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1. Introduction

Consider the linear model with several observations per cell, which

may be written

{ i=1, »1 %
s = U; te,., n. =N ’ (])
13 T [ R E
in which the eij are i.i.d. continuous random variables with density f
satisfying
8 = j:n fz(x)dx < ® and 02 = Var(e;:;) < o (2)
ij ’

-00

Here M is a measure of centering for the ith of I total cells, Yij
is the jth of the n, observations in cell i, and N is the total
number of observations. Suppose the Mis instead of being functions of

one or more qualitative factors as in the analysis of variance, are thought
to depend on the I 1levels of p > 1 quantitative variables %

P
Wy = By * kzl X5 1By 2 (3)

in which the Xj are known regression constants (the fixed-effects model).
There are several ways in which this model arises in practice:
1) When the independent variables X, are conceptually continuous

but are made discrete by the measuring process;



2) When higher accuracy is desired at some values of the independent

variables than at others, and the design clusters at those values;

3) When a pure error estimate is desired; and

4) When optimal design considerations call for replication at specified

values.

The classical least-squares estimator is derived under the assumption
that the specific error density f is the normal, and it possesses various well-
known optimality properties in that model. When the data contain outliers
or gross errors, or more generally come from a distribution with tails heavier
than those of the normal, it is also well known that the classical procedures
can lose their optimality and perform poorly both in terms of efficiency and
of sensitivity to extreme observations. One method of dealing with this
which has gained some acceptance is the data-analytic approach, in which
graphical and numerical methods are employed to detect the ways in which the
data do not meet the classical assumptions and the data are modified appro-
priately (through transformations, for example) before the classical tech-
niques are applied. Another approach involves the use of robust methods which
are appropriate under broader assumptions and so may be utilized directly
with the original data. The application of one type of robust methods, those
based on ranks, to problems of estimation and inference in the regression
model with several observations per cell is investigated here.

There is an extensive literature devoted to rank-based regression esti-
mates in the case n; = 1, with principal developments by Theil (1950),

Mood (1950), Adichie (1967), Sen (1968), and Jaeckel (1972). Of these methods

the best in terms of efficiency is Jaeckel's, which will be discussed in



detail below. A1l of these methods in the case p =1 rely on the following
idea: each choice of two points (x,y) with different x-values provides an
estimate of the slope parameter B], and some estimator of location applied
to the set of all such pairwise slopes should yield a reasonable composite
estimate of B]. Asymptotic work on these methods involves letting both I
and N become large and requires some growth conditions on the regression
constants  x., . Most of these estimators can be applied to the model (1),
but none of them take account>of the special character of models with several
observations per cell. The estimator developed below is different from the
previous rank-based estimates in two ways -- its form is based on taking pairs
of cells rather than pairs of points, and its asymptotic properties are found
by letting the n; > while holding I constant, simplifying conditions on
the X5k Other asymptotic schemes, for example letting both I and N
grow but still requiring that I/N - 0 as in Huber (1981), are not pursued
here.

The above continuity assumption on the eij and consequently on the
Yij is made to avoid technical complications involving ties in the ranking
of the data. When ties are present in linear models data they are often due
(as in case 1) above) to the measuring process having made a conceptually
continuous v;riable discrete, and in such situations, provided the size of the
roundoff is not large, the methods to be discussed below may be applied with
1ittle harm in acting as if the rounding had not occurred (cf. Lehmann (1975)).
The finiteness of 6 and 02 are needed because division by 1/6 and 02

play a role in what follows; these conditions place little practical restric-

tion on the use of the methods.



Rank-based estimates of the regression parameters in the model (1) can
be found by extending the Hodges-Lehmann method of robust estimation to this
setting. The main idea can perhaps best be seen in the context of the sub-
model p = 1; extensions of these concepts to the case p > 1 are considered

in section 3 below.

2. One Independent Variable

It is convenient to change the notation for the parameters and the values

of the independent variable in this case: suppose that

My = oo + Bxi s (4)

where the X; are known constants, all distinct. One sensible approach to
the estimation of o and B is to estimate B first, by B, say, and then
to estimate o from the residuals Yij - Exi.

An intuitively appealing estimate of B8 can be found with no additional

assumptions about the errors e by considerihg differences of cell centers

ij
Note that for i # j

U.i-

) (5)

H: = H: = B(x,i - X

j j) and 8 o= (- uj)/(xi - X,

J
so that each pair of cells can give rise to a separate estimate of B through

estimation of My = Wy and then one composite estimate of B8 can be found



by combining these separate estimates in some way.
The simple Hodges-Lehmann estimate of the My - “j’
Dy = med{vik- Vgt k=l coangs 221, ,nj} , (6)

the median of the set of all pairwise differences among the observations in
cells i and j, is unsatisfactory, since these estimates do not satisfy

the linearity constraints which the My - “j themselves do:
(U.i - UJ) + (Uj - Uk) = (“i - Uk) s (7)

but

Dij + Djk F oDy - (8)

This makes them unsuitable as a basis for linear inference about the

b =@ + Bxi and thus about o and B. Lehmann (1963a), when considering
applying the Hodges-Lehmann estimation method to analysis of variance models
with several observations per cell, proposed adjusting these raw Hodges-

Lehmann estimates and estimating My - “j by

Wiy = Dy -Ds (9)

where



(10)

The linearity problem is thus removed, at the cost of offending intuition
by using observations in cells other than i and j to help in the esti-

mation of My - M. Lehmann pointed out, however, that the size of the in-

J
fluence of cells other than i and j on the estimator of My = W tends
to 0 in probability as the sample sizes increase. A different drawback
of this estimation method was noticed by Spjgtvoll (1968) -- cells with un-
equal numbers of observations get equal weight in the calculation of the

D%. Spjétvoll suggested several ways of remedying the situation, the simplest

of which is to use

. _ a1
W,. = D, - D, , D, = N §

nD . (11)
i k=1 k-ik

This is the form of Hodges-Lehmann estimation which is used in what follows.
Thus a Hodges-Lehmann-type estimate of B based on cells i and j is
simply

B.. = wij/(xi - X:) . (12)

iJ J
Several reasonable methods of combining these separate estimates come
to mind, including taking their weighted average or weighted median or even
calculating a weighted one-sample Hodges-Lehmann estimate based on them. If
one is looking for a good compromise between robustness and efficiency, how-

ever, perhaps the best choice is a weighted average, since a good degree of



resistance has already been built into the éij themselves and any further
such measures might serve only to decrease the efficiency. The composite
estimate studied here takes the form

-1 1
-* - A
° 1‘}=:1 j=zi:+1 Yij Byy (13)

in which the weights Y;; can be chosen to minimize the asymptotic variance

J
of the composite estimator B* while satisfying a constraint resulting in
asymptotic unbiasedness of the estimator.

Perhaps the simplest realistic asymptotic theory is developed by letting

the n; > in such a way that
n/N - p; € (0,1) forall i=1,...,I . (14)

Under these conditions the asymptotic behavior of the Dij’ the statistics
that B* is based on, was worked out by Lehmann (1963a); he found that the

rank of the asymptotic covariance matrix of the Dij is only (I-1), even
though there are <r£ ) distinct pairs of cells i and j with 1 # j.

This is because, despite the fact that for finite n; the Dij do not

satisfy linearity constraints of the form

D.. +D.,, = D (15)

ij Jk ik

discussed above, such constraints are satisfied asymptotically (see (24)

below), so that in the limit knowing D]2 and D]3, for example, makes



D redundant.

23
Therefore, it is enough to characterize the joint asymptotic behavior

of the proper choice of (I-1) of the Dij’ for example by choosing a
reference cell, cell I, say, and working with the cell pairs
1), (2,1)y ..., (I-1,I). Lehmann defined for j =1, ... ,I-1 the

quantities
Vi o= N0 - (- )] (16)
and showed that

(Vys ooe V) ) =2 N(0,E) (17)
with § having diagonal entries for j =1, ... ,I-1

lim var(V,) = oﬁ(l/pj +1/p)) (18)

N>

and off-diagonal entries for 1 s i #j < I-1

lim cov(Vy,V,) = cg(l/pl) , (19)

N>

in which

o§ = 171202 = 112(rF9)2 . (20)



'oﬁ is the rank-analogue of the underlying error variance 02 in the

Tinear model; their ratio

er.c(f) = o?/ol = 126%( 1 £2)2 (21)

is the asymptotic efficiency of Wilcoxon-type rank-based robust methods rela-
tive to their classical counterparts, including the Wilcoxon one- and two-
sample tests and the Hodges-Lehmann one- and two-sample estimates based on
them. Table 1 gives some values of og and this efficiency for various
distributions.

Table 1. cg and asymptotic relative efficiency of Wilcoxon-type rank-based

methods to the corresponding classical methods.

Distribution f _ 02 og eR,C(f) = oz/oﬁ
Standard normal 1.0 1.047 0.9549
Standard logistic 3.290 3.0 1.097
«2 with 8 degrees 16.0 13.65 1.172
of freedom

Skewed mixed normal

(A = 0.75, uy = o, o = 1, 2.426 1.817 1.335
My = 1.9, g, = 2)

(x» = 0.82, u = o, 0 = 1, 3.558 1.714 2.076
Wy = 1.9, g, = 3.5)

t with 3 degrees 3.0 1.579 1.900
of freedom _

Any f - - 20.864
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The skewed mixed normal distribution referred to in Table 1 has cumulative

distribution function (cdf)
F(x) = el(x-uy)/oy] + (1-2)el(x-u,)/0,] (21.1)

where ¢ is the standard normal cdf.

Returning to the estimation of B8, the fact that the asymptotic co-
variance matrix of the D1j has rank only (I-1) means that it is sensible
in estimating B8 to base the estimate on only (I-1) pairs of cells. Con-

sider then instead of B* the estimate

B = 2 YjI BJI . . (22)

Expressing this estimate in terms of the Dij gives

I-1 I '
- -1
B = jZ] [YJI/(XJ - XI)] [N kZ] nk(Djk - DIk) ] . (23)

Now Lehmann also showed that for all j and k,

1/2 N1/2 (D

N D

ik - DkI) + op(1) , (24)

h)!

where op(l) as usual signifies a term which goes to 0 in probability as

the ng > . From this, since D'i = <D

h| ij?

172 5.

i1 + op(l) . (25)

5k~ Ord = M



and

I-1

VBB T D/ O xp] W2 D) w0y

J=1

Written in terms of Lehmann's Vj above,

I-

I
L [YJI/(xj - XI)] VJ + N i

J

But from (5)

(Uj - UI)/(xj - xI)

so, in order to get asymptotic unbiasedness of R for B8,

condition

I-1
h T

needs to be imposed. When this is done, (

1

this becomes

1
1 YJI[(uJ-uI)/(XJ 'XI)] + op(])-

= B,

27) becomes

the reasonable

I-
1/2,5 =
N'YS(B-B) = .Z] [YjI/(xj"xI)]vj + op(]) .

J=

This, combined with Lehmann's result (17),

N/2(3-p) —D o

then gives

2
N(O,VY ) ’

(26)

(27)

(28)

(29)

(30)

(31)
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with

vwoT e,
in which ¢ has entries for j =1, s1-1
Cj = YjI/(Xj"XI)

The problem thus reduces to that of minimizing 'v§ as a function of

Y = (vqps --- ’YI-l,I)’ subject to the constraint

where 1 is a vector of 1's and for j=1, ... ,I-1

This is a standard problem which can be solved, for example, by

(32)

(33)

(34)

(35)

straightforward application of Lagrange multipliers; the solution is expressed

in the fo]loﬁing well-known (cf. Rao (1973) section 1f)

Lemna 1. Suppose S = (S, ... ,S.) =2=N(0,f) with rank (1) = k
B— k

and let T =A'S= }§ Aisi so that T-J1>N(O,v2(k)) with vz(x) = 2'IA.

i=1 -t

The )\ which minimizes v2(§) subject to the constraint a'A =1 is
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= 17 a2 g7

(¥

Aopt

and the resulting minimum variance is v2() 1/a' t7] a .

-opt)
From this the solution to the problem above is evidently

Zopt . -opt

where

= -1 [ -1
Sopt = 1 Q/a $ e k4
and the minimizing variance is

2

-1
v = 1/a' § " a
Yopt - :

Now $'] has diagonal elements for j =1, ..., I-1,
-1 2
(t )s = (D- ; p-) (o] ,
Ji J g5 1 R
and off-diagonal elements for 1 <i #j<I-1

-1 _ 2
($ )ij = -pipj/GR

(36)

(37)

(38)

(39)

(40)

(41)
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After simplification the optimal weights work out to
() = pi(ximxg) T oyl - x)/o2 (42)
Yitlopt = PiVGTXC L PG TNOx o

and the minimum variance comes out

v = og/o (43)
Xopt R"“x
Here
o = % (x, - i)z | (44)
X k=1 "
is the limiting variance of the x-values,
X % X (45)
X = p:X, = lim x 45
=1 T e N
is their limiting mean, and iN is the mean of the N x-values,
- -1 I
xy = N Z n;X; (46)

In practice one of course would substitute ni/N for Py and use the

weights

I I
(YjI)opt = [nj(xj-xl) kZI nk(xj-xk)]/[N kZ1 nk(xk-iN)2 ] . (47)
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Note that these weights need not all be in the range (0,1); they need only
sum to 1.

How does the asymptotic variance (43) compare to that for previous rank-
based robust slope estimates? The best estimator in this class to date was
developed independently by Adichie (1967) and Jaeckel (1972), although Adichie
did not realize that his estimator had a closed-form expression and Jaeckel
did not recognize his estimator to be the solution of Adichie's iterative pro-

cedure. Rewriting the model (1,4) in more general form as
Yy = o+ Bx;+e , i=1, ... ,N , (48)
the Adichie-Jaeckel slope estimate is a weighted median of the set

LY D70 x)s (13) 3 x; # % | (49)

of all pairwise slopes, in which the weights are proportional to the absolute
distance |xi- le between the independent variable values. Adichie and
Jaeckel both showed that the asymptotic efficiency of this estimator relative
to the classical least-squares estimator is given by (21), and their asympto-
tic variance.expressions, when specialized to the model (1,4), coincide with
that (43) of ﬁhe above estimator R (22) with optimal weights (47). Thus
asymptotically the estimator (22) and Jaeckel's estimator are equally accurate.
It is interesting to contrast the above rank-based estimator (22) with
Jaeckel's in terms of their method of estimation, since both are in a sense

generalizations of the two-sample Hodges-Lehmann estimator. The idea behind
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the method described here is to compute many robust estimates of B first,
by working with pairwise slopes, and then take a nonrobust (weighted) average
of the separate estimates; Jaeckel's procedure in effect does the same thing
but in the reverse order, by constructing many nonrobust pairwise estimates
of B and then taking a robust average (weighted median) of them. It is

not intuitively obvious that the two operations being performed should com-
mute in such a way that the results have the same asymptotic behavior, but it
is seen that in this case they do.

The above results are summmarized in the following

Proposition 1. In the model (1) specialized to (4) above, let the

n; > in such a way that

ni/N + p; € (0,1) forall i=1,...,I . (50)

Then with weights = (Yqqs eoe sY ) given by (47), the estimator
1 11 I-1,1

I-1
B = Z] [YjI/(xj‘xI)] ij ’ (5])

J:

in which the wij are as in (11), is asymptotically normal with (asymptotic)

mean B and variance cﬁ/oi , 1in which oi

Gg = 1/1262 with 06 = J'fz. This is the smallest asymptotic variance attain-

is given by (44) and

able by an asymptotically unbiased estimator of the form (51). The asymptotic
efficiency of B relative to the classical least-squares estimator is

oz/os, where 02 is the variance of the error density f.
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In addition to working out the asymptotic distribution of the Dij’

Lehmann (1963a) also showed that Dij is symmetrically distributed about
My =¥y if either the underlying error density f is symmetric about 0
or the sample sizgs n; are all equal. Since the weights used in construct-
ing B sum to 1, this implies that under either of these conditions B
is unbiased for 8.

Note that when the classical least-squares estimator of B is expressed

in the same form as R,

R I-1
where
Tij = Yi- - Yj. (53)
Ny
in which Y, = n;] N Yij’ the weights xij coincide with the optimal
, J=
weights (47) for B. This is due to the fact that the statistics wij (1)

and Tij (53) have the same asymptotic covariance structure up to a multi-
plicative constant, a point noted by Lehmann (1963b). This relationship
could be use& to provide a somewhat shorter but perhaps less illuminating
proof of Proposition 1, when combined with the fact that the classical least-
squares estimator is uniform minimum variance unbiased (UMVU) for B8.

The above proposition can serve as the basis for large-sample confidence
procedures and tests for the slope parameter R, in combination with an

estimator of og. The proposition argues that for large N
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B 2 N(B, oﬁ/Nci) , (54)

so with Gs as any consistent estimate of cg an approximate 100(1-1)%

distribution-free confidence interval for B is

™
I+

o1 (1-2/2) SR/N‘/ZG; , (55)

where

L 172
o* [N 1 b ni(xi-xN)z] . (56)

Critical regions for asymptotically distribution-free tests concerning &8
are cénstructed analogously.

The estimation of og in linear models with several observations per
cell is investigated by Draper (1982). Several estimators of o§ based
on the lengths of distribution-free confidence intervals associated with
the one- and two-sample Hodges-Lehmann estimators are proposed and shown
to have good small-samples properties. The best of these, the so-called

Lehmann-type two-sample estimator with bias correction based on pairs of

cells, has the form

n [ I-1 1 2
[OR(Q)]z T [ a0 Tij(a)] 12 (57)

in which (for I > 3)

e~
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nyg = 20=1)(ng+ng) = N/IN(T=1)(1-2)] (58)

(for I =2 N2 is of course 1), and

' 1/2
Tij(a) = [3n1.nj/(n1.+nj)] Lij(a)/t;lli-nj-z (1-a/2) , (59)

where Lij(a) is the length of the 100(1-a)% confidence interval for
(“i' uj) based on the Wilcoxon rank-sum statistic (cf. Lehmann (1963c))

and t;] is the inverse t cdf with k degrees of freedom. From simula-
tion work focusing on the bias of [8%(01)]2 " the best choice for the confi-
dence level in general appears to be 100(1-a)% = 50%. See Draper (1982)
for other estimators of_ os in this context and a discussion of their .rela-
tive merits.

Small-sample refinements of the above large-sample approach to inference
about B, 1including obtaining confidence coefficients and critical regions
from a distribution other than the normal, could be investigated with a
simulation study.

A natural way to estimate the intercept parameter in the model (1,4)

once the slope B has been estimated by B is to regard o as the center

of the distribution of the random variables e?j = Yij - Bx; and to apply
some estimate of location to the residuals
Ade -

In order that a be identifiable, an assumption on the manner in which the
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errors eij are centered at 0 is necessary; for example, if E(eij) =0
is assumed then o becomes the expectation of the e?j. With the further
assumption of symmetry of the error density about 0, one reasonable robust
estimator of location to apply to the Q?j is the one-sample Hodges-Lehmann
estimate. Renumbering the residuals from 1 to N as E?, a Hodges-

Lehmann-type estimator of a 1is then

& = med {(8; +&)/2, 1<cisisN }

3. More than One Independent Variable

Here are sketches of extensions of the above ideas to the case p > 1
and to the analysis of covariance.

Working again with the model (1),

]
=
+
1
L
—"m—
. o
[} ]
— —
L -
.
- -
b § —
-
—
[N L)
3
1]
=

with, for p > 1,
e = B+ 1 X B s
i 0 =7 ik k

the approach is, as in the case p =1, to estimate B = (B], . ,Bp)

first, with 5, say, and then to estimate B, from the residuals

p
Yij - kZ] XikBk

(61)

(62)

(63)
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To obtain an intuitively reasonable estimate of B8 wusing the ideas

of section 2, note that for i] # iz,

p

-u, = Z(x -Xs L )B, (64)
i, k=1 ik 12k) k

one equation in the p unknowns Bk. The method used in section 2 for

p=1 was first to solve this one equation for B], and then to estimate

My = My 3 here it is necessary first to generate and solve p > 1 1linearly
1 2
independent equations in the By - Choose p+1 integers (cells)
A . ) I ) - .
Bys ooe from {1, ... ,I}; there are (p+l ) = M such choices.
Number these m=1, ... ,M and, for each such choice, form the system of
»
equations
r N
p
U: - = Z(x - X B
i i, k=1 \ Tk 12k) k
1 : r s (65)
p
U: =M = ¥ (x - X B8
1 1p+l k=1 < 1]k 1p+]k) k
\ )

or in matrix terms

X8 = W (66)

where



(x) = : : : (67)

and

T RO T TR T . (68)

o

Provided the cells s een s have been chosen in such a way that

p+l
X is full rank p, the solution of (66) for B8 is of course

(69)

true for each m=1, ... ,M', where M 1is M minus the number S of
choices of (p+1) cells which result in singular x matrices. (p+1
points do not always determine a p-dimensional hyperplane.) Thus as in sec-
tion 2 each of the M' choices of (p+1) cells can generate a separate
estimate of -8 through estimation of u , and then a composite estimate
of B8 can be constructed by combining the separate estimates.

The number S of inadequate choices of (p+1) cells depends on the
design configuration and is typically quite a bit smaller than (pil) .
For example, for the design illustrated in Figure 1 below, of the
M= (§)= 56 choices of (p+1) = 3 cells only the S = 4 choices deter-

mining the indicated lines fail to span the Xy = Xy plane. (The analogous
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X2
4 - ? :
. |
2- /
- / |
o ll ; 1 X
Figure 1. A multiple regression design with p =2, I = 8.

problem in the case p =1 would have manifested itself as an attempt to
estimate the slope of a vertical line, and the problem could not arise in
that case since the values of the independent variable in the different
cells were all distinct.)

As in section 2 a good robust estimate of Hm is already available,

namely

- w . -
i,
Hm = : ’ (70)
W.
] 1]ip+] J
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where wij is as in (11). Thus a Hodges-Lehmann-type estimator of 8

based on choice m of (p+1) of the cells is

B = x ' 1 for each m=1, ... ,M . (71)

As in section 2, perhaps the most efficient way to combine these separate
estimates is through a weighted average. Let B be the (p x M') matrix

whose columns are the Em; then the analogue of the weighted average in

section 2 is

8 = B y , (72)

where y is a vector of weights chosen to minimize some function of the
asymptotic covariance matrix of § while preserving asymptotic unbiased-
ness. As before, since the rank of the asymptotic covariance matrix of

A

the wij is only (I-1), a greatly reduced subset of the B, suffices
in the construction of the composite estimate. The choice of which of the
§m to use and the determination of the optimal weights y can then be
carried out in a manner analogous to that in section 2.

Note thét for p > 1 the matrix inversion in (71) is the analogue of
division by X5 = xj in (12) in the case p = 1. This approach thus seems
less attractive for large p than for small since the matrix inversions
involved may prove relatively costly.

The ideas of section 2 also extend naturally to the analysis of co-

variance, either by using dummy variables to express the qualitative factors
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in regression coding and proceeding as above or by preserving the mixed
ANOVA-regression notation and doing the obvious thing. For example, in

the analysis of covariance model

{ i=1, ... ,I } (
Y.:. = n.. +e.. ’ 73)
Y vy i=1, ...ny
where

nn = B'I + Yz'ij ’ (74)

for each choice of i and j] # jz one obtains

(n"ﬁ " Mg, )/( “gg z”z) ST (7%)

so separately for each level of the ANOVA factor the problem reduces to that
studied above in section 2 and a composite estimate of <y can then be
formed from the separate estimates.

It should in principle be feasible to derive exact confidence regions
and tests which might be preferable to the asymptotic ones described in
section 2 by Lsing in some way the information provided by the spread in
the individual regression estimates (12) and (71), in the manner of Sen
(1968) and others. This approach has not been pursued here.

The estimation of Bo in the case of more than one independent vari-
able can of course be done in the same way as was outlined in section 2,

by calculating the one-sample Hodges-Lehmann estimate applied to the residual
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vector

a*
iJ

P
Yij - kZ] X B (76)

This would, as béfore, require the further assumption of symmetry of the
error density f about O.

Comparisons of the small-sample behavior of these new regression esti-
mates relative to Jaeckel's and to the classical estimates are worthwhile
because, while the new estimator and Jaeckel's have the same asymptotic per-
formance, one or the other may have an advantage in small-sample bias, stan-
dard error, or computational efficiency; and both the new estimator and
Jaeckel's may exhibit better or worse small-sample properties relative to
the classical estimates in practice than those indicated by the asymptotic

results. This will be the subject of future investigation.
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