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Abstract

We exhibit a procedure for finding simultaneous confidence inter-
vals for the expectations p = (;)}=; of a set of independent random
variables, identically distributed up to their location parameters, that
yields intervals less likely to contain zero than the standard simulta-
neous confidence intervals for many u # 0. The procedure is defined
impiicitly by inverting a non-equivariant hypothesis test with a hyper-
rectangular acceptance region whose orientation depends on the un-
signed ranks of the components of u, then projecting the convex hull
of the resulting confidence region onto the coordinate axes. The pro-
jection to obtain simultaneous confidence intervals implicitly involves
solving n! sets of linear inequalities in n variables, but the optima are
obtained among a set of at most n? such sets, and can be found by
a simple algorithm. The approach also works when the inference is
based on statistics for pu that are independent but not necessarily iden-
tically distributed, provided there are known functions of p that are
location parameters for the statistics. However, in the general case,
it appears that all n! sets of linear inequalities must be examined to

find the confidence intervals.
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1 Introduction

Let {X; — p;}?, be i.i‘.d. random variables with distributions that do
not depend on g = (;)}-,. Consider estimating g from the observation
X = (X;)}, by a joint confidence set S(X) with coverage probability 1 — a.
The confidence set S can be projected onto the coordinate axes to yield
(generally conservative) simultaneous 1 — a confidence intervals {Z;} for the
‘individual parameters {u;}. These simultaneous confidence intervals may
be used subsequently to test hypotheses about the individual parameters by
observing whether the confidence intervals contain the hypothesized values
of u;. For example, the family of hypotheses {Ho; : p; = 0}7_, can be tested
with simultaneous significance level not exceeding a by observing whether
the confidence interval Z; for u; contains zero. In many applications, it is
interesting not only to obtain simultaneous interval estimates for (4;)}_,, but
also to find (correctly) significant departures from zero for as many parame-
ters as possible.

The standard confidence region for u when {X; — u;} have a symmetric
distribution is a hypercube centered at X with sides of a common length
calibrated to give simultaneous 1 — a coverage probability. When this set
is projected onto the coordinate axes, the tests of the hypotheses {Hp;} ob-
tained by checking whether Z; 3 0 are standard “single step” tests. The
same is true for the tests resulting from replacing the hypercube by a hyper-
rectangle with unequal sides, which corresponds to testing the hypotheses
{Ho;} at unequal levels assigned to each Hy; before observing the data.

There are well-known sequential tests that for many p # 0 have a larger



chance of correctly rejecting some of the false Hp; than does the standard
single-step procedure, but, regardless of u, still have probability at most a of
incorrectly rejecting one or more of the true Hy; [e.g., Holm, 1979; Hochberg,
1988; Dunnett and Tamhane, 1992]. Until recently, the only confidence in-
tervals corresponding to sequential tests were those found by Stefansson et
al. [1988], which are of the form (0,00) for the parameters found by the
sequential test to be significantly different from zero, and are thus not very
informative. Quite recently, Hayter and Hsu [1994] constructed more useful
semi-infinite confidence intervals for some two-dimensional sequential proce-
dures, with the finite endpoint of the intervals for the “significant” parameters
sometimes strictly different from zero.

Departing from the strategy of inverting either single-step or sequen-
tial tests, we use the general duality between tests and confidence regions
[Lehmann, 1986] to construct two-sided confidence intervals that for some
p # 0 are better able to find significant departures from zero in some com-
ponents than the intervals corresponding to standard single-step tests. We
invert a test with a hyperrectangular acceptance region whose orientation
depends on the ranks of the components of |u| to obtain a confidence region
for p whose size and shape (not only location) depend on X. The rank of
the component |u;| is a surrogate for the rank of the two-sided p-value of the
hypothesis EX; = 0 were the datum X; = pu; observed; this is the connection
between our approach and sequential procedures. The acceptance region is
equivariant under permutations and reflections of the coordinates, but not
under translations or general rotations. The resulting confidence region is

sometimes hyperrectangular, but is in general a union of intersections of hy-
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perrectangles and halfspaces, and need not be a connected set. Unless all
{#i}3=, are close to zero, the confidence region is less likely to contain p; = 0
than is the traditional one. The standard hypercube is imbedded in the class
of acceptance regions we consider: it is the degenerate hyperrectangle with
equal sides. The confidence intervals derived by projecting the confidence set
tend to be longer for the u; corresponding to X; further from zero than for
p; corresponding to X closer to zero.

While the basic test we invert is simple, inverting it is prima facie com-
binatorially complex. However, we are able to characterize the convex hull
of the confidence region to obtain simultaneous confidence intervals in order

n3 operations, where n is the number of parameters.

2 The Bivariate Case (n =2)
For any p € (0,1), define

Cp = inf {7 : Pu{|X; — u;| > 7} < p}. 1)

Suppose the desired joint confidence level is 1 — a, a fixed value between zero

and one. Define ap = (1 — (1 — a)*/?). For any a; < ay, define a; to satisfy
l-a)(l-a3)=1-a, (2)

and let ¢; = C,,, j = 1,2. Define the “vertical” and “horizontal” rectangles

#]
R,(z1,23) = [z1 — a1, 21+ 1] ® [22 — €2, 22+ 3] (3)

and

Ri(z1,22) =[z1—€2, T1+ 2] @[22 — &1, Z2 + 4] (4)
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Define the rectangular acceptance region

Ry(p1, p2), 1| 2 |ps2]

(5)
Ri(p1, p2), [pa| < |sal-

A(pr, pa) = {

The definition of A for |u1| = |uz| is somewhat arbitrary; either of the two
rectangles could have been assigned without changing what follows. Consider
testing the hypothesis E(X;, X3) = (g1, p2) by rejecting whenever (X3, X;) €
A(p1, p2). If the probability inequality in the definition of C, is sharp for a;
and a; (for example, if the distribution of {X; — u;} is continuous) this test
is exact, in the sense that the probability of a type I error is 1 — a for any
(1, #2) € R?. Figure 1 sketches the form of the acceptance regions for four
representative points.

By Theorem 4 (i) of Lehmann [1986], inverting A gives an exact 1 — a
confidence region S(z1,2z2) for (y1,p2) from data (X; = z,,X; = z3). The

resulting confidence region has the following form, as shown in section 3:
S(z1,72) = {Ro(21,72) O {|21] 2 |22[}} U {Ri(21,22) O {|21] < |22(}} . (6)

Figure 2 shows S(z,z;) for a variety of points (z;,z2). S is sometimes
a rectangle, sometimes an “L-shaped” region, sometimes a “plus-shaped”
region, but is in general a not-necessarily-connected union of intersections of
rectangles and halfspaces.

Note that S(z;,z2) excludes y; = 0 or pz = 0 for many (z;,z2) for
which the standard square confidence set includes them. In particular, for
|zl@2) > &1 and |z|1) > c3, tests using S reject both y; = 0 and p; = 0,
whereas the standard procedure rejects both g; = 0 and u; = 0 only when
1X|ay > Cap > €2. '



3 The General Case (n > 2)

Consider constructing a 1 —  confidence region for g = (y;)}_, from data
(X;)}-1, where {X; — p;}7, are i.i.d. with a distribution that does not

depend on . Suppose a = (ay,- - -, ay,) satisfies

a<<ap<---<a, (7)
and
H(l—a,-):l—a. ) (8)
i=1
For example, the sequence
aj:l—(l_a) ":i;i, Jj=1,---,n (9)

satisfies (7) and (8) and gives coverage probabilities that are related geomet-
rically. Table 1 gives numerical values according to this formula, and corre-
sponding critical values for a standard normal distribution, for n = 2,---,10.
The “best” choice of a for what follows (for example, to find as many
nonzero components as possible) will depend on how many large components
p has. Let C, be defined as in equation (1), and, for brevity, let ¢; = C,,,
k=1,...,n.

For any y € R", let ®(y) be the permutation vector whose kth compo-
nent 7x(y) is the rank of |yi| in the list {|y1],|y2l,-- -, |yn|}, with ties broken

arbitrarily, and let #~! be its inverse permutation, so that

ez )l 2 Wazr | 2 222 2 Wiy |- (10)
For any permutation w of {1,...,n}, define the hyperrectangle
Rur(y) = ®l; — ey, v+ e, (11)
i=1



and the derived acceptance region

A() = Racqpny (). (12)

By construction, if the critical values c; are sharp (if Py {|X;—u;| > ¢;} = a;)
A(p) is the acceptance region for an exact test of the hypothesis EX = p
from data X = x:

Pu{X ¢ AW} =1-a. (13)

Proposition 1 Inverting this test to find a 1 — a confidence region for p
gives

8(x)= U {Rw(x)n{y:#(y)=w}}, (14)

wenN
where ) is the set of all n! permutations of {1,---,n}.

Proof. That S is the inversion of A means y € S(x) if and only if
x € A(y). The set S can be written as the union

S=U {sn{y:n(y)=w}}, (15)
wen
since {y : ®(y) = w}weaq is a partition of R"*. Now

SN{y:w(y)=w}={y:n(y) =w and x € Rxy)(y)};  (16)

since X € Ry (y)(y) iff y € Ryr(y)(x), we are done. O

4 Individual Confidence Intervals with Si-
multaneous Coverage Probability

One way to form individual, simultaneous confidence sets for {u;}7_, is to

project the confidence region S(x) onto the coordinate axes. It is traditional
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to consider only intervals as the confidence sets for a single parameter; since
the set S sometimes consists of several pieces, it might (and does) happen
that the projection of S onto a given coordinate gives a union of disjoint
intervals. We shall ignore such cases by taking the convex hull of S before
projecting it, which is equivalent to projecting the smallest hyperrectangle
that contains S onto the coordinate axes. (We will examine just one case
where the projection of S is a union of disjoint intervals: when the separate
intervals include points on both sides of zero, but do not include zero. We
argue in section 7.3 that this might be interesting in some problems.) The
variable shape of the confidence sets results in confidence intervals whose
lengths vary with x. In the worst case, when x is sufficiently close to the ori-
gin, all the intervals can be as long as 2C,,, , so the variable-length confidence
intervals can be less accurate than those the standard procedure gives. How-
ever, when x is sufficiently far from any set where z; = z; for any ¢ # j, the
intervals are z4,(x) £ ck, and are more accurate than the standard intervals
for many p' # pu. When {z;} are large and equal, the confidence interval
for p;j is [2; — ca,; + ¢1], whose upper endpoint is further from z; than the
standard one but whose lower endpoint is closer to z; than the standard one,
better separating g from zero.

Assume that {z;}}_, are nonnegative and are in decreasing order: z; >
z3 > --- 2 z, 2> 0. This entails no loss of generality, since the procedure
is equivariant under permutations and sign changes of the coordinates. Let

I, = [t;, u;] denote the confidence interval for u;, let the inverse permutation



of w be w™, so that Wyt = k, and define

tj(w) =min {y;: for somey € R* yi € [zi — cu,, Tk + o, ] VE, and

W] 2 Iz 2 - 2 Iy} (17)

and

uj(w) =max {y;: for somey € R" y; € [zx — cu,, Zk + cu,] Yk, and

ol = [y 2 o0 2 g1} (18)

If, for a given w, the sequencey = (y1,...,yn) satisfies yx € [zk—cu,, Tk +cu,]
for all k and Iyw;-xl > ... 2 |y, 1|, we say that y is feasible for w and that w
is feasible. If there is no feasible y for a given w we say that w is infeasible,
and we define tj(w) = oo and u;(w) = —oo.

The projection of the convex hull of the confidence region S(x) onto

coordinate j gives

tj = mint;(w) - (19)
and
u; = maxu;(w), (20)

where ) is the set of all permutations of {1,2,...,n}. The solutions to these
combinatorial optimization problems and the corresponding permutations
can be characterized with surprising precision, as shown in the next two
subsections.

The following lemma is used repeatedly in the derivations that follow:
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Lemma 1 Suppose a; > a3 > --- > ap and by 2 b2 --- 2 by, m < n.
Then for any subset {k;}T, of {1,2,...,n},

mlix(ar; — b;) 2 niax(an-ms; = b;). (21)

We are sure that this result is present in some form in both Hardy, Lit-
tlewood and Pélya [1967] and Marshall and Olkin [1979], but we were unable
to find it in this form, so we present a short proof here.

We prove the case m = n; the case m < n follows trivially. Consider
max;(ax;, — b;), and suppose there is a pair (j,1) such that j < but k; > ki;
then b; > b and a;; < ay,. Thus

m?.x(ak,. —b;) > max{ai; — bj,ai, — b} (22)
= G — bz (23)
> max{ay, — bj,ax; — bi}, (24)

so the maximum is not increased by exchanging every such pair (k;, k;). This
can continue until k; = i, so that elements of the same rank in {a;} and {5}
are subtracted from each other. O

This lemma allows us to derive the following two results, which, in turn

give us t; and u;. Define the functionals

Ri(w) = I“I’ia'z’f(zk — Gy )s (25)
and
Ly(w) = min(z + cu,). (26)
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Define the permutation ¢(l,j) by

K k=j,
=k, k= ’mln{], I} -1,
$(l,j) =S 1-k+1, k=j+ SUfl > g, (27)
k+1, k=1,. J-—llfl<],
L k’ k=ma'x{],l}+1,-..,n
Lemma 1 implies that
Jnin Ry(w) = Ru(¢(1,5)) (28)
and
Jnax Liw) = Li((1, 7). (29)

4.1 The upper endpoint of Z;.

For a given feasible w, uj(w) must be less than the largest of the upper

endpoints of the intervals [z — c,,, Zk + ¢, ] With wx < w;:
uj(w) < J:l(igj(zj +c;) = Lo (w). (30)

Otherwise, there will be no y that attains the value y; = u;(w) and preserves
the ordering |yw;-:| > 2 Iyw;-x |. Similarly, uj(w) must be at least as large
as the lower endpoints of the intervals [zx — c,,, zk + ¢, ] that follow:

ui(w) 2 Jffxw(zk - c‘l’j) = Rh'j(“’)- (31)
Thus u; satisfies
i < max{Ly;(w): Lu,(w) 2 Ru,(w)}
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= max max {L£i(w): Li(w) 2 Re(w)}

max {L(@(1, 1)) : Lu((1,5)) 2 Ru(#(1,5))},

where we have used inequalities (29) and (28) in the last step. The bound
(32) is sharp: for the optimizing I, the the vector y with

Rk(d’(’a]))a J<k<n

is feasible for the permutation ¢(l, j) and attains the bound by construction.
Note that the identity permutation I is always feasible, taking yx = zx +
ck, k=1,...,5,and yx = Ri(4,5), k=3 +1,...,n, and that indeed

L;(X) 2 R;(T). (33)

This implies that the upper confidence limit for the parameter u; corre-
sponding to the jth largest observation z; is always at least ¢; above z;. In
contrast, we shall see in the next section that the lower endpoint ¢; for u;

can be as close as ¢, to z;j, where c, is the smallest critical value.

4.2 The lower endpoint.

Consider the lower bound ¢;(w) based on the feasible permutation w. The
value of ¢;(w) must be smaller in absolute value than the upper limits on the

earlier variables; i.e.,

Iti(w)l < min (2 + cu,) = L, (w), (34)
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and it must be larger in absolute value than the largest lower limit on the

later variables:
Iti(w)] 2 nax (zk — cu) = R (w). | (35)

This leads us to the optimization problem

t; > min{y € [5; — a2+ 0] : Lo (@) 2 1] 2 Ruy()}

= mlianlin‘ {v:7v22z;—¢and Li(w) 2 |7] = Ri(w)}
.Uj=

= min{y:y22; —cqand £Li(é(,5)) 2 | 2 Ri(eW, 7))}, (36)

where we have used inequalities (28) and (29) in the final step. The bound
(36) is sharp and is attained for the optimizing / by the sequence y with

_ { L(e(L5), 1<k<j, | 7
| Re(¢(1,5)), j<k<n,
for the permutation ¢(l,7). Note that the identity permutation w = I is
feasible, so t; is never larger (closer to z;) than R;(I) = maxyy;(zx — ck).
We consider briefly what can happen when t; < 0. If, for the optimal I,
z; — ¢ <0, but Ri(4(1,5)) = € > 0, the region |y;| < € is excluded from the
actual confidence set for p; (but not its convex hull). As a result, a valid (si-
multaneous) confidence region for ¢ can have as the region for y; the union
[t;, —€] U [e, u;], which does not contain zero, although it contains values on
both sides of zero. Such a confidence set might be useful for variable selection
in regression, where one might want to include every variable that is signif-
icantly different from zero, regardless of whether it is larger or smaller than
zero. The convex hull of the confidence region would include the possibility

that p; = 0, so g; would not be included, while the two-piece confidence
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region would allow one to reject the hypothesis that u; = 0, suggesting that

5 should be retained. See section 7.3 for minor elaboration.

4.3 Computational difficulty.

As originally formulated in equations (19) and (20), finding t; and u; involved
solving a set of linear inequalities for n! permutations of {1,...,n} for each
J, a total of 2n x n! problems. Inequalities (32) and (36) of the previous two
subsections show that in fact only n permutations need be examined for each
upper bound u; and each lower bound ¢;, and that the linear inequalities that
must be checked are quite simple. Thus at most 2n? permutations need to be
checked. In fact, n?+(n—1) of these are redundant, since both the upper and
lower confidence bounds for y; are computed from (1, 5), and ¢;(j,7) =1
for all j, so the total number of distinct permutations one must consider is
n? — n + 1. If additional conditions are satisfied (such as z, — ¢; > 0) far
fewer permutations are involved. Furthermore, the quantities £; and R; can
be calculated recursively, entailing further savings.

The following (suboptimal) algorithm finds ¢; and uj, j = 1,...,n, in the
transformed coordinate system where the absolute values of all the z’s have
been taken, and the z;’s are in decreasing order.

Forj=n,n—1,...,1do:
Let t; « z; and u; « z; + c;.
Forl=n,n-1,...,1do:
Let L « Li(¢(1,5)) and R — Ri(@(1,5))
If L > R, then

15



Let u; « max(u;, L)
If (zj — c <0 and z; — g £ —R) then
Let t; « min(¢;,z; — ¢;)
Else
Let t; « min(t;, R)
Endif
Endif
End do
End do
Return
This algorithm examines the n? permutations ¢(j, k), j,k = 1,...,n (n
of these permutations are the identity). Associated with each permutation in
the inner loop is a set of approximately n comparisons, so the total number
of operations is of order n3. This fairly fast and simple algorithm makes
the method practical. At the cost of more complex logic, one can design an

algorithm that examines only one permutation, the identity, in the best case.

5 Examples.

5.1 The bivariate case.

For the bivariate case we can find the answer explicitly. Assume without loss
of generality that z; > z2 > 0. If z; and z, are sufficiently separated that

Ty — T2 > C + €, then
Zj=[zj—cjzi+¢], j=1,2 (38)
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If z; and z; are closer together, but their sum is large enough that z, + z >
¢ + ¢; then '
I, = [max{z, — a1, 22 — &2}, 21 + ¢1] (39)
and |
I, =[z:— 3,22+ i) (40)
In this case, the lower endpoint of the confidence interval for u; can be closer
to z; than before, but the upper endpoint for the confidence interval for u, is
further from z; than in the first case. Finally, if z; and z; are close together

and 2, +z; < ¢ + ¢,
Ii=[zj—c,zi+a) j=1,2, (41)

so both intervals are as long as they can get.

To illustrate, suppose {X; — p;};=1,2 are i.i.d. N(0,1) and we observe
zy =3, z3 = 2.2. Let us take a; = 0.0170 and a; = 0.0336, for simultaneous
95% confidence. The corresponding critical values are ¢; = 2.3877, ¢c; =
2.1246.

Since z; + z2 > ¢; + ¢, we obtain
7, = [0.6123,5.3877] (42)

and

I, = [0.08754,4.5877). (43)

Had the observations instead been z; = 3.0 and z; = 2.0, the interval 7,
would be unchanged, and Z, would shift by 0.2 to include zero:

I, = [-0.1246,4.3877). A (44)

We refer to this example in section 7.1 below.
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5.2 Numerical example for n = 4.

Suppose {X;—u;}}-, arei.i.d. N(0,1), and we observe x = (—3.1,2.5,—2.4,3.0).
The standard (hypercube-derived) simultaneous confidence intervals for yy, - - - , uq
have width 2x2.49 and are, respectively, [-5.59, —.61], [0.01, 4.99], [—4.89,0.09],
and [0.51,5.49]. The interval for y3 includes zero.

The variable-shape procedure, using (a;)j-, from the third row of Table
1, yields the confidence intervals [—5.90,—0.43], [0.08,4.93], [-4.72, —0.08],
and [0.43,5.57). None of these intervals includes zero. Their average length
is 5.03, versus 4.98 for the traditional procedure.

6 Extensions.

6.1 Preference for points other than the origin.

The entire procedure can obviously be translated to a different point g, #
0 if it is desired to reject the hypotheses {Ho; : p; = poj} for as many
coordinates as possible, by substituting X; — uo; wherever X; appears. This
can be interesting, for example, when {u;} are variances rather than expected

values; the necessary extension to the technique is described below.

6.2 Uncentered acceptance regions.

There is nothing in the method to preclude using hyperrectangular accep-
tance regions A(s) that are not centered at g, and whose centers depend on

the signs and ranks of the components of u. In particular, suppose we have
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2n constants {cf}7_, with the property that

Pp{Xk — B € [-c;,c;-"]} >1-—aj, Vk. (45)
Hyperrectangles of the form
R (1) = Qlu; — ¢85, + 5], (46)
Jj=1

with the (somewhat strained) notational conventions —signy = {—,u 2>
0; +,# < 0} and signg = {+,p = 0; —, u < 0}, can be used with only trivial
modifications to the exposition: everywhere there appears —c;, substitute
—cj, and everywhere there appears +c;, substitute +c}. While this set of
acceptance regions sacrifices an additional symmetry, it is still equivariant
with respect to permutations of the coordinates and sign changes. If the
overriding goal is to distinguish parameters from zero, taking ¢; > ¢} in
this modification helps, since the corner of the acceptance region furthest
from the origin determines how well each parameter can be separated from
zero when the test is inverted. However, it tends to yield longer confidence
intervals. To best distinguish parameters from zero, one could allow ¢} to
shrink monotonically as y; grows, but explicitly inverting the corresponding
test appears to be hopelessly complicated in higher dimensions. This is
essentially what Hayter and Hsu [1994] do in two dimensions, but it forces
their solution to remain implicit, and also causes the endpoint of the interval

farther from zero to grow, which yields semi-infinite intervals.
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6.3 Differing distributions among X; — u;.

As asserted in the abstract, the approach also extends to the case when the
variables { X} have unequal variances, and, indeed, even completely different
distributions known up to the location parameters . Let pi(y) = Po{|Xi| >
|71}, the p-value of the two-sided test of the hypothesis that u; = 0 when
the observation Xi; = 4. Re-define the permutation x(y) so that =i(y) is
the signed rank of —pi(yx) in the set {—p1(y1), —p2(¥2),.--, —Pn(yn)}. For a
given set of nondecreasing significance values {a;}}_, satisfying 1 —1II7_, (1 -
a;) = a, define the n? constants c;; to be as small as possible while still
satisfying

Pu{| Xy — pr| > cix} < @j, j,k=1,...,n. (47)

Now define the hyperrectangle
Rx(x) = ®[z,— — Cxjjy Tj+ C,,-j], (48)
=1

and the derived acceptance region

A(p) = Rx(uy(1) (49)

for testing the hypothesis EX = u. By construction, the test that rejects
when X ¢ A(p) has significance level a, and, as before, inverting the test to
obtain a 1 — a confidence region for u gives
S(x)= U {R(x)n{y: #(y) =w}}, (50)
wen
where ) is the set of all n! permutations of {1,---,n}. The test and confi-

dence set are exact if Pu{| Xy — pi| > cjx} = ;, j,k = 1,...,n. It is not
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immediately clear whether there is enough structure in this new confidence
set S to support a generalization of the order n® algorithm for finding the
confidence intervals, or whether one must examine all n! permutations of
{1,...,n} in this case. |

Note that the procedure developed in this paper is a special case of that
just given, when the rank of |z| in the list {|z1],...,|zx|} is the same as the
rank of —pi(zx) in the list {—p1(z1),...,—pn(2s)}, and when ¢;i = ¢; for all
k. Those conditions are satisfied when all the variables { X — ui} have the
same distribution. This generalization exposes the connection between our
procedure and sequential tests: how an observation X; is used depends on
the size of its associated p-value for the null hypothesis u; = 0, relative to the

sizes of the corresponding p-values associated with the other observations.

6.4 Non-location parameters.

The features of the observational model that allow us to vary the orientation
of a hyperrectangular acceptance region and maintain the correct coverage
probability are the independence of the observations { X}, and the restriction
that the distributions of {X;—u;} do not depend on {ui}5.,; i.e. that u;isa
location parameter for X;. These features are preserved in somewhat greater
generality, allowing this procedure for simultaneous confidence intervals to
be applied, for example, to variances.

If we relax the requirement that u; is the expected value of X, but re-
quire that there be a set of deterministic functions {x;(-)}7, so that the

distributions of {X; — x;(#;)}7_; do not depend on {4}, we can follow the
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procedure to get simultaneous confidence intervals for {x;(#;)}}=,, which we
can then invert to get simultaneous confidence sets for {u;}?_,. These confi-
dence sets can be expanded into confidence intervals without losing coverage
probability.

For example, suppose we wish to find simultaneous confidence intervals
for the variances {07} of n independent random variables {Y;}7_,, from n;
observations {Yji};2, of the variable Y, j =1,...,n. Let ¥; = L 2,,_1
and define the statistics {X;} by

X;

wll-'

Z(Y Y)2) ‘ . (51)

and the constants
Xi = x(%) = 3 log(a?) (52)
The distribution of X; — x;(o?) is the distribution of the logarithm of S;/0;,
and does not depend on o}, so we can find the smallest constants {c;z} such
that
Pu{| Xt — xx| > ¢} < @j, jk=1,...,n, (53)

in analogy to equation (47) of section 6.3. The extension described in section
6.1 permits us to “prefer” a point other than the origin, for example, 07 =
1, 7 = 1,...,n. Since the logarithm is a bijection for positive arguments,
the simultaneous confidence intervals derived for {1/2log(o?)}}7_, can .easily
be converted to simultaneous confidence intervals for {o?} that have, for

example, a greater chance of excluding o; = 1 for all j, for some alternatives

o#1.
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6.5 Dependent observations.

The assumption of independence implies that the probability that X is in a
hyperrectangle centered at g does not depend on the orientation of the hy-
perrectangle, provided its sides are aligned with the coordinate axes. That
is still the case if {X; — p;} are exchangeable but not independent. This
covers the case of the mutivariate t-distribution, for example, and thereby
the important special case of independent normally distributed test statis-
tics, jointly studentized by a pooled estimate of standard error (a one-way
layout with unknown standard deviation). Calculating {c;}?., so that the
hyperrectangle gives a test with significance level a is more difficult in this
circumstance, but the approach to inverting the test and the procedure for
finding joint confidence intervals need no modification. More general depen-

dence than that requires a much more complicated treatment.

7 Discussion

7.1 Relation to step-up and step-down procedures.

Hayter and Hsu [1994] consider step-up and step-down procedures to test the
hypotheses {Hox : ux = 0}, k = 1,2, construct non-equivariant acceptance
regions corresponding to the tests, and invert the tests to find confidence
regions for s, and p, that are strictly contained in R when the corresponding
hypotheses are rejected by the sequential test, but can be (0, 00). This occurs,
for instance, in both bivariate examples given in section 5.1 above.

As pointed out at the end of section 6.3, our procedure is related to
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sequential procedures in that the relative length of the side of the acceptance
region corresponding to u; depends on the rank of the “p-va.lue”. associated
with p;. However, our procedure is not equivalent to a step-up or step-down
procedure. Another difference between Hayter and Hsu’s [1994] approach
and ours is that ours always produces a finite-length confidence interval for
#;, even if the hypothesis pu; = 0 is not rejected, whereas Hayter and Hsu'’s
method devotes all its “resources” to produéing‘ short confidence intervals
for the pi that can be distinguished from zero. In that sense, our method is
in the middle ground that Hayter and Hsu describe, between experimental
goals that they characterize as “no matter what the value of each parameter
0;, I want to have a confidence bound for each parameter value of a common
(specified) length,” and “I want to direct all my resources to being able
to declare as many parameters ; as possible to be strictly positive, and I
do not want to waste any resources in obtaining any additional confidence
bounds on any of the parameters.” The step-up and step-down tests are
at the latter extreme. Hayter and Hsu [1994] show that confidence bounds
for the parameters that can be distinguished from zero can be obtained “for
free,” without “wasting” any additional resources; we invest some resources
in obtaining confidence bounds for all the parameters, but allocate less of
the resources to the components that seem easier to distinguish from zero,

by virtue of having their corresponding observations further from zero.
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7.2 Non-Equivariant Procedures

The family of confidence procedures presented here are not equivariant with
respect to the rotation, rigid-body motion, or affine groups on R"; they are
equivariant with respect to permutations and sign changes of the coordinates.
Lehmann [1986] characterizes optimal equivariant confidence sets in an ab-
stract setting. In particular, uniformly most accurate equivariant confidence
sets result from inverting uniformly most powerful invariant tests.

The sets derived here from (non-hypercubic) hyperrectangular acceptance
regions with varying orientations are sometimes more accurate than square
confidence sets with the same coverage probability—this is a simple con-
sequence of their construction, and is true, for example in two-dimensions,
when p, is large and p; = 0, and g} = p1 and p) is large but smaller than
H1.

Hayter and Hsu [1994] and we both invert non-equivariant tests to get
variable-shape confidence regions. However, Hayter and Hsu begin with a
specific set of procedures, for which they find a equivalent acceptance regions,
which they invert to find a set of confidence intervals. In contrast, we begin by
generating a set of acceptance regions we think is appropriate to a particular
question, then invert the tests to find a confidence region, and project the
convex hull of the confidence region to find a set of confidence intervals. Our
procedure is in no sense optimal, but works in n dimensions and appears to
point to a different set of procedures than does Hayter and Hsu’s work. For
further references and descriptions of related earlier work, see Hayter and

Hsu [1994].
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7.3 Non-interval confidence sets.

As noted above, the confidence set S is not necessarily connected, and its
projection (as opposed to the projection of its convex hull) can give confidence
sets for individual parameters that are unions of disjoint intervals. In general,
we think such sets are confusing and not of great interest, but we identify one
exception: when the confidence region contains values on both sides of zero,
but does not include zero itself. (This can occur in Hayter and Hsu’s [1994]
bivariate confidence intervals for the two-sided test as well.) In that case,
one can think of the disjoint confidence set for y; as providing information
about |¢;| that can be useful, for example, for variable selection in regression.
In variable selection, one typically elects to keep the coeflicients that can be
distinguished from zero at a specified confidence level, and to exclude the
others. In linear least-squares regression of observations with additive i.i.d.
Gaussian noise onto a set of n functions that are orthonormal with respect
to the design points, the estimates {4i;}7_, of the coefficients {u;}7., satisfy
the assumptions we have used: {i; — p;} are i.i.d. Taking the convex hull of
S before projecting it can result in a confidence interval for y; that includes
zero, while S itself might support the inference that |u;| > € > 0. The
remarks at the end of section 4.2 show how to identify when the convex hull

of § includes px; = 0 but S does not.

7.4 Other optimality considerations.

The special nature of this problem, with its as yet vague goal of rejecting

#; = 0 for as many j as possible, calls for a new criterion of optimality
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of the individual intervals derived from a confidence set. Factors we think
relevant to the pfoblem, beyond the simultaneous coverage probability, are
the number of intervals that correctly exclude zero, and the lengths of the
intervals. One would be less than satisfied with a procedure that excluded
zero accurately for some coordinates, but at the expense of enormous or
infinite intervals for the same or other coordinates. For example, let T denote
the vector of confidence intervals produced by projecting the convex hull of
the confidence set S onto the coordinate axes, let A denote the vector of
lengths of those intervals, and let Ny (Z) denote the number of intervals in T
that correctly exclude zero. One might consider choosing S to be minimax
(or otherwise optimal) with respect to the risk induced by a loss functional

of the form

Yu(S) = A(X) + T(Nu(2)), (54)

where A and I' are monotone functions of their arguments.

A different approach would be to consider the ratio of the number of
intervals that incorrectly exclude zero to the total number of intervals that
exclude zero; this is the analogue of the False-Discovery Rate in multiple
testing [Benjamini and Hochberg, 1994]. ’

8 Conclusions

By inverting non-equivariant tests one may construct variable-length simul-
taneous confidence intervals with an improved ability to exclude “preferred”

null-values of each parameter in some circumstances. Using hyperrectangu-

27



lar acceptance regions whose orientation depends on the relative sizes of the
components of g leads to combinatorial optimization problems, but the con-
vex hulls of the confidence sets for each parameter can be found in order n?®
operations or less, where n is the number of parameters. The dependence of
the orientation of the hyperrectangle on the parameter values connects this
procedure with sequential tests. The hyperrectangular procedure generalizes
to some non-i.i.d. cases and some problems where the parameters are not

location parameters.
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Probabilities and corresponding Gaussian critical values

2 0.0170 0.0336
2.3877 2.1246
3 0.0086 0.0170 0.0254
2.6310 2.3877 2.2365
4 0.0052 0.0102 0.0152 0.0204
2.7996 2.5688 2.4259 2.3206
5 0.0034 0.0068 0.0102 0.0136 0.0170
2.9278 2.7057 2.5688 2.4681 2.3877
6 0.0024 0.0048 0.0074 0.0098 0.0122 0.0146
3.0307 2.8153 2.6828 2.5855 2.5081 2.4434
7 0.0018 0.0036 0.0054 .0.0074 0.0092 0.0110 0.0128
3.1165 2.9063 2.7773 2.6828 2.6076 2.5449 2.4909
8 0.0014 0.0028 0.0042 0.0056 0.0070 0.0086 0.0100 0.0114
3.1898 29839 2.8578 2.7655 2.6922 2.6310 2.5785 2.5322
9 0.0012 0.0022 0.0034 0.0046 0.0056 0.0068 0.0080 0.0090 0.0102
3.2537 3.0515 2.9278 2.8373 2.7655 2.7057 2.6543 2.6091 2.5688
10 0.0010 0.0018 0.0028 0.0038 0.0046 0.0056 0.0066 0.0074 0.0084 0.0092
3.3102 3.1112 29895 2.9007 2.8302 2.7715 2.7211 2.6768 2.6372 2.6015

Table 1: An example of sequences (a;)}.;, n = 2,-- -, 10, satisfying equations

7 and 8, and the corresponding half-widths of acceptance regions for standard

Gaussian variates: ®-1(1 — a;/2). 30



Figure 1. Acceptance regions for a test of the hypothesis E(X;,X;) =
p using a rectangular a.ccepta.ncé region whose orientation depends on the
relative sizes of y; and y,.

Figure 2. Confidence sets derived from rectangular acceptance regions with
varying orientation. The sets are the intersections of rectangles centered
at the observation with the portion of the plane in which the ordering of
the coordinates agrees with the ordering of the lengths of the sides of the

rectangle.
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Figure 1: Acceptance Regions



Figure 2: Confidence Regions



