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Abstract

We exhibit a procedure for finding simultaneous confidence inter-

vals for the expectations p = (pi)_= of a set of independent random

variables, identically distributed up to their location parameters, that

yields intervals less likely to contain zero than the standard simulta-

neous confidence intervals for many j 6 0. The procedure is defined

implicitly by inverting a non-equivariant hypothesis test with a hyper-

rectangular acceptance region whose orientation depends on the un-

signed ranks of the components of i, then projecting the convex hull

of the resulting confidence region onto the coordinate axes. The pro-

jection to obtain simultaneous confidence intervals implicitly involves

solving n! sets of linear inequalities in n variables, but the optima are

obtained among a set of at most n2 such sets, and can be found by

a simple algorithm. The approach also works when the inference is

based on statistics for p that are independent but not necessarily iden-

tically distributed, provided there are known functions of p that are

location parameters for the statistics. However, in the general case,

it appears that all n! sets of linear inequalities must be examined to

find the confidence intervals.

Keywords: Simultaneous confidence intervals, non-equivariant hypothesis

tests, conditional and nonlinear procedures
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1 Introduction

Let {X, - pi}, be i.i.d. random variables with distributions that do

not depend on i = (i)%i* Consider estimating i from the observation

X = (X,)%=1 by a joint confidence set S(X) with coverage probability 1 - a.

The confidence set S can be projected onto the coordinate axes to yield

(generally conservative) simultaneous 1 - a confidence intervals {Ij} for the

individual parameters {uj}. These simultaneous confidence intervals may

be used subsequently to test hypotheses about the individual parameters by

observing whether the confidence intervals contain the hypothesized values

of u,. For example, the family of hypotheses {Hoj : ui = Q can be tested

with simultaneous significance level not exceeding a by observing whether

the confidence interval Ij for pj contains zero. In many applications, it is

interesting not only to obtain simultaneous interval estimates for (pui),=, but

also to find (correctly) significant departures from zero for as many parane-

ters as possible.

The standard confidence region for pA when {X, -p,u} have a symmetric

distribution is a hypercube centered at X with sides of a common length

calibrated to give simultaneous 1 - a coverage probability. When this set

is projected onto the coordinate axes, the tests of the hypotheses {Hoj} ob-

tained by checking whether 2j 3 0 are standard "single step" tests. The

same is true for the tests resulting from replacing the hypercube by a hyper-

rectangle with unequal sides, which corresponds to testing the hypotheses

{Hoj} at unequal levels assigned to each Hoj before observing the data.

There are well-known sequential tests that for many p 3& 0 have a larger

3



chance of correctly rejecting some of the false Ho0 than does the standard

single-step procedure, but, regardless of j, still have probability at most a of

incorrectly rejecting one or more of the true Ho, [e.g., Holm, 1979; Hochberg,

1988; Dunnett and Tamhane, 1992]. Until recently, the only confidence in-

tervals corresponding to sequential tests were those found by Stefansson et

al. [1988], which are of the form (0, oo) for the parameters found by the

sequential test to be significantly different from zero, and are thus not very

informative. Quite recently, Hayter and Hsu [1994] constructed more useful

semi-infinite confidence intervals for some two-dimensional sequential proce-

dures, with the finite endpoint of the intervals for the "significant" parameters

sometimes strictly different from zero.

Departing from the strategy of inverting either single-step or sequen-

tial tests, we use the general duality between tests and confidence regions

[Lehmann, 1986] to construct two-sided confidence intervals that for some

it $ 0 are better able to find significant departures from zero in some com-

ponents than the intervals corresponding to standard single-step tests. We

invert a test with a hyperrectangular acceptance region whose orientation

depends on the ranks of the components of slis to obtain a confidence region
for p& whose size and shape (not only location) depend on X. The rank of

the component lui I is a surrogate for the rank of the two-sided p-value of the

hypothesis EXj = 0 were the datum Xj = pj observed; this is the connection

between our approach and sequential procedures. The acceptance region is

equivariant under permutations and reflections of the coordinates, but not

under translations or general rotations. The resulting confidence region is

sometimes hyperrectangular, but is in general a union of intersections of hy-
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perrectangles and halfspaces, and need not be a connected set. Unless all

{ }nk1 are close to zero, the confidence region is less likely to contain jj = 0

than is the traditional one. The standard hypercube is imbedded in the class

of acceptance regions we consider: it is the degenerate hyperrectangle with

equal sides. The confidence intervals derived by projecting the confidence set

tend to be longer for the pj corresponding to Xj further from zero than for

pi corresponding to Xj closer to zero.

While the basic test we invert is simple, inverting it is prima facie com-

binatorially complex. However, we are able to characterize the convex hull

of the confidence region to obtain simultaneous confidence intervals in order

n3 operations, where n is the number of parameters.

2 The Bivariate Case (n -2)

For any p E (0, 1), define

Cp = inf {: Pp{IXj--l > y}<P}* (1)

Suppose the desired joint confidence level is 1- a, a fixed value between zero

and one. Define ao (1 (1 _ a)1/2). For any a, < ao, define cr2 to satisfy

(1-al)(1-a2)=1-aa, (2)
and let c;-Cj , j=1,2. Define the "vertical" and "horizontal" rectangles

R&(XI, x2) [X- C1, X1+ C110 [z2-C2, X2 + C2] (3)

and

Rh(x1,X2) [X1 -C2, X1 + C2] ® [X2-C1, X2 + Cl]. (4)
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Define the rectangular acceptance region

A(81,8) _
R (Pl,,02),1,01 > 1#21

tRh(JU1,#2), I < 1P21-

The definition of A for Ii'I I = 121 is somewhat arbitrary; either of the two

rectangles could have been assigued without changing what follows. Consider

testing the hypothesis E(Xi, X2) = (A1, P2) by rejecting whenever (X1, X2) ¢

A(p1, P2). If the probability inequality in the definition of Cp is sharp for a,
and a2 (for example, if the distribution of {Xi - p,} is continuous) this test

is exact, in the sense that the probability of a type I error is 1 - a for any

(p1, P2) E R2. Figure 1 sketches the form of the acceptance regions for four

representative points.

By Theorem 4 (i) of Lehmann [1986], inverting A gives an exact 1 - a

confidence region S(x1,x2) for (01,P2) from data (X1 xl,,X2 = X2). The

resulting confidence region has the following form, as shown in section 3:

S(X1,x2) ={Rv(X1,x2) nf {Ix I > Ix21}} U {Rh(X,X2) nf{I1I < IX21}} * (6)

Figure 2 shows S(x1, X2) for a variety of points (Xl,x2). S is sometimes

a rectangle, sometimes an "L-shaped" region, sometimes a "plus-shaped"

region, but is in general a not-necessarily-connected union of intersections of

rectangles and halfspaces.

Note that S(xb,X2) excludes P1, = 0 or P2 = 0 for many (XI,x2) for

which the standard square confidence set includes them. In particular, for

Ix1(2) > c1 and IxJ(l) > c2, tests using S reject both 1 = 0 and P2 = 0,
whereas the standard procedure rejects both p1 = 0 and P2 = 0 only when

JXJ(I) > CAot > c2.
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3 The General Case (n > 2)

Consider constructing a 1 - ct confidence region for pA= (yz,)' from data

(XA),)%, where {Xj - pj},}; are i.i.d. with a distribution that does not

depend on p. Suppose a =(a-l, , an) satisfies

al < a2 < Ca< an (7)

and
n

Il(1a)=1-a. (8)
j=i

For example, the sequence

aj=1 ~(1-)*I,3=n(n1,j n (9)

satisfies (7) and (8) and gives coverage probabilities that are related geomet-

rically. Table 1 gives numerical values according to this formula, and corre-

sponding critical values for a standard normal distribution, for n = 2,*, 10.

The "best" choice of a for what follows (for example, to find as many

nonzero components as possible) will depend on how many large components

i has. Let Ca be defined as in equation (1), and, for brevity, let Ck Ca,c,
k =1,...,n.

For any y E Rn, let i(y) be the permutation vector whose kth compo-

nent lrk(y) is the rank of IYkI in the list {IYIl, IY21, . . . lYnl}, with ties broken

arbitrarily, and let r-1 be its inverse permutation, so that

IY"-1(Y)I . Iy1w1(Y)I > . IYw; (y)I. (10)

For any permutation w of {1,... , n}, define the hyperrectangle
n

RW(y) ®lyi - Cw,, Yj + 43], (11)
j=1
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and the derived acceptance region

A(pA) = Rw(p)(1). (12)

By construction, if the critical values c; are sharp (if P1 {f IX, -p, I > ci} = a,)
A(#) is the acceptance region for an exact test of the hypothesis EX= A

from data X = x:

PA{X ¢ A(p)}=1 -1 . (13)
Proposition 1 Inverting this test to find a 1 - a confidence region for i

gives

S(x)= U {Rw(x)fn{y:i(y)=w}}, (14)
where Q is the set of all n! permutations of {1, ... , n}.

Proof. That S is the inversion of A means y E S(x) if and only if

x E A(y). The set S can be written as the union

s8 UJ {Sfn{y: (y) =w}}, (15)
WEf

since {y: w(y) = w}wEn is a partition of Rn. Now

sn{y :7r(y) =w} =-{y :(y) = w and x E Rw(y)(y)}; (16)

since x E Rw(y)(y) iff y E Rr(y)(x), we are done. O

4 Individual Confidence Intervals with Si-

multaneous Coverage Probability

One way to form individual, simultaneous confidence sets for {p,i}' is to

project the confidence region S(x) onto the coordinate axes. It is traditional
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to consider only intervals as the confidence sets for a single parameter; since

the set S sometimes consists of several pieces, it might (and does) happen

that the projection of S onto a given coordinate gives a union of disjoint

intervals. We shall ignore such cases by taking the convex hull of S before

projecting it, which is equivalent to projecting the smallest hyperrectangle

that contains S onto the coordinate axes. (We will examine just one case

where the projection of S is a union of disjoint intervals: when the separate

intervals include points on both sides of zero, but do not include zero. We

argue in section 7.3 that this might be interesting in some problems.) The

variable shape of the confidence sets results in confidence intervals whose

lengths vary with x. In the worst case, when x is sufficiently close to the ori-

gin, all the intervals can be as long as 2C1,a, so the variable-length confidence

intervals can be less accurate than those the standard procedure gives. How-

ever, when x is sufficiently far from any set where x, = xi for any i ¢ j, the

intervals are xwk(x) ± ck., and are more accurate than the standard intervals

for many u' # p. When {x;} are large and equal, the confidence interval

for pi is [xi - c,, xi + cl], whose upper endpoint is further from xi than the

standard one but whose lower endpoint is closer to xi than the standard one,

better separating p from zero.

Assume that {zx}J=1 are nonnegative and are in decreasing order: xi >
X2 > *- x,, > 0. This entails no loss of generality, since the procedure

is equivariant under permutations and sign changes of the coordinates. Let

2i = [t,, uj] denote the confidence interval for pi, let the inverse permutation
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of w be w-', so that W~ -= k, and define

t,(w) min {y: for some y E Rn, yk E [Xk - Cw, Xk + Cw,k] Vk, and

|-1|> |Y ;-1 I > > IY";1 I (17)

and

uj(w) max {y,: for some y E R ,yk E [Xk - cw,, Xk + CWJ] Vk, and

IYwlI1 IYW2; |2I> .> IYW;I}I (18)

If, for a given w, the sequence y = (Y1i.. . , Yn) satisfies Yk E [Xk-cCk, Xk+CwkI
for all k and IY< I2 * * lyw"i 1, we say that y is feasible for w and that w

is feasible. If there is no feasible y for a given w we say that w is infeasible,
and we define t,(w) _ oo and uj(w)-oo.

The projection of the convex hull of the confidence region S(x) onto

coordinate j gives

t= min t,(w) (19)

and

u;-max us(w), (20)
WED~

where Q is the set of all permutations of {1, 2,... , n}. The solutions to these

combinatorial optimization problems and the corresponding permutations
can be characterized with surprising precision, as shown in the next two

subsections.

The following lemma is used repeatedly in the derivations that follow:
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Lemma 1Supposeal 2 a2 2 - an and bi2 b2 > ... > bm, m < n.

Then for any subset {ki}T I of {1, 2,... n},

mn'lx(ak, - b,) 2 mmax(an-m+j -bj)- (21)
j=1 =

We are sure that this result is present in some form in both Hardy, Lit-

tlewood and P6lya [1967] and Marshall and Olkin [1979], but we were unable

to find it in this form, so we present a short proof here.

We prove the case m = n; the case m < n follows trivially. Consider

maxi(akj - bi), and suppose there is a pair (j, 1) such that j < 1 but k, > kj;
then b, > b1 and ak, < ak. Thus

max(aki - bi) > max{ak, - bi,ak, bl} (22)

ak,- bl (23)

> max{ak,- b, ak, -bl}, (24)

so the maximum is not increased by exchanging every such pair (k,, k1). This

can continue until k,= i, so that elements of the same rank in {ai} and {bi}
are subtracted from each other. 0

This lemma allows us to derive the following two results, which, in tur

give us ti and u;. Define the functionals

R1I(W) maX(k -cwk), (25)

w&sland

,C()= mi(Xk + C,k)- (26)
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Define the permutation )(l,j) by

r1

kk(l,j)-

k =j

k =1,...,min{j, I} - 1,

k=j+1,...,lifl>j,

k=l,...,j-lifl<j,

k=max{j, 1} + 1,. . ., n.

Lemma 1 implies that

min JZI(w) = 1ZI(4(1,j))
W:w3=l

and

max (w) - 4((1,j)).W:wi=l
(29)

4.1 The upper endpoint of Ij.
For a given feasible w, uj(w) must be less than the largest of the upper

endpoints of the intervals [Xk - C4k, Xk + CWk] with wk < w1:

uj(w)< min(xi +c.,)= 4(w). (30)
Wk<Wj

Otherwise, there will be no y that attains the value yj = u,(w) and preserves

the ordering IyI,-1 I > .> ly 1. Similarly, u,(w) must be at least as large
as the lower endpoints of the intervals [Xk -C,,k Xk + C,] that follow:

u,(w) 2 max (xk c,,) =2X(w).
Wk.wi

(31)

Thus u; satisfies

uj < ma,x C., (w) Lwj (w) >!wt(w)}

12
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(27)
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= max max {IZ(w) £1(w) 2 1?i(W)}
I W~

= max{C1(4(l,j)): £iQ4(l,j)) 2 RI(k(l,j))},

where we have used inequalities (29) and (28) in the last step. The bound

(32) is sharp: for the optimizing 1, the the vector y with

Yk
-4 :£(ek(l,j)), 1 < k < j, (32)

lZk(k(l,j)), j < k < n

is feasible for the permutation k(1, j) and attains the bound by construction.

Note that the identity permutation I is always feasible, taking Yk =Xk +
Ck, k = 1,...,j, and Yk = Rk(j,j), k j + 1,...,n, and that indeed

4C(I) 2 'f,(I)- (33)

This implies that the upper confidence limit for the parameter "i corre-

sponding to the jth largest observation zx is always at least c; above xi. In

contrast, we shall see in the next section that the lower endpoint t, for "i

can be as close as cn to x;, where c, is the smallest critical value.

4.2 The lower endpoint.

Consider the lower bound t,(w) based on the feasible permutation w. The

value of t,(w) must be smaller in absolute value than the upper limits on the

earlier variables; i.e.,

ItA(w) I< min(xk+cwC =) (w), (34)Ulk:5j
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and it must be larger in absolute value than the largest lower limit on the

later variables:

It(w)I . maX (Xk - Cw) w()- (35)
This leads us to the optimization problem

t, 2 minI E [xi c-,,,x + C,I:4 (w)I) 27l?2.,,j(w)}
= minmin m{7 :7>2x-cl andZl(w) 217y 2IZI(w)}

I Www3=l

= min {: 7 > xj cl and CI(45(l,j)) . 171 . R(4(1,j))}, (36)

where we have used inequalities (28) and (29) in the final step. The bound

(36) is sharp and is attained for the optimizing I by the sequence y with

Ilk l £*k(4(17j)), 1 < k<j,

4 lRk(4(l,j)), j < k < n,

for the permutation k(1,j). Note that the identity permutation w = I is

feasible, so t, is never larger (closer to xi) than R,(I) = maXk>j(Xk -ck).
We consider briefly what can happen when t, < 0. If, for the optimal 1,

i- cl < 0, but RI(4(1,j)) = c > 0, the region Ily'I < e is excluded from the

actual confidence set for pi (but not its convex hull). As a result, a valid (si-

multaneous) confidence region for i can have as the region for pj the union

[t,, -e] U [e, u;], which does not contain zero, although it contains values on

both sides of zero. Such a confidence set might be useful for variable selection

in regression, where one might want to include every variable that is signif-

icantly different from zero, regardless of whether it is larger or smaller than

zero. The convex hull of the confidence region would include the possibility

that js = 0, 80 /i would not be included, while the two-piece confidence
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region would allow one to reject the hypothesis that pj =0, suggesting that

pi should be retained. See section 7.3 for minor elaboration.

4.3 Computational difficulty.

As originally formulated in equations (19) and (20), finding ti and uj involved

solving a set of linear inequalities for n! permutations of {1, . . . , n} for each

j, a total of 2n x n! problems. Inequalities (32) and (36) of the previous two

subsections show that in fact only n permutations need be examined for each

upper bound usj and each lower bound tj, and that the linear inequalities that

must be checked are quite simple. Thus at most 2n2 permutations need to be

checked. In fact, n2+(n- 1) of these are redundant, since both the upper and

lower confidence bounds for yj are computed from 4 (l, j), and j (j,j)-I

for all j, so the total number of distinct permutations one must consider is

n2 _ n + 1. If additional conditions are satisfied (such as xn - cl 2 0) far

fewer permutations are involved. Furthermore, the quantities IL and 1ZI can

be calculated recursively, entailing further savings.

The following (suboptimal) algorithm finds ti and u;, j = 1,.. ., n, in the

transformed coordinate system where the absolute values of all the x's have

been taken, and the xi's are in decreasing order.

For jn, -1,...,1 do:

Let t +-2x andu; -x +Cj.

For =n,n -1,..., do:

Let L +- j)) and R ij

If L > R, then
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Let u;+- max(ui, L)
If (xi - cl < 0 and x - cl < -R) then

Let tj min(tj,x, - cj)
Else

Let tj min(tj, R)
Endif

Endif

End do

End do

Return

This algorithm examines the n2 permutations 45(j, k), j, k = 1,n.., n (n
of these permutations are the identity). Associated with each permutation in

the inner loop is a set of approximately n comparisons, so the total number

of operations is of order n3. This fairly fast and simple algorithm makes

the method practical. At the cost of more complex logic, one can design an

algorithm that examines only one permutation, the identity, in the best case.

5 Examples.

5.1 The bivariate case.

For the bivariate case we can find the answer explicitly. Assume without loss

of generality that x, > x2 > 0. If xl and X2 are sufficiently separated that

x- x2 > c1 + c2, then

-i = [xi-cj,,xi+c], j= 1,2. (38)
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If x1 and X2 are closer together, but their sum is large enough that xl + z2>

c1 + c2 then

=1 [max{xi- c1, x2 -c2}, x1 + C1] (39)

and

12 = [X2 -c2, x2 +c1]. (40)

In this case, the lower endpoint of the confidence interval for ul can be closer

to x1 than before, but the upper endpoint for the confidence interval for /12 iS

further from x2 than in the first case. Finally, if xl and x2 are close together

and xl + x2 < cl + c2,

i =[xi - c1,Xi +c1] j=1,2, (41)
so both intervals are as long as they can get.

To illustrate, suppose {Xi - }j=1,2 are i.i.d. N(0, 1) and we observe

x= 3, X2= 2.2. Let us take a1 = 0.0170 and a2 = 0.0336, for simultaneous

95% confidence. The corresponding critical values are cl = 2.3877, c2

2.1246.

Since xj + x2 > cl + c2, we obtain

=1 [0.6123,5.3877] (42)

and

12 = [0.08754,4.5877]. (43)

Had the observations instead been x1 = 3.0 and X2= 2.0, the interval I1

would be unchanged, and 2 would shift by 0.2 to include zero:

12= [-0.1246,4.3877]. (44)

We refer to this example in section 7.1 below.
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5.2 Numerical example for n =4.

Suppose {X, -p 1l,4_ are i.i.d. N(O, 1), and we observe x = (-3.1, 2.5, -2.4,3.0).

The standard (hypercube-derived) simultaneous confidence intervals forl, * ** ,OU4
have width 2 x 2.49 and are, respectively, [-5.59, -.61], [0.01, 4.99], [-4.89,0.09],
and [0.51,5.49]. The interval for A3 includes zero.

The variable-shape procedure, using (ai)4_I from the third row of Table

1, yields the confidence intervals [-5.90,-0.43], [0.08,4.93], [-4.72,-0.08],
and [0.43,5.57]. None of these intervals includes zero. Their average length

is 5.03, versus 4.98 for the traditional procedure.

6 Extensions.

6.1 Preference for points other than the origin.

The entire procedure can obviously be translated to a different point Ito
O if it is desired to reject the hypotheses {Ho : pi = poj} for as many

coordinates as possible, by substituting Xj - uoj wherever Xj appears. This

can be interesting, for example, when {pj} are variances rather than expected

values; the necessary extension to the technique is described below.

6.2 Uncentered acceptance regions.

There is nothing in the method to preclude using hyperrectangular accep-

tance regions A(.") that are not centered at i, and whose centers depend on

the signs and ranks of the components of p. In particular, suppose we have
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2n constants {fc}l= with the property that

Pp{Xk-Pk E [-C}, C+]} > 1 -aj, Vk. (45)

Hyperrectangles of the form

n

Rw(I&) gnp[j , j, + Csign,A] (46)
j=1

with the (somewhat strained) notational conventions -sign = {-, >

O; +,p <O} and signp = {+,p > O; -I, < O}, can be used with only trivial

modifications to the exposition: everywhere there appears -cj, substitute

-c;, and everywhere there appears +c;, substitute +ct. While this set of

acceptance regions sacrifices an additional symmetry, it is still equivariant

with respect to permutations of the coordinates and sign changes. If the

overriding goal is to distinguish parameters from zero, taking cT > c+ in

this modification helps, since the corner of the acceptance region furthest

from the origin determines how well each parameter can be separated from

zero when the test is inverted. However, it tends to yield longer confidence

intervals. To best distinguish parameters from zero, one could allow c+ to

shrink monotonically as pi grows, but explicitly inverting the corresponding

test appears to be hopelessly complicated in higher dimensions. This is

essentially what Hayter and Hsu [1994] do in two dimensions, but it forces

their solution to remain implicit, and also causes the endpoint of the interval

farther from zero to grow, which yields semi-infinite intervals.
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6.3 Differing distributions among Xj-j.
As asserted in the abstract, the approach also extends to the case when the

variables {X,} have unequal variances, and, indeed, even completely different

distributions known up to the location parameters p. Let Pk(y) = PO{IXkI >

1y1}, the p-value of the two-sided test of the hypothesis that .k = 0 when

the observation Xk= 7. Re-define the permutation i(y) so that 7rk(y) is

the signed rank of -Pk((Yk) in the set { P1 (YI), -P2(Y2),..*,-p*n(yn)} . For a

given set of nondecreasing significance values {fa}% 1 satisfying 1- H%1 (1
a,) = a, define the n2 constants Cjk to be as small as possible while still

satisfying

Pp{IXk -kI> cjk} < caj, j,k =1...,n. (47)
Now define the hyperrectangle

n

Rir(x) ®[xi - crji, xi + c1jr], (48)
j=1

and the derived acceptance region

A(.u) = Rlr(u)(p) (49)

for testing the hypothesis EX =-. By construction, the test that rejects

when X V A(#) has significance level a, and, as before, inverting the test to

obtain a 1 - a confidence region for p gives

S(x) U {R,(x)nl{y :(y)=w}}, (50)
Wen

where fl is the set of all n! permutations of {1,***, n}. The test and confi-

dence set are exact if P {IXk - ukI > cjk}=a, j,k = 1,...,n. It is not
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immediately clear whether there is enough structure in this new confidence

set S to support a generalization of the order n3 algorithm for finding the

confidence intervals, or whether one must examine all n! permutations of

{1, ... , n} in this case.

Note that the procedure developed in this paper is a special case of that

just given, when the rank of Ixkl in the list {IxI, .. . , Xnl} is the same as the

rank of -Pk(Xk) in the list {-Pi(X1),. .. , -pn(Xn)}, and when Cjk = cj for all

k. Those conditions are satisfied when all the variables {Xk - Ik} have the

same distribution. This generalization exposes the connection between our

procedure and sequential tests: how an observation X, is used depends on

the size of its associated p-value for the null hypothesis Ilk= 0, relative to the

sizes of the corresponding p-values associated with the other observations.

6.4 Non-location parameters.

The features of the observational model that allow us to vary the orientation

of a hyperrectangular acceptance region and maintain the correct coverage

probability are the independence of the observations {Xj}, and the restriction

that the distributions of {Xi -.sj} do not depend on { k}n ; i.e. that #j is a

location parameter for Xj. These features are preserved in somewhat greater

generality, allowing this procedure for simultaneous confidence intervals to

be applied, for example, to variances.

If we relax the requirement that yi is the expected value of Xj, but re-

quire that there be a set of deterministic functions {Xj()}J=i so that the

distributions of {Xj - Xj(j)}_= do not depend on {p,k}, we can follow the
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procedure to get simultaneous confidence intervals for {Xj(/Aj)}=, which we

can then invert to get simultaneous confidence sets for {iuj}s. These confi-

dence sets can be expanded into confidence intervals without losing coverage

probability.

For example, suppose we wish to find simultaneous confidence intervals

for the variances {oa} of n independent random variables {Yj}j', from n

observations {Yjk}kj= of the variable Yj, j 1,...., n. LetYn= j Xk l Yjk
and define the statistics {Xj} by

Xi lo (;E(Yj-Y ) =,.,,(1k=1~~~ ~ ~~~~~~(1

and the constants

Xj-Xj(=2 log(cr?). (52)

The distribution of Xi - Xi(aj2) is the distribution of the logarithm of S/ol,,
and does not depend on au, so we can find the smallest constants {C,k} such

that

PjI{|Xk-Xk > Cjk} S aj, j, k =1, ..., n, (53)

in analogy to equation (47) of section 6.3. The extension described in section

6.1 permits us to "prefer" a point other than the origin, for example, ur2

1, j = 1,... ,n. Since the logarithm is a bijection for positive arguments,

the simultaneous confidence intervals derived for {1/2 log(oa)}1=j can easily

be converted to simultaneous confidence intervals for {a2} that have, for

example, a greater chance of excluding ao = 1 for all j, for some alternatives

a 7 1.
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6.5 Dependent observations.

The assumption of independence implies that the probability that X is in a

hyperrectangle centered at p does not depend on the orientation of the hy-

perrectangle, provided its sides are aligned with the coordinate axes. That

is still the case if {Xj-j} are exchangeable but not independent. This

covers the case of the mutivariate t-distribution, for example, and thereby

the important special case of independent normally distributed test statis-

tics, jointly studentized by a pooled estimate of standard error (a one-way

layout with unknown standard deviation). Calculating {cj}ff_, so that the

hyperrectangle gives a test with significance level a is more difficult in this

circumstance, but the approach to inverting the test and the procedure for

finding joint confidence intervals need no modification. More general depen-

dence than that requires a much more complicated treatment.

7 Discussion

7.1 Relation to step-up and step-down procedures.

Hayter and Hsu [1994] consider step-up and step-down procedures to test the

hypotheses {Hok =k= 0}, k = 1,2, construct non-equvariant acceptance

regions corresponding to the tests, and invert the tests to find confidence

regions for ul and ,2 that are strictly contained in R when the corresponding

hypotheses are rejected by the sequential test, but can be (0, oo). This occurs,
for instance, in both bivariate examples given in section 5.1 above.

As pointed out at the end of section 6.3, our procedure is related to
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sequential procedures in that the relative length of the side of the acceptance

region corresponding to pj depends on the rank of the "p-value" associated

with pj. However, our procedure is not equivalent to a step-up or step-down

procedure. Another difference between Hayter and Hsu's [1994] approach

and ours is that ours always produces a finite-length confidence interval for

pj, even if the hypothesis uj = 0 is not rejected, whereas Hayter and Hsu's

method devotes all its "resources" to producing short confidence intervals

for the (lk that can be distinguished from zero. In that sense, our method is

in the middle ground that Hayter and Hsu describe, between experimental

goals that they characterize as "no matter what the value of each parameter

Oi, I want to have a confidence bound for each parameter value of a common

(specified) length," and "I want to direct all my resources to being able

to declare as many parameters 0i as possible to be strictly positive, and I

do not want to waste any resources in obtaining any additional confidence

bounds on any of the parameters." The step-up and step-down tests are

at the latter extreme. Hayter and Hsu [1994] show that confidence bounds

for the parameters that can be distinguished from zero can be obtained "for

free," without "wasting" any additional resources; we invest some resources

in obtaining confidence bounds for all the parameters, but allocate less of

the resources to the components that seem easier to distinguish from zero,

by virtue of having their corresponding observations further from zero.
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7.2 Non-Equivariant Procedures

The family of confidence procedures presented here are not equivariant with

respect to the rotation, rigid-body motion, or affine groups on Rn; they are

equivariant with respect to permutations and sign changes of the coordinates.

Lehmann [1986] characterizes optimal equivariant confidence sets in an ab-

stract setting. In particular, uniformly most accurate equivariant confidence

sets result from inverting uniformly most powerful invariant tests.

The sets derived here from (non-hypercubic) hyperrectangular acceptance

regions with varying orientations are sometimes more accurate than square

confidence sets with the same coverage probability-this is a simple con-

sequence of their construction, and is true, for example in two-dimensions,

when u1 is large and P2 = 0, and u = p,1 and u2 is large but smaller than

P1l.

Hayter and Hsu [1994] and we both invert non-equivariant tests to get

variable-shape confidence regions. However, Hayter and Hsu begin with a

specific set of procedures, for which they find a equivalent acceptance regions,

which they invert to find a set of confidence intervals. In contrast, we begin by

generating a set of acceptance regions we think is appropriate to a particular

question, then invert the tests to find a confidence region, and project the

convex hull of the confidence region to find a set of confidence intervals. Our

procedure is in no sense optimal, but works in n dimensions and appears to

point to a different set of procedures than does Hayter and Hsu's work. For

further references and descriptions of related earlier work, see Hayter and

Hsu [1994].
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7.3 Non-interval confidence sets.

As noted above, the confidence set S is not necessarily connected, and its

projection (as opposed to the projection of its convex hull) can give confidence

sets for individual parameters that are unions of disjoint intervals. In general,

we think such sets are confusing and not of great interest, but we identify one

exception: when the confidence region contains values on both sides of zero,

but does not include zero itself. (This can occur in Hayter and Hsu's [1994]

bivariate confidence intervals for the two-sided test as well.) In that case,

one can think of the disjoint confidence set for p, as providing information

about lyi I that can be useful, for example, for variable selection in regression.

In variable selection, one typically elects to keep the coefficients that can be

distinguished from zero at a specified confidence level, and to exclude the

others. In linear least-squares regression of observations with additive i.i.d.

Gaussian noise onto a set of n functions that are orthonormal with respect

to the design points, the estimates { of the coefficients {pi}!}I satisfy

the assumptions we have used: { ,u- } are i.i.d. Taking the convex hull of

S before projecting it can result in a confidence interval for 1j that includes

zero, while S itself might support the inference that Jyi I e > 0. The

remarks at the end of section 4.2 show how to identify when the convex hull

of S includes uj - 0 but S does not.

7.4 Other optimality considerations.

The special nature of this problem, with its as yet vague goal of rejecting

Ai = 0 for as many j as possible, calls for a new criterion of optimality
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of the individual intervals derived from a confidence set. Factors we think

relevant to the problem, beyond the simultaneous coverage probability, are

the number of intervals that correctly exclude zero, and the lengths of the

intervals. One would be less than satisfied with a procedure that excluded

zero accurately for some coordinates, but at the expense of enormous or

infinite intervals for the same or other coordinates. For example, let I denote

the vector of confidence intervals produced by projecting the convex hull of

the confidence set S onto the coordinate axes, let A denote the vector of

lengths of those intervals, and let NjA(2t) denote the number of intervals in I

that correctly exclude zero. One might consider choosing S to be minimax

(or otherwise optimal) with respect to the risk induced by a loss functional

of the form

T1u(S) = A(A) + r(N,(I)), (54)

where A and r are monotone functions of their arguments.

A different approach would be to consider the ratio of the number of

intervals that incorrectly exclude zero to the total number of intervals that

exclude zero; this is the analogue of the False-Discovery Rate in multiple

testing [Benjamini and Hochberg, 1994].

8 Conclusions

By inverting non-equivariant tests one may construct variable-length simul-

taneous confidence intervals with an improved ability to exclude "preferred"

null-values of each parameter in some circumstances. Using hyperrectangu-
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lar acceptance regions whose orientation depends on the relative sizes of the

components of is leads to combinatorial optimization problems, but the con-

vex hulls of the confidence sets for each parameter can be found in order n3

operations or less, where n is the number of parameters. The dependence of

the orientation of the hyperrectangle on the parameter values connects this

procedure with sequential tests. The hyperrectangular procedure generalizes

to some non-i.i.d. cases and some problems where the parameters are not

location parameters.
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n Probabilities and corresponding Gaussian critical values

j=1 j=2 j=3 j=4 j= 5 j=6 j=7 j=8 j=9 j=10

2 0.0170

2.3877

3 0.0086

2.6310

0.0336

2.1246

0.0170

2.3877

0.0254

2.2365

4 0.0052

2.7996

5 0.0034

2.9278

6 0.0024

3.0307

7 0.0018

3.1165

8 0.0014

3.1898

0.0102

2.5688

0.0068

2.7057

0.0048

2.8153

0.0036

2.9063

0.0028

2.9839

0.0152 0.0204

2.4259 2.3206

0.0102 0.0136

2.5688 2.4681

0.0074 0.0098

2.6828 2.5855

0.0054 .0.0074

2.7773 2.6828

0.0042 0.0056

2.8578 2.7655

9 0.0012

3.2537

10 0.0010

3.3102

0.0022

3.0515

0.0018

3.1112

0.0034 0.0046

2.9278 2.8373

0.0028 0.0038

2.9895 2.9007

0.0056

2.7655

0.0046

2.8302

0.0068

2.7057

0.0080

2.6543

0.0056 0.0066

2.7715 2.7211

0.0090 0.0102

2.6091 2.5688

0.0074 0.0084 0.0092

2.6768 2.6372 2.6015

Table 1: An example of sequences (a1)!=, n = 2,.* *, 10, satisfying equations

7 and 8, and the corresponding half-widths of acceptance regions for standard

Gaussian variates: 4r-1(1 -ctj/2). 30

0.0170

2.3877

0.0146

2.4434

0.0122

2.5081

0.0092

2.6076

0.0070

2.6922

0.0128

2.4909

0.0110

2.5449

0.0086

2.6310

0.0100

2.5785

0.0114

2.5322



Figure 1. Acceptance regions for a test of the hypothesis E(X1, X2)

i using a rectangular acceptance region whose orientation depends on the

relative sizes of ul and P2-

Figure 2. Confidence sets derived from rectangular acceptance regions with

varying orientation. The sets are the intersections of rectangles centered

at the observation with the portion of the plane in which the ordering of

the coordinates agrees with the ordering of the lengths of the sides of the

rectangle.
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Figure 1: Acceptance Regions
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Figure 2: Confidence Regions


