is the limit case p = 1.
The only change to be made in the proof of Proposition 6.2 in order to prove (6.i) is
the replacement of the Cauchy-Schwarz inequality by Holder’s.

Proposition 6.3. Let w: C — R, be a bounded Borel function, and let p, q satisfy

LA 1, with p € (1,00). Then there exists a universal constant c, such that

P 4 | P

t
(6.1) lim E wiZ,) ) £ c, lim dz wi(z)
te0 (log#)! * 1P (glz,l”" 2 ”r-m( mjz, )

In particular, if j dz wi(z) < oo then the limit of the left side of (6.i) as t o0 is 0.

Apart from those examples considered already, we do not know any interesting appli-
cations of these inequalities, e.g. to prove asymptotic independence, because we do not
know how to get limits in law for additive functionals with normalization by (logz)*
except for o = 2, 1 or 2.

Application of Theorem 6.1 to Winding Numbers in Annuli

Consider again the winding processes ®; for a finite number of distinct points z;,
1 € j < n, distinct also from the starting point z, of the complex Brownian motion Z.
Theorem 6.3 (Messulam-Yor (1982)*, Theorem 4.3)

1) For each j, there exists a jointly continuous version of the family of variables

) def ¢
MiGt,a) = [lugg -y <nd®i;t20,ae 01l
0

2) As t—oo, the n-tuple of C(0,1] valued random variables

( (&

converges in distribution towards

logt) Mit,a),ae @1 1) <n )

A?(adg,,ae @l 1<j<n)
where A is as defined in Theorem 4.1, and (a}; 1<j<n,t 20)is a Gaussian
process independent of A with covariance determined by the identity
(2 - 2;)(z - z;)
2"A(. a,b,j) IZ - z;Plz "ZIZ
where A(i,a,b,j)={a <|z -z|<1}n{b <Lz - zj| <1},

E( a—loga oz logb)
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and usv is the scalar product in R* of u and v. In particular, for each j,
(a{, t 20) is a standard Brownian motion, and o; and o; are independent if
lz; - zjl 22

Remark. We prove this result here, since in Messulam-Yor (1982)* the proof of the

first assertion was skipped, while the proof of ﬁghmess given there is in error. The

last line of that paper appealed to the finiteness of E (o”’)for a p > 1, where

= inf{¢:B, = 1}. Of course, this is wrong. As is well known, E (0°’?) < oo iff

p <l

Proof. It is natural to break the proof into three parts.

(i) The joint continuity 1).

(ii) Convergence of finite dimensional distributions in 2). This is an immediate appli-
cation of Theorem 6.1.

(iii)For each j, and each € e (0,1), tightness of the laws of
1 .
————M/(t,a),ae[gl]), fort 2 2, say.
((logt)l’z (¢.a), a € [e,1]) y

Both (i) and (iii) can be established using Kolmogorov’s lemma. To do so, it
suffices to show that for each € e (0,1) there exist p > 0, 6 > 0, and a constant ¢
such thatfore <a <b <1

$ E( supMi(s,a) - MI(s,b < — b|*S,
S gy E S = MIG,) S cle ~b)

Using the Burkholder-Davis-Gundy inequalities, it suffices to show
(6.k) sup

2(logt)”’2 [(I i “SIZ.-z,ISb)) n] < cla - b|1*3,

where ¢ changes from line to line. This is an immediate consequence of the fol-
lowing estimate:
For each n = 1,2, -+ and R > 0, there exists a constant C, p such that for every
Borel function f : CoR_ with support in {z:|z] SR},

nr2
6J) supE[(-l—g; [asr@,)] s Co,z (Jrf %))

Consider the case n = 2. By the Markov property, and using the notation (2.h),

t 2 t
E[({dsfws))] < 2E[fdsf<B,) [ af @B, +y)A0yPir)]

IyIS2R
12

< 2E[I a5 £ @] (Jor%07) ([ ayslayPiny)

IylSZR
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! 172
< Crog)E[ [as f 8] ([arr2e)
0

and the same estimate leads to (6.1) for n =2, and finally for each n by repeated
application of the Markov property. O



Appendix: An asymptotic version of Knight’s theorem on continuous orthogonal
martingales.

1. Introduction.
Let (M™) and (N") be two sequences of continuous local martingales defined over

a right continuous complete filtered probability space (2, F, (F,);,0,P) , and such that
for every n:

Mj = N} =0 and <M">_ = <N">_ = oo,

Let p'sinflu:<M">, >t} and v/'=inf{lu:<N">, >t} be the right-
continuous inverses of the increasing processes associated respectively with M* and
N"™. According to Dambis (1965) and Dubins-Schwartz (1965), B! = M"™ (u*) (¢t = 0)
and C* = N" (v/*) (¢ = 0) are real-valued Brownian motions.

The aim of this appendix is to refine criteria depending on < M"* ,N" >, < M" >, and
< N™ >, and stated in AL* and Le Gall-Yor (1986) which ensure the convergence in
distribution of (B",C"), viewed as continuous R2-valued processes, towards either
(B,v), or (B,B), where B and y are two real-valued independent Brownian motions. In
the first case, we say that B" and C" are asymptotically independent, while in the
second case, we say that they are asymptotically identical.

The criteria obtained in this appendix apply not only to the asymptotics of winding
numbers and connected questions, but also to many studies of limits in law such as are
to be found in Papanicolaou-Stroock-Varadhan (1977).

2. Asymptotically independent Brownian motions.
Our main result is the following
Theorem 1: If, for every t,
lim <M",N*>. = lim <M",N">,, = 0
n—oco n-—oo
in probability, then B™ and C" are asymptotically independent.
Proof: 1) The laws of the one-dimensional processes B" and C" are all equal to the
one-dimensional Wiener measure. Therefore, the laws of the sequence (B",C") of
R2-valued continuous processes are weakly relatively compact, and it remains to prove

that the finite dimensional marginals of (B",C") converge weakly towards the
corresponding marginals of a 2-dimensional Brownian motion.

2) Let 0=z9<t;<---<t, =t and consider real numbers fy,..., f,_; and
81 - - - 8p-1- Weset:

Al



f =i,y B () = L[ Bg, - By)
& = z’fg.i 1(‘ir‘j+1]; C" (@) = zj &j (ors -Ct'jl)-

j+1

Next, observe that, if we set:

s s
Ur = [f(KM">,)dM} and V! = [g(<N">,)dN},
0 0 :

then:
B™*(f) = U" and C"(g) = V"
Therefore, the identity:
E [exp{i (U" +V°’;)+-%< ur+vr> 11 =1
yields:
(2.2) E [{expi B"(f)+C"@NIH"] = exp—%j(f%g’)(r)dt,

where:
H™ = exp[f (<KM">;)g(<N">)d<M",N">,.
0

3) We now remark that:

— on one hand, the estimate:

H" < exp(If 218 1)
follows from Kunita-Watanabe’s inequality, and

— on the other hand, since

H® = exp(}%f} 8k (< Mn,Nn >“'ll AVE

41 k41

—_ < Mn’Nn >|J'l: v V,:)l(j.l.,; v V‘: < “";-.,.1 A v‘:H))
the hypothesis clearly implies that H™ converges to 1 in probability, hence in L!, by
application of the dominated convergence theorem. Looking back at (2.a), we find
that:

lim E [expi B"(/) + C"(g))] = exp—— [/ +g) @) dk,

n—oo

which is the desired result. O

Of particular interest to us, is the case when M* = % M,, and N/ = -l-N,, since
n

n'

then the one-dimensional Brownian motions B” and C" are obtained from B and C by

A2



A3

the Brownian scaling operations

B} = -‘jl—;B,,,, cr = Tln_-c,,,.

We then obtain the following

Corollary: If M and N are such that:

(2.b) lim <M,N>/<M> = lim<M,N>/<N> = 0Oas.
t—o0 t—o0

then B" and C" are asymptotically independent.

Proof: We remark that p' = p(nt), and v;* = v(nr), so that (2.b) gives for every
t>0:

1 a.s.
SM"N">p, = —<M,N >y —> 0,

n -0

and likewise for v instead of p. The conclusion now follows from Theorem 1. O

3. Asymptotically identical Brownian motions.

We now present analogues of Theorem 1 and its corollary in the case when B"
and C" are asymptotically independent; however, the contents of these are the same as
in AL* and Le Gall-Yor (1986), to which we refer the reader for proofs.

Theorem 2: If for every t,
Iim < M" -N">u‘. = lim <M" _N">v," =0

n-—oo n—oo

in probability, then B™ and C" are asymptotically identical.

In the case when M} = —J-I_—M, and N = %N,, we obtain the following:
n n

Corollary: If M and N are such that
lim<M-N>/<M> = lim<M-N>/<N> = 0as.

t —oo t o0

then B™ and C" are asymptotically identical.
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