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1 . I ntroducti on

Consider the linear model with several observations per cell, which

may be written

Yij = pi +eij
i = 1, ... ,I

i = 1, ... n

Ih
I ni = N ,

i=l

in which the ei are i.i.d. continuous random variables with

satisfying

002
0 = f f(x)dx < 00

I0

densi ty f

and a2 = Var(e..) < 0 .13

Here pi is a measure of centering for the ith of I total cells, Y

is the jth of the n. observations in cell i, and N is the total

number of observations. Suppose the pi, instead of being functions of

one or more qualitative factors as in the analysis of variance, are thought

to depend on the I levels of p > 1 quantitative variables xk:

p

Vi* +
I x ik k (3)

~k=l

in which the x ik are known regression constants (the fixed-effects model).

There are several ways in which this model arises in practice:

1) When the independent variables xk are conceptually continuous

but are made discrete by the measuring process;

(1)

(2)
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2) When higher accuracy is desired at some values of the independent

variables than at others, and the design clusters at those values;

3) When a pure error estimate is desired; and

4) When optimal design considerations call for replication at specified

values.

The classical least-squares estimator is derived under the assumption

that the specific error density f is the normal, and it possesses various well-

known optimality properties in that model. When the data contain outliers

or gross errors, or more generally come from a distribution with tails heavier

than those of the normal, it is also well known that the classical procedures

can lose their optimality and perform poorly both in terms of efficiency and

of sensitivity to extreme observations. One method of dealing with this

which has gained some acceptance is the data-analytic approach, in which

graphical and numerical methods are employed to detect the ways in which the

data do not meet the classical assumptions and the data are modified appro-

priately (through transformations, for example) before the classical tech-

niques are applied. Another approach involves the use of robust methods which

are appropriate under broader assumptions and so may be utilized directly

with the original data. The application of one type of robust methods, those

based on ranks, to problems of estimation and inference in the regression

model with several observations per cell is investigated here.

There is an extensive literature devoted to rank-based regression esti-

mates in the case n1 = 1, with principal developments by Theil (1950),

Mood (1950), Adichie (1967), Sen (1968), and Jaeckel (1972). Of these methods

the best in terms of efficiency is Jaeckel's, which will be discussed in
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detail below. All of these methods in the case p = 1 rely on the following

idea: each choice of two points (x,y) with different x-values provides an

estimate of the slope parameter 61' and some estimator of location applied

to the set of all such pairwise slopes should yield a reasonable composite

estimate of 31. Asymptotic work on these methods involves letting both I

and N become large and requires some growth conditions on the regression

constants xjk. Most of these estimators can be applied to the model (1),

but none of them take account of the special character of models with several

observations per cell. The estimator developed below is different from the

previous rank-based estimates in two ways-- its form is based on taking pairs

of cells rather than pairs of points, and its asymptotic properties are found

by letting the n. -* X while holding I constant, simplifying conditions on

the Xik. Other asymptotic schemes, for example letting both I and N

grow but still requiring that I/N + 0 as in Huber (1981), are not pursued

here.

The above continuity assumption on the e.. and consequently on the

Y.. is made to avoid technical complications involving ties in the ranking

of the data. When ties are present in linear models data they are often due

(as in case 1) above) to the measuring process having made a conceptually

continuous variable discrete, and in such situations, provided the size of the

roundoff is not large, the methods to be discussed below may be applied with

little harm in acting as if the rounding had not occurred (cf. Lehmann (1975)).

The finiteness of 0 and a2 are needed because division by 1/e and a2
play a role in what follows; these conditions place little practical restric-

tion on the use of the methods.
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Rank-based estimates of the regression parameters in the model (1) can

be found by extending the Hodges-Lehmann method of robust estimation to this

setting. The main idea can perhaps best be seen in the context of the sub-

model p = 1; extensions of these concepts to the case p > 1 are considered

in section 3 below.

2. One Independent Variable

It is convenient to change the notation for the parameters and the values

of the independent variable in this case: suppose that

pi = a + ax. , (4)

where the x. are known constants, all distinct. One sensible approach to

the estimation of a and 6 is to estimate 6 first, by 6, say, and then

to estimate a from the residuals ... - x;.

An intuitively appealing estimate of a can be found with no additional

assumptions about the errors e1j by considering differences of cell centers

Note that for i # j

Pi - pi= B(x - x) and a = (pi - pi)/(xi - xi) , (5)

so that each pair of cells can give rise to a separate estimate of a through

estimation of pi - pj, and then one composite estimate of a can be found
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by combining these separate estimates in some way.

The simple Hodges-Lehmann estimate of the pi - pj,

D.. = med tik - Y Q : k = 1, ... ,n1; Q = 1, ... ,n

the median of

cells i and

the linearity

the set of all pairwise differences among the observations in

j, is unsatisfactory, since these estimates do not satisfy

constraints which the pi - pi themselves do:

(pi 'p) + (pij Pk) (Vi 'ik) (7)

but

D1j I Djk # Dik

This makes them unsuitable as a basis for linear inference about the

p=i + Sxi and thus about a and S. Lehmann (1963a), when considering

applying the Hodges-Lehmann estimation method to analysis of variance models

with several observations per cell, proposed adjusting these raw Hodges-

Lehmann estimates and estimating pi - pj by

ij= - Dj

(8)

(9)

where

(6)
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D F i * (10)

The linearity problem is thus removed, at the cost of offending intuition

by using observations in cells other than i and j to help in the esti-

mation of pi - Pji. Lehmann pointed out, however, that the size of the in-

fluence of cells other than i and j on the estimator of pi - pj tends

to 0 in probability as the sample sizes increase. A different drawback

of this estimation method was noticed by Spj$tvoll (1968)-- cells with un-

equal numbers of observations get equal weight in the calculation of the

D'. SpjOtvoll suggested several ways of remedying the situation, the simplest

of which is to use

= - -- -1 IWi. D. - Di , Di = N k nkDik * (11)13 1 3 1 ~~~~~~k=l

This is the form of Hodges-Lehmann estimation which is used in what follows.

Thus a Hodges-Lehmann-type estimate of 6 based on cells i and j is

simply

= W. /(x. - x.) . (12)

Several reasonable methods of combining these separate estimates come

to mind, including taking their weighted average or weighted.median or even

calculating a weighted one-sample Hodges-Lehmann estimate based on them. If

one is looking for a good compromise between robustness and efficiency, how-

ever, perhaps the best choice is a weighted average, since a good degree of
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resistance has already been built into the S3. themselves and any further

such measures might serve only to decrease the efficiency. The composite

estimate studied here takes the form

I-1 I
6*= y.j..,rij sjj (13)

i=l j=i+l 131

in which the weights yij can be chosen to minimize the asymptotic variance

of the composite estimator * while satisfying a constraint resulting in

asymptotic unbiasedness of the estimator.

Perhaps the simplest realistic asymptotic theory is developed by letting

the n1 + X in such a way that

n./N p. E (0,1) for all i = 1, ... ,I . (14)

Under these conditions the asymptotic behavior of the Dij, the statistics

that * is based on, was worked out by Lehmann (1963a); he found that the

rank of the asymptotic covariance matrix of the D.. is only (I-1), even

though there are ( I) distinct pairs of cells i and j with i # j.
This is because, despite the fact that for finite n1 the D0. do not

satisfy linearity constraints of the form

D.. + D = D (15)13 0j ik

discussed above, such constraints are satisfied asymptotically (see (24)

below), so that in the limit knowing D12 and D13, for example, makes
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D23 redundant.

Therefore, it is enough to characterize the joint asymptotic behavior

of the proper choice of (I-1) of the D.., for example by choosing a

reference cell, cell I, say, and working with the cell pairs

(1,I), (2,I), ..., (I-1,I). Lehmann defined for j = 1, ... ,I-1 the

quantities

= N1/2 [Dj1 - I)] (16)

and showed that

(V1 * V l D, N(0,$), (17)

with t having diagonal entries for j = 1, ... ,I-1

lim var(V) aR(/Pj + /pI) (18)
N+-*oo= R(/J+/

and off-diagonal entries for 1 s i t j < I-1

= 2lim cov(Vvj R(l/PI) s (19)

in which

a2= 1/1202 = /12(ff2)2 (20)R)
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o2 is the rank-analogue of the underlying error variance a2 in the
r

linear model; their ratio

eR C(f) = a2/a2 = 12ar2( ff2)2 (21)

is the asymptotic efficiency of Wilcoxon-type rank-based robust methods rela-

tive to their classical counterparts, including the Wilcoxon one- and two-

sample tests and the Hodges-Lehmann one- and two-sample estimates based on

them. Table 1 gives some values of a2 and this efficiency for various
R

distributions.

Table 1. a2 and asymptotic relative efficiency
R

methods to the corresponding classical

of Wilcoxon-type rank-based

methods.

Distribution f a2 a2 e a2la2R R,C() a/R

Standard normal 1.0 1.047 0.9549

Standard logistic 3.290 3.0 1.097

x2 with 8 degrees 16.0 13.65 1.172
of freedom

Skewed mixed normal
(A = 0.75, Pi = 0, a1 = 1, 2.426 1.817 1.335

12= 1.9, a2 = 2)

(X= 0.82, P1 = 0, a1 = 1, 3.558 1.714 2.076

11= 1.9, a2 = 3.5)
t with 3 degrees 3.0 1.579 1.900
of freedom

Any f -0.864
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The skewed mixed normal distribution

distribution function (cdf)

referred to in Table 1 has cumulative

F(x) = X(D(x-Pl1)/al] + (1 - X)D[(x- U2)/a2] (21.1)

where 0 is the standard normal cdf.

Returning to the estimation of a, the fact that the asymptotic co-

variance matrix of the Dj has rank only (I-1) means that it is sensible

in estimating a to base the estimate on only (I-1) pairs of cells. Con-

sider then instead of 3 the estimate

I-1
n j=l Yj I 8jI1 (22)

Expressing this estimatei^Tn terms of the Dj gives

I-1 r1 I

j=l [Yji/(xJ - xI)] k-l
nk(Djk- DIk)]

Now Lehmann also showed that for all j and k,

N112 Djk = N112 (DjI-DkI) + op(1)

where op(1)
the n i .

as usual signifies a term which goes to 0 in probability as

From this, since D0. = -D i

N1/2 (Dik- DIk) = ri1/2 Di + o (1)
p

(23)

(24)

(25)
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and

N1/2 ;
I-1

= I
j=l [ErI/(Xi - xI)) (N1/2 Djj) + op(l )

Written in terms of Lehmann's V. above, this becomes

[YiI/( - xf)]VY.+ N1/2 I-1
j=l

+ op(1). (27)

But from (5)

= a, (28)

so, in order to get asymptotic unbiasedness of 6 for a, the reasonable

condi ti on

I-1

I Yj= 1

needs to be imposed. When this is done, (27) becomes

N1/2 ( - 8)
I-1

=-l [YiI/(Xi-xI)]Vi + op(1)j=l3 p

This, combined with Lehmann's result (17), then gives

1/2 D 2

N1/2 ;
I

j=l

(26)

(29)

(30)

(31)

Yj I Upj - IIIV (xj

(pi - PI)/(xi - XI)
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wi th

vy c

in which c has entries for j = 1, ... , - 1

cj = Yji/(Xj- XI)

The problem thus reduces to that of minimizing v2

I= (y1l' ... yI_1qI) subject to the constraint

as a function of

1 'y = a'c = 1 , (3'

where 1 is a vector of l's and for j = 1, ... ,I-1

aj = xj - x1 . (3

This is a standard problem which can be solved, for example, by a

straightforward application of Lagrange multipliers; the solution is expressed

in the following well-known (cf. Rao (1973) section lf)

Lemma 1. Suppose S = (S1 . 9Sk)_-4DN(O,$) with rank ( k)=

and let T = X'S= kIS so that T D N(Ov (X)) with v2(X) =x'A.

The X which minimizes v (x) subject to the constraint a'X = 1 is

(32)

(33)

,4)

5)
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1 ''r14opt = t a/a' $_ a

and the resulting minimum variance is v2(Xpt) = 1/a' t a

From this the solution to the problem above is evidently

(x1 XI)

-opt=0

~~,,~~~t
Sopt

(XI 1 - XI)

where

Lopt = U'1 a/a ' $-l a

and the minimizing variance is

= 1/a'I-1 a .

Now $ 1 has diagonal elements for j = 1, ..., I-1,

(U- )
P" j; P

and off-diagonal elements for 1 < i $ j < I - I

1 2(- ). = -Pp.p.a13R

(36)

(37)

(38)

(39)

(40)

(41)

V2
!opt
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After simplification the optimal weights work out to

= P;(X- XI )
I

k=l Pk(Xj - x 2)/lxk k)/k X

and the minimum variance comes out

Yopt

22
= R/ax

ax I Pk(xk- x)
k=l1

is the limiting variance of the x-values,

I

= I= i :- lim XN

N +oo
(45)

is their limiting mean, and XN is the mean of the N x-values,

XN
N-1 i

i=l

(46)

In practice one of course would substitute n /N for p and use the

weights

[ni(xj-x) kIl nk(Xj-.xk)I/[N kIl nk(xk N(47)=li k l

(42)

Here

(43)

(44)

(yj,)Opt

(Yjj)opt - (47)



-15-

Note that these weights need not all be in the range (0,1); they need only

sum to 1.

How does the asymptotic variance (43) compare to that for previous rank-

based robust slope estimates? The best estimator in this class to date was

developed independently by Adichie (1967) and Jaeckel (1972), although Adichie

did not realize that his estimator had a closed-form expression and Jaeckel

did not recognize his estimator to be the solution of Adichie's iterative pro-

cedure. Rewriting the model (1,4) in more general form as

Y. = a + ax + e , i = 1, ... ,N , (48)

the Adichie-Jaeckel slope estimate is a weighted median of the set

3(Y Y)/(x Xi)$ (ij) Xi # X (49)

of all pairwise slopes, in which the weights are proportional to the absolute

distance jxj- xjI between the independent variable values. Adichie and

Jaeckel both showed that the asymptotic efficiency of this estimator relative

to the classical least-squares estimator is given by (21), and their asympto-

tic variance expressions, when specialized to the model (1,4), coincide with

that (43) of the above estimator 6 (22) with optimal weights (47). Thus

asymptotically the estimator (22) and Jaeckel's estimator are equally accurate.

It is interesting to contrast the above rank-based estimator (22) with

Jaeckel's in terms of their method of estimation, since both are in a sense

generalizations of the two-sample Hodges-Lehmann estimator. The idea behind
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the method described here is to compute many robust estimates of a first,

by working with pairwise slopes, and then take a nonrobust (weighted) average

of the separate estimates; Jaeckel's procedure in effect does the same thing

but in the reverse order, by constructing many nonrobust pairwise estimates

of S and then taking a robust average (weighted median) of them. It is

not intuitively obvious that the two operations being performed should com-

mute in such a way that the results have the same asymptotic behavior, but it

is seen that in this case they do.

The above results are summmarized in the following

Proposition 1. In the model (1) specialized to (4) above, let the

n . 00 in such a way that

nA/N p. E (0,1) for all i = 1, ... ,I . (50)

Then with weights y = (y1, ... ,y_1_I) given by (47), the estimator

I-1
= I Eyj1/(x - x1)] wjI (51)

in which the W.. are as in (11), is asymptotically normal with (asymptotic)

mean S and variance aR/aX , in which a2 is given by (44) and

R= 1/122 with e = ff2 This is the smallest asymptotic variance attain-

able by an asymptotically unbiased estimator of the form (51). The asymptotic

efficiency of s relative to the classical least-squares estimator is

a la RI where a2 is the variance of the error density f.



-17-

In addition to working out the asymptotic distribution of the D1U9
Lehmann (1963a) also showed that D.. is symmetrically distributed about

11- Pi if either the underlying error density f is symmetric about 0

or the sample sizes n; are all equal. Since the weights used in construct-

ing ; sum to 1, this implies that under either of these conditions ;
is unbiased for 8.

Note that when

in the same form as

the classical least-squares estimator of

;

8 is expressed

I-1
k= I [Exi/(xj-XI)] Tjij=l

where

T.. = y - Y.
13 1. 3o

(52)

(53)

ni
in which Y. = n.1 I YVj, the weights X.. coincide with the optimal1' j=l 13 1

weights (47) for 6. This is due to the fact that the statistics W.. (11)

and Tij (53) have the same asymptotic covariance structure up to a multi-

plicative constant, a point noted by Lehmann (1963b). This relationship

could be used to provide a somewhat shorter but perhaps less illuminating

proof of Proposition 1, when combined with the fact that the classical least-

squares estimator is uniform minimum variance unbiased (UMVU) for 8.

The above proposition can serve as the basis for large-sample confidence

procedures and tests for the slope parameter 8, in combination with an

estimator of aR2. The proposition argues that for large N
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B _ N as, a2/Na2 (54)

so with 'R2 as any consistent estimate of a2 an approximate 100(1 -A)%R ~~~~~~~~Raprxmt 10(
distribution-free confidence interval for a is

±+C¢~1 (1- X/2) aR/N /2a , (55)

where

CT [N iEl ni(xi xN) ] 1/2 (56)

Critical regions for asymptotically distribution-free tests concerning S

are constructed analogously.

The estimation of a2 in linear models with several observations perR

cell is investigated by Draper (1982). Several estimators of a2 basedR
on the lengths of distribution-free confidence intervals associated with

the one- and two-sample Hodges-Lehmann estimators are proposed and shown

to have good small-samples properties. The best of these, the so-called

Lehmann-type two-sample estimator with bias correction based on pairs of

cells, has the form

[rR( 2 [I)l Tlij TAj(o) ] 2 (57)
L *'=i j=il4

in which (for I > 3)
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nij = 2[(I-l)(n.+ n.) - N]/[N(I-1)(I- 2)]

(for I = 2 nl2 is of course 1), and

(58)

(59)X ~~1/2
Tir (a ) = 3n.n. /(n.+ n.)

where L. .(a) is the length of the 100(1- a)% confidence interval for

(bi.- p.) based on the Wilcoxon rank-sum statistic (cf. Lehmann (1963c))

and t-l is the inverse t cdf with k degrees of freedom. From simula-

tion work focusing on the bias of EaR(ctf2 the best choice for the confi-

dence level in general appears to be 100(1 - a)% _. 50%. See Draper (1982)

for other estimators of a2 in this context and a discussion of their.rela-R
tive merits.

Small-sample refinements of the above large-sample approach to inference

about S, including obtaining confidence coefficients and critical regions

from a distribution other than the normal, could be investigated with a

simulation study.

A natural way to estimate the intercept parameter in the

once the slope a has been estimated by ; is to regard a

of the distribution of the random variables e'.j = ... - Sx.

some estimate of location to the residuals

e* 5 y jj _
0

j
V.. - ix

In order that a be identifiable, an assumption on the manner in which the

model (1 ,4)

as the center

and to apply

(60)

L (a) -1
ii ni+nj'.2(1 - a/2) 9
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errors e.. are centered at 0 is necessary; for example, if E(e..) = 0

is assumed then a becomes the expectation of the e. With the further

assumption of symmetry of the error density about 0, one reasonable robust

estimator of location to apply to the eii is the one-sample Hodges-Lehmann

estimate. Renumbering the residuals from 1 to N as ei, a Hodges-

Lehmann-type estimator of a is then

az = med + ^ej)/2, 1 < i < j . (61)

3. More than One Independent Variable

Here are sketches of extensions of the above ideas to the case p > 1

and to the analysis of covariance.

Working again with the model (1),

j~~~~~~~~Yij = 1ej ni N (62)13j = vj + ejj113 j=1, ... nI i=l

with, for p > 1,

p

pji = ° k l xikk (63)

the approach is, as in the case p = 1, to estimate a = ( ... ,Sp)p
first, with a, say, and then to estimate a0 from the residuals

p

ii- I xikak.,13 k=1



-21-

To obtain an intuitively reasonable estimate of a using the ideas

of section 2, note that for i11 i22

pi - Pi
p

k=l (I1k Xi2)k3k (64)

one equation in the p unknowns aSk. The method used in section 2 for

p = 1 was first to solve this one equation for 31. and then to estimate

Pi - Pi ; here it is necessary first to generate and solve p > 1 linearly

independent equations in the ak* Choose p+l integers (cells)

il, ... ,i from {l, ... ,I}; there are (pIl ) E M such choices.

Number these m = 1, ... ,M and, for each such choice, form the system of

equations

i 1 1i2

i1 ip+l

p

kl (xilk - Xik)1k

p

I
k= xi k - Xik) 13k

or in matrix terms

Xm§ =
-M 9 (66)

(65)

where
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(x 1X 1 ) xip - xij)
2 020

(Xm) = (67)
p p 0 p

(x1 x 1 . x1i xi~

and

-m i( 12 i pl (68)

Provided the cells i *,... ip+l have been chosen in such a way that

Xm is full rank p, the solution of (66) for a is of course

1x p (69)
~=m -m

true for each m = 1, ... ,M , where M' is M minus the number S of

choices of (p+ 1) cells which result in singular x matrices. (p+ 1

points do not always determine a p-dimensional hyperplane.) Thus as in sec-

tion 2 each of the M' choices of (p+l) cells can generate a separate

estimate of -a through estimation of im. and then a composite estimate

of a can be constructed by combining the separate estimates.

The number S of inadequate choices of (p+l) cells depends on the

design configuration and is typically quite a bit smaller than (4l).

For example, for the design illustrated in Figure 1 below, of the

M = 8 56 choices of (p+l) = 3 cells only the S = 4 choices deter-

mining the indicated lines fail to span the x1 - x2 plane. (The analogous
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4

3

X2

o33

Figure 1. A multiple regression design with p = 2, I = 8.

problem in the case p = 1 would have manifested itself as an attempt to

estimate the slope of a vertical line, and the problem could not arise in

that case since the values of the independent variable in the different

cells were all distinct.)

As in section 2 a good robust estimate of m is already available,

namely

w1ii1i2
(70)

w.
il p+l



-24-

where Wij is as in (11). Thus a Hodges-Lehmann-type estimator of B

based on choice m of (p+l) of the cells is

rn = Xmpm for each m =1,... ,M . 9(71)

As in section 2, perhaps the most efficient way to combine these separate

estimates is through a weighted average. Let B be the (p x M') matrix

whose columns are the Sm; then the analogue of the weighted average in

section 2 is

=B y (72)
p M' 1

where y is a vector of weights chosen to minimize some function of the

asymptotic covariance matrix of 6 while preserving asymptotic unbiased-

ness. As before, since the rank of the asymptotic covariance matrix of

the W.. is only (I- 1), a greatly reduced subset of the fm suffices

in the construction of the composite estimate. The choice of which of the

m to use and the determination of the optimal weights y can then be

carried out in a manner analogous to that in section 2.

Note that for p > 1 the matrix inversion in (71) is the analogue of

division by xi - x; in (12) in the case p = 1. This approach thus seems

less attractive for large p than for small since the matrix inversions

involved may prove relatively costly.

The ideas of section 2 also extend naturally to the analysis of co-

variance, either by using dummy variables to express the qualitative factors
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in regression coding and proceeding as above or by preserving the mixed

ANOVA-regression notation and doing the obvious thing. For example, in

the analysis of covariance model

Yijj =nij + eij n; := (73)

where

Ti. = S.+yZ.. , (74)

for each choice of i and il # j2 one obtains

(n iil r1ii ) / (ZJ )=Y , (75)

so separately for each level of the ANOVA factor the problem reduces to that

studied above in section 2 and a composite estimate of y can then be

formed from the separate estimates.

It should in principle be feasible to derive exact confidence regions

and tests which might be preferable to the asymptotic ones described in

section 2 by using in some way the information provided by the spread in

the individual regression estimates (12) and (71), in the manner of Sen

(1968) and others. This approach has not been pursued here.

The estimation of a in the case of more than one independent vari-

able can of course be done in the same way as was outlined in section 2,

by calculating the one-sample Hodges-Lehmann estimate applied to the residual
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vector

p
e'. Yji - Xik^ * (76)13 13 ~k=lik

This would, as before, require the further assumption of symmetry of the

error density f about 0.

Comparisons of the small-sample behavior of these new regression esti-

mates relative to Jaeckel's and to the classical estimates are worthwhile

because, while the new estimator and Jaeckel's have the same asymptotic per-

fomnance, one or the other may have an advantage in small-sample bias, stan-

dard error, or computational efficiency; and both the new estimator and

Jaeckel's may exhibit better or worse small-sample properties relative to

the classical estimates in practice than those indicated by the asymptotic

results. This will be the subject of future investigation.
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