Go to main content

PDF

Description

Consider a uniformly chosen element $X_n$ of the $n$-fold wreath product $\Gamma_n = G \wr G \wr \dots \wr G$, where $G$ is a finite permutation group acting transitively on some set of size $s$. The eigenvalues of $X_n$ in the natural $s^n$-dimensional permutation representation are investigated by considering the random measure $\Xi_n$ on the unit circle that assigns mass $1$ to each eigenvalue. It is shown that if $f$ is a trigonometric polynomial, then $\lim_(n \rightarrow \infty) P\(\int f d\Xi_n \ne s^n \int f d\lambda\)=0$, where $\lambda$ is normalised Lebesgue measure on the unit circle. In particular, $s^(-n) \Xi_n$ converges weakly in probability to $\lambda$ as $n \rightarrow \infty$. For a large class of test functions $f$ with non-terminating Fourier expansions, it is shown that there exists a constant $c$ and a non-zero random variable $W$ (both depending on $f$) such that $c^(-n) \int f d\Xi_n$ converges in distribution as $n \rightarrow \infty$ to $W$. These results have applications to Sylow $p$-groups of symmetric groups and autmorphism groups of regular rooted trees.

Details

Files

Statistics

from
to
Export
Download Full History
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS