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Abstract

Consider an exponential family P which is maximal, smooth,

and has uniformly bounded standardized fourth moments. Consider

a sequence X1,X2,... of iid random variables with parameter A.

Let Qnsk be the law of Xl,...JXk given that Sn=X1+...+Xn=s.
Choose A so E (X,)=s/n. If k and n - but k/n 0,

HQ - Pki k- o(-)nsk A n n

where Y='/2E(f1-Z2 ) and Z is N(0,1). The error term is uniform

in s, the value of Sn. Similar results are given for k/n x 9,

kand for mixtures of the Pk Versions of de Finetti's theorem

follow.
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1. Introduction

Let X1, X2, ..., Xn be independent and identically

distributed. Let S = X1+ X2+ ... + X . Under suitable

regularity conditions, if k is small relative to n,

the variables Xl,...,Xk are to a good approximation

conditionally independent given S5, with a

common distribution depending on the value of S . Such
n

theorems have been proved by Lanford (1973), Martin Lof (1970),

Stam (1987), Tjur (1974), and Zabell (1980).

Our object is to prove such a theorem with an explicit error

bound, uniform in the value of S; and we allow k to increase

with n. Our interest in these refinements will be disclosed

below, but first some examples. We work in the variation norm:

;1P - Q! = 2 supAIP(A) - Q(A)f

Let Z be N(0,1) and define y as follows:

r = 1/2 EfI1-Z2 !)( I1. 1 )
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i) The binomial. Let Xi be 0 or 1 and independent,

with P{Xi=1)=p. The law of X1,. ..,Xk will be denoted P k
1 ~~~~~~~~~~~~~p

Let Qnsk be the law of Xl,.,Xk given Sn=s, namely, the

law of k draws made at random without replacement from a

box of n tickets, where s are marked "1" and the remaining

n-s are marked "O". This law does not depend on the parameter

p, so S is said to be "sufficient."

If k - " but k/n - 0, there is little difference between

drawing with or without replacement. More precisely,

(1.2) IIQ - P 11 - k
+ o(-)nsk s/n n n

This explicit rate is uniform in s. The theorem also covers

the case where k=O(1), but then the result is a little harder

to state.

ii) The normal. Let Z. be independent N(O,a2) variables.

Write Pk for the law of Zi,...,Z. Let X.=Z.2 and S. =X +. ..a 1 k i i n 1 n

Let Qnsk be the law of Z '.&Zk given S =s. This time, Q sk

can be visualized as the law of the first k coordinates of a

point drawn at random from the surface of a sphere of radius

Js in Rn. Again, Qnsk does not depend on the parameter a, and Sn
is sufficient. The conditioned limit theorem takes the

same form as before: if k - " but k/n -. 0, then uniformly in s,

k-n'= k k(1.3) IIQ I+o )nsk is n no-
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The asymptotic rate yk/n in (1.3) is exactly the same as in

(1.2). This rate also turns up for geometric and exponential

variables (Diaconis and Freedman, 1987). The object in the

present paper is to state and prove a general theorem, covering

many of these special cases. The discrete case is a little

easier, so the theorem is given in the absolutely continuous case.

In the rest of this section, we state the theorem carefully;

proofs are deferred to sections 3 and 4. Section 2 makes the

connection with de Finetti's theorem, and gives a relatively

simple proof of a theorem of Kuchler and Lauritzen (1986),

characterizing mixtures of exponential families; this proof

is self-contained. Examples are given in section 5,

including the gamma; other examples show that when the

conditions of the theorem are violated (grossly enough),

the rate of convergence depends on the value of Sn,

so the conclusions of the theorem are false.
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For the main result, consider an exponential family

of probability measures (P : AEA) on the fixed interval I.

Assume I=(a,b) is an open interval; a or b may be finite or

infinite. Likewise for A=(a,p). Assume that the base measure

for {P I is absolutely continuous, with a nonnegative, locally

integrable density h on I. By definition,

(1.4) P (dx) eeA h(x) dx/c(A)

where

(1.5) c( A) = J e h(x) dx

is finite for A£A. Let X A have distribution P . Let

m =E{X I and a = var X

As is well known,

d
m = dA log c(A)

d2( 1.6 ) °A dA2 lo (A)

th di_
L the j cumulant of X is log c(A)

As (1.6) implies:

(1.7) m is strictly increasing with A

A standard reference on sufficiency and exponential families is

Lehmann (1986, pp18 and 57).
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Four regularity conditions will be needed.

(1.8) A is maximal: as A--a, the mass in PA concentrates

at a+; as A-.P, the mass concentrates at b-. It follows that

mA a or b as A- X or ; see (1.16) below for details.

(1.9) Fourth moments: E{(X - m )4}/a 4 is uniformly

bounded for ALA.

(1.10) Smoothness: sup;AEA supit,>6 1i)A(t/AH < 1,

where J,A(t) is the characteristic function of PA and 6 is

any positive number. In effect, this says that h does not

concentrate near a lattice, even after rescaling.

(1.11) Integrabilityj SUPA A I IN (t/oA)I" dt ( c,

for some v.1. This too is a smoothness condition on h.

Let X1,X ,... be independent random variables with common1'2'

distribution PA. Let S =X +...+X We next define the regularA ~n 1 n

conditional distribution Qnsk for XI1...Xk given n=s.
(A reference on rcd's is Freedman, 1983, Appendix AlO.)

(1.12) Definition. Let t=x 1+... +Xk Then Qnsk is for k<n

the absolutely continuous distribution on Rk with density

h(x )...h( h(n-k) (n)1 Xk)(st/

at x1,...,x1, provided sEnl and s-tE(n-k)I and O<h (n)(S)<.

If k=n, the distribution is singular; the Qnsn-law of X ?0*99X

is Qnsn-l' and Xn=s-(X1+..+Xn1)
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In (1.12), sEnI means s/nEI. Furthermore, h(i) is the j-fold

convolution of h with itself. This must be finite: For example,

take j=2. Fix any A£A. Then e h(x)/c(A) is an L function,

whose convolution with itself is another L function, namely,

s-+eAs h( (s)/c(A). So h(2) is finite, at least ae.

As will be seen in (3.6), for sufficiently large n,

the function h(n) is positive everywhere; it will be continuous

for n>v by (1.11). For any n, however, (s: O<h(n)(s)<() has

measure 1 for all PA. It can be shown that Qnsk is a regular

conditional distribution for X1,...,Xk given Sn=s, relative to

P., simultaneously for all AIA.

Recall y from (1.1). Let Z be N(0,1). Define 4(9) as

follows, for 0<8<1:

(1.13) 4(8) = El - J1- e /2 Z2

Let PAk denote the k-fold product of PA with itself.

(1.14) Theorem. Suppose conditions (1.8-11). Let

k and n - . Let sEnI. Choose AEA so m =s/n. Thus,

A=A depends on n and s.ns

a) If k/n - 0, then uniformly in s,

k k ok)fQ - P = - o-)nsk- A n n

b) If k/n - 0 with 0.0<1, then uniformly in 0 bounded

away from 1, and uniformly in s,

;}Qnsk PAk
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Part a) of the theorem shows that the conditional law

Qnsk of X1,...,Xk given Sn=s merges in variation distance with

P k namely, the law of k independent variables having a

common distribution drawn from the given exponential family.

The parameter A is chosen to match the means: mA= s/n.

That is the usual maximum likelihood estimate (Lehmann, 1986,

p16). From another perspective, matching on the means is the

Esscher tilting in disguise (Feller, 1971, sec XVI.7;

Cover and Csisizar, l9xx).

The rates in the theorem-- yk/n and 4(O)-- are the same

for all the exponential families which satisfy conditions

(1.8-11). The proof of a) works even if k=0(1), and shows

(1.15) I1Qnsk P = n+okn)

where

~- E{l'l-Z =1Irk =2 El-k ,

and Z is the standardized version of Skk

k ( k kmAA)/CAJk

If k4, then Z - N(O,1) uniformly in A by (1.9), sok

-k.y. In any event, yk<1.

The uniform 4th moment condition is stronger than it

may appear at first glance: it rules out, for instance,

the binomial. The assertion about mA made in (1.8)

is easily checked for finite endpoints; the next

remark covers the infinities.
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(1.16) Remark. Suppose Iz(-o,o) and A=(-o,o) is

maximal. Why does mA - " as A . w? By assumption, PA

drifts off to o, so x P (dx) o. What remains to
o A

show is that JS0 x P (dx) = 0(1). Fix 6>0. Now IxjI(eIXI -1),_00

so

c( A ) J t xl e h(x) dx <. C
| (e e1 h(x) dx

- (A l~ -0 P (-C0,0)c(A) A-1'('' ) A

This tends to 0 as A-., provided we can bound c(A-1)/c(A).

Now c(A)=co(A)+ci(A), where co(A)=Js e h(x) dx .0 as A-o,
Ax~~~~~~~~~~~~0

while cU(A)=z5 e h(x) dx is monotone increasing with A.0

Thus, lim supA C(A-l)/c(A) . 1. Also see Waterman (1971).

The page numbers skip from 8 to..... 11
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2. de Finetti's theorem

Let X1,X2,... be an infinite exchangeable sequence of O's

and l's (its law P is invariant under finite permutations).

Then P is a mixture of coin-tossing processes:

(2.1) P P p(dp)p

Here, Pp makes the X's independent, and P {X.=l)=p.

For finite sequences, the theorem fails: for example,

let X1,X2,...,Xn be the result of drawing n times at

random without replacement from a box of n tickets, where

some are marked "1", and the others, "O". (This distribution

keeps turning up because it is a typical extreme point of the

relevant convex set, as explained below.) Since X1+...+Xn
is constant, the law P of X1. ..,X cannot be

a mixture of coin-tossing processes. However, if k is

small relative to n, then X1 y,...S is nearly a mixture of

coin-tossing processes.

To make this precise, let Pk be the law of X1N...,Xk,
and let p k be the law of k tosses of a p-coin. Then, for

p
a suitable p,

k k k(2.2) HlP -P p(dp)II + o()k J p n n
[0,1]
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The argument: By symmetry, the law Q of X POSXOnsk 1' 'k

given that Sn=s is the law of k draws made at random

without replacement from a box with n tickets, where

s are marked "1" and the remaining n-s are "O". (The

computation is done relative to our exchangeable

probability P; the result is the same as for the independent

case, covered in example i of section 1.)

By the law of total probability,

n
(2.3) Pk = Qnsk P(Sn=s

And

(2.4) -P ~~k +(2.4) IIQns ps/ 11 = - o(-).nsk s/n n n

In principle, (2.2) follows from (2.3-4) using the convexity

of the norm, provided (2.4) is uniform in s-- which it is.

The mixing measure p in (2.2) is discrete: it is the P-law

of S /n. To get the infinite form of the theorem, let n-w.n

For details, see Diaconis & Freedman (1980); for a general

discussion of exchangeability, see Diaconis & Freedman (1984).

The y in (2.4) is defined by (1.1), and is a unixversal constant--

of this paper anyway.

To set this argument up in greater generality, let

(P I be an exponential family satisfying conditions

(1.8-11). Let X1 ...,X be the coordinate functions

Inonl and S=X1+...+X
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Let Qnsk be the regular conditional PA-distribution
for X1,.."'Xk given Sn=s, defined in (1.12).

(2.5) Definition. Let C be the set of probabilities P on I
n

such that:

i) P(h(n)(S ) > 0)) 1
n

ii) Qnsn is a regular conditional distribution for P

given Sn=s.

Clearly, PA n C . And so is P , defined as PA p(dA).;N n pn A A

The set C is convex, with extreme points Qnsn . Any

PEC is exchangeable, because the Q are.
n nsn

Write Pk for the P-law of Xl, ...Xk. If k<n, as a

matter almost of notation, Pnk= Pk. A finite version

of de Finetti's theorem can now be stated, characterizing

mixtures of the basic exponential family in terms of their

sufficient statistics.

(2.6) Theorem. Suppose conditions (1.8-11). For P£C
n

let

P=PnP be the P-law of the A solving mA=S /n. Let k and n

with k/n - 0. Then

k~~~~il k
-

pk l/ n

Proof. As in the coin-tossing example, using Theorem (1.14a)

to estimate the conditional probabilities Qnsk'
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In this theorem, the class Cn is defined as all probabilities

which have the same conditionals given S as the fixedn

exponential family (P :AEA). As far as the law Pk of

the first k=o(n) coordinates is concerned, any P£Cnn
is nearly a mixture of the power probabilities P k

The particular mixing measure p constructed in (2.6)

is nearly optimal, as shown by the next theorem, whose

proof is deferred to section 4.

(2.71) Theorem. Fix AKEA. Let k and n tend to ". Let

s=n-*m. Drop conditions (1.8-10), and assume (1.11)

only at A rather than uniformly.

a) IIf k/n - 0, then

inf'IQ p
~ k + 0kif IQ - - o-

p nsk jpk n n)

b) If k/n - 0 with 0<01, then

inf !,IQ k P k d(()p nsk pkl

To see more explicitly why (2.6) is sharp, fix AEA and let

s=n.mA. Now Q EC , and this will be the test P in (2.6).AW ~ nsn n

If k/n 0, (2.7a) shows that no mixing measure can beat the

one constructed in (2.6), by more than o(k/n). On the other

hand, if k/n - 0 > 0, then (2.7b) shows that Qnsk is close to

no mixture of PA's, and our finite version of de Finetti's

theorem cannot hold for such large k. The 4(0) is as in (1.13).



15

For the infinite version, in the setting of Theorem (2.6),

let X1,X2,... be the coordinate functions on I", and S =

X+...+X. DefineQk by (1.12). Let P be the P-law of

1 nnsn
X1, .. . Xn&

(2.8) Theorem. Suppose (1.8-11). Let P be a probability on

I ", such that P EC for all n. Then P is exchangeable, andnn

p = P P(dA)
A A

The mixing measure p is the weak-star limit of the law

pn of m-'(Sn/n), as n - .

Proof. This follows by a limiting argument from (2.6),

provided we can show pn is tight, and that is a

consequence of (1.8). Suppose, for instance, that a

and a are finite. Given e > 0 there is a 6 > 0

with PA{(a,a+E)) > 1-e for a < A < a+6. Let k and n

approach infinity, with k=o(n). By (2.6),

P{a<Xi<a+E} > P fa<Xl<a+E) pn(dA) + O(n)
2(EX,a+6) A n

n

Therefore, lim60 lim supn- pnf(a,a+6)} = 0. L-I
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This infinite version of de Finetti's theorem for

exponential families is available under much weaker

conditions: see Kuchler & Lauritzen (1986). The following

simple argument for a special case of their theorem may be

of interest. To set it up, and avoid irritating technicalities,

drop (1.8-11) and assume (2.9-10) instead. (Half-finite or finite

state spaces are easily accommodated; roughly the same argument

works even for general, locally integrable h-- but the analysis

is a little delicate.)

(2.9) Let h be a positive, continuous function on (-,),

wi.th

(2.10) c(A) = J e h(x) dx < X for A inside the

maximal interval A, which is nonempty.

fn particular, h(n) is positive and continuous for all n.

The exponential family (PA:AEA} is defined by (1.4-5),

as before. Recall that X1,X2,... are the coordinate functions

on Ia. Define Q by (1.12), as usual. For any probabilitynsk

P on I's, recall that P is the law of X1,...,X . Define C

by (2.5). Define MQ9 a set of probabilities on lw, as follows:

PENIQ iff PnECn for all n. Informally, PEMQ it it has the same

conditionals given S as the Pw. In particular, P isn A

exchangeable; the next theorem shows it is a mixture of P ~
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(2.11) Theorem. Assume (2.9-10) rather than (1.8-11). Then

PEMQ iff

p = p p (dA)
A

Proof. The "if" part is easy, and p is unique by

standard arguments. For "only if", we use the general

theory in Diaconis and Freedman (1984). If PEMQ, then

P = f Q v(dii), where Q is 0-1 on the a-field E:

nn a{Sn, n+1 Xn+2 .1. and Q E MQ. Especially, Q is

exchangeable; since it is 0-1 on E, it makes the Xi

independent and identically distributed. It remains

only to show that Q = PA for some ASA, and that follows

from (2.12), which writes L(Y) for the law of Y, and L(Y[X)

for the law of Y given X.

(2.12) Suppose X1 and X2 are iid and L(X1X +X =s)=Q

Then L(X1) = PA for some ALA.

Here is the argument for (2.12): Q2 has the continuous,
(2)~

positive density x - h(x)h(s-x)/h(2)(s). Now L(X1) is a mixture

of L(X1jX1+X2=s), so it too has a continuous positive density;

call the latter f. Of course, L(X11X1 +X2=s) can be computed

directly from f, so
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(2.13) f(x) f(s - x)/f(2)(s) = h(x) h(s - x)/h(2)(s)

Let

X(x) = log f(x) - log f(O)
h(x) h(O)

and

O(s) = log f (2)(S) - 2log f(O)
h(2)(s) h(O)

Take logs in (2.13) and regroup:

X(x) + X(s - x) = ¢(s)

Put s = x: since X(O) =0, we get 4(s) = X(s), so

X(x) +X(y) = X(x + y)

Now X(x) = Xx for some real number X, proving (2.11) and the theorem. 0

(2.14) Example. An exponential family for which de Finetti's theorem fails: (2.9) does not
obtain. Indeed, the base measure f3 is discrete, assigning mass 1 each to 1, e, e2,... Con-
sider the exponential family {Px} through P. Now a finite sum ao+ ale+... +akek determines
the integer coefficients aj. Thus, S, =XX1+ +X1, determines the order statistics of

X, ... Xn and Qn, assigns equal weight to all permutations. If now Xi are iid with values

l,e,e2,... then the law of Xi,...,Xn given S =s is Qns--whether or not the law of Xi is of

the form Pk. (It is in this sense that "de Finetti's theorem" fails; properly speaking, his

theorem holds, but our variant of it fails.)

(2.15) Example. Another example for which de Finetti's theorem fails: the base measure
is continuous, with a singular component. Let P be uniform on the Cantor set, and

P, =N(O,1). Let 1 = 1/2 (Po + P,). Consider the exponential family {Px) through P. The natural
parameter space is the whole line. Now f3n) is supported on the Lebesgue-null set Cn,
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because lim sup 2(t) I = 1. Let Q, be a regular conditional distribution for X1,..., Xn
ILl --*oo

given S = s, with respect to ,B; and Rns with respect to 0 . Now Qns= R1 for f6n)-almost
all s. In particular, Po = Px for no B. Yet, with respect to f 0, Qns is a regular conditonal

distribution for Xl,...,Xn given Sn=s. This may seem like a cheat, since Qns has a bigger

domain than R.. If so, consider P= /2(½(o + P°). This has Qns for the law of X1,...,X

given Sn= s, but cannot be represented as JPZ p (dX).

For more discussion, see Diaconis & Freedman (1984).
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3. The proof of Theorem (1.14)

This section will prove Theorem (1.14), starting from assumptions (1.8-11). We view s

as -variable and choose x = s to solve mX = s/n: the solution exists by (1.8) and is unique

by (1.7). Let Q be the Qnsk-law of Sk = X1+ *' +Xk and P the Pk-law. (Dependence on

n , s, k is not made explicit). By the sufficiency lemma (2.4) of Diaconis and Freedman

(1987), we have jj Qn - Pk 1 = 1 Q-PP. Let fk(t) = fkx(t) be the Ptk-density of Sk,

namely,

(3.1) exth(k)(t)/c(X)k

so Q has density

(3.2) q(t) = fk(t)fn-k(s-t)/fn(s)
= h(k)(t)h(n-k)(S- t)/hn(s)

Now,

(3.3) pkQnkPxII = ii fnk(S) -1Ifk(t) dt

We will estimate fn-k and fn using the Edgeworth expansion. Let t be t standardized for fk,
that is,

(3.4)
t = (t-k-)/4k(T

n

Let t be t standardized for u - fnk(s - u), that is,

(3.5) t =-lkI(n-k) t

We claim the following.

(3.6) Lemma. Let 0<01< 1. Then

fn-k(s-t/fn(s) = i7 kYe4t+ 0(1km/n) It + O(1/n)

uniformly in n,k,s,t with k<01n.

Proof. Recall that mX = s/n, so X depends on s and n. Abbreviate s = ox. By the

Edgeworth expansion,



- 21 -

(3.7) f"(s) = 11 +0 I ]1

(3.8) fT-k(S-t) = 1 eAtZ[1+ q(X) H3(t)]+O(1/an3/ )
a4-,2i(n-k) ni

The 0-terms are uniform by (1.9-1 1): see (3.12) below. As a matter of notation,
H3(x) = 3- 3x, and q(X) = - Ex[(X -m,)3]/c3. The latter is uniformly bounded by (1.9).6
By (3.7), if n . no then fm(s) = fnx.(s) is positive for all s. Therefore h(')(s) >0 for all s: see

(3.1). As a result, fnx,(s)>s for all X' and s, even for '.Xn. Now

-k (s- t)/fn(s) = nI(n-k)e1A[1C+0( ) H3(t) I+ 0(1/n)

But

e- '3(t) < I t | (^t + 3) e-, t

- O(ItI)
= 0(JkS) I t I

(3.9) Lemma. If k = o(n), and It| <02<oo, then uniformly in s and t,

fn-k(S .t/fn(S) - 1 + -(1- t2) + 0(4k/n) I t I

+ O(k2/n2)(t2 +t4) + 0(1/n) + O(k2/n2)

Proof. From (3.6),

(3.10) fn-k(S - t)/fn(s) = ik+I e-/2 +0(4/n) 1 t I +°( /n) + n(k2/n2).(12-n (2n)

Now
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e-lA12 =1 - I't2+ 0(0)
2

= lL^t2+oL )t4

i ktk-2+O(k2)(y2+4)
2 n n2 O

(3.11) Lemma. ft IVfk(t)dt = O(1) uniformly in ke A for v = 1,2,3,4, under condition

(1.9).

Proof. Only the case V = 4 need by proved. By an elementary calculation,

vark(Sk) = x

Ext (Sk - kmx)41 = kEXt (X1 - mX)4} + 3k(k - 1) y4

So

J t4fk(t)dt = Ex{(Sk-km,j)/[Var (Sk)I2

= -Ex{(Xl -m)4}/+3 k-
k k0

Proof of Theorem (1.14b). We compute as follows:

IQnsk-P = J1fnk (S -t) -1i fk(t) dt

JiI.|2Le 2 n-k_ 1 fk(t) dt+o(1)

=E{ ee -}2o(1)

The first line is (3.3). The second is (3.6), with (3.11) to control the error term in t, and

(3.5) to evaluate t. The third is the central limit theorem. Changing variables gives 4(9). 0
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Proof of Theorem (1.14a). As before,

11IQ~k I -||=pk k2 _521| - fk(t) dt

+ I n-k - 1 fk(t) dt+o(k/n)

Now Itt >02 implies |tt > /2V4jkO2 by (3.3), an event of probability Q(k21n2) by (3.9). This

eliminates the 2nd term, and the first is asymptotic to 2-E{ Il-Z21}*

(3.12) Remark. The Edgeworth expansion can be done by following the argument in

(Feller, 1971, sec XVI.2). Let Xx have law Px. We work on the standardized variable

(XX - mX)/a, and make the estimates uniform in X, to approximate the density for

(Sn-nm)/ax-1. The density for Sn itself comes out by a change of scale. In Feller's equa-

tion (2.4) on p. 533, cY=1 by the standardization. Next, Feller's q8 comes from (1.10), and

the Lv - bound on the characteristic function from (1.11). The contribution near 0 can be

estimated uniformly in X by condition (1.9).
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4. Proof of Theorem (2.7)

This section will prove Theorem (2.7). We drop conditions (1.8-10), fix ? e A and

assume (1.12) only for X=X:, that is, we assume, NyfA (t/Ic) e Lv. Condition (1.11) holds

for k = X" by the Riemann-Lebesgue lemma. Condition (1.9) holds for X = ! by an elemen-

tary argument: Pg has a fourth moment. In particular, the Edgeworth expansion is available.

There is a shift in viewpoint. In the previous section, s varied and k followed. Here,
the main X of interest is X, and s = n * ma . The first result is the analog of (2.6). To state

it, let

(4.1) t =
t =tks)IFa

n

(4.2) t= k/(n-k) t

These are the two standardizations of t.

(4.3) Lemma. Let O< 01< 1 and 02< . Then

fn- k, (s - t)/fn V (s*) = Nn/(n - k) e-/2t + 0(Q1k/n) + 0(1/n)

uniformly in n,k,t with k<01n and Itt < 02.

Proof As in (3.6). 0

The next result is the analog of (3.9).

(4.4) Lemma. If k = o(n) then uniformly in t with itk (02 f -t)/f (s*)=

1+ 1 kl-t2 +(k)2n n

Proof As in (3.9): if t is bounded then t is very small, by (4.2). 0

Some additional estimates will be presented.

(4.5) Lemma. /2(eu+e-u)< eU2, with equality only at u = 0.

Proof. The left hand side is , u2j/(2j)!, the right is E7u2j/2Jj!, and (2j)!>. 2Jj! with
j=O j=O

equality only at j = 0 or 1. 0

(4.6) Lemma. Let Z be a symmetric random variable. Fix e with 0< c< 1. Let 0< T < 1

with T21 -F-. Then
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PIjZ| <T) .e-Ah(l_)U2 euz dP

with equality only at u = 0.

Proof. By symmetry and (4.1),

J euz dP= e-uz dP
I<ZT IZ<T

= J 1/2(euz + e-u) dP

<e1A2u2T2 P{IZI<T}

Abbreviate m = m. and aT = TAx. We now consider k near xA and t near km.

(4.7) Lemma. Fix £ > 0. For all k. k. and I x-x| 17(s/k,

c(X)k c(X )k ekm(X-X;) + l/2(1 - £)ko2(X_2
Equality holds only at X =XA.

Proof. Use Taylor's theorem on logc(X), with (1.6) to identify the first two derivatives

at C*. 0

The P k density of Sk = X++* Xk at t is fkx(t) = ex h(k) (t)/c(X)k.

(4.8) Lemma. For all k.k. and X-xIl<17ak,
fkx(t)/fkAx (t) < eUt - l/2(1 - £)U2

where u = (X- X*) * c and t = (t - km)/Ia4kf-. Equality holds only at u = 0, that is, x = x .

Proof. This is immediate from (4.7). 0

(4.9) Lemma. For t/k e I, let 4kt(X) - eXt/c(')k.Then X - log kt(X) is strictly concave, with

its maximum at X = Xkt, the solution to mx = t/k.

Proof. From (1.6),



- 26 -

0log kt(X) =t- kmx

-d 2log It(k) =-k(yx

Recall that 0 < £ < 1.

(4.10) Lemma. Let e<6< 1. For k.ks, for all t with ItI< 1 -6,

a) |iXkI-xl|<1cY'
b) k . + =- + 2/c('f- entails 4kt(X) < 4kt(X+)
c) k < ?J =) - 2/a4i entails 4kt(X) < 4kt( )

d) jX - x .22/a1kW entails 4kA() <0kt(2)
Proof. Claim a). This is so because a mI = c as x. -* 2$.

Claims b) & c). These follow from a) and (4.9).

Claim d). This follows from b) & c), once it is established that Okt(X+) <°kt(Q). But,

for example,

0kA+)/4k(2$) < eUt /2(l - E)U

by (4.8) on k = X+, with u = (x+-*)a4* = 2. Now

jut I < 2(1 -8)< 1/2(l-E)U2 o

Proof of Theorem (2.7b). Let q be the QnSk-density of X+ +Xk: see (3.2). Recall

that fkx is the PA density of Sk: see (3.1). Let f. = JfkX t(dk) be the Pg,-density. Abbreviate

f for fk:. Then
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(4.11) IIQpgII =2J(q-fg)+

. 2j (q-f f)+

. 2j (q-fg)

f
=21 ( ) f- +21 (1 - '9 )f

Of course,

(4.12) q(t)/f(t) = fn-k(s -t)/fn(s*)
For J we choose the approximate interval where q> f, namely, (t: |tI <021; where

(4.13) 12 = log < 1

(To see where 02 comes from, check that

Z21 e 8 .1i-e
exactly for IzI < 02-)

The first term at the end of (4.11) is O(8)+o(1) by (4.12) and (4.3). It is only left to

show that

(4.14) j(1 -+)ff o(1)

This will be so for any interval J of the form t < T< 1)1, where T is now fixed. Indeed,
the left side of (4.14) is linear in ~t, so we need only take 1t = 8o. As a matter almost of

notation, when , =

fg(t)/f(t) = PCk(X)/Pkt(X)

There are two cases in the proof of (4.14) for A = 6x.
Case 1: IX-X 1< 17/cfk. Now by (4.8) the integral is for k>ke at least

(4.15) J Ut - -£)U I f(t) dt
Itl<T

In this case, u = a-)* i is at most 17 in absolute value. As k oo, the expression in
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(4.15) converges uniformly in u to

1 _ eUZ~ /2(l E)U2I
IZ<T

which is positive by (4.6). This completes the proof of (4.14) in Case 1.

Case 2: jX- >| 2 2/a-Fk-. In this case, Lemma (4.1Od) completes the proof of (4.14). 0

Proof of Theorem (2.7a). This is quite similar, but a little more delicate. Let

n(x) = e½x be the normal density. Recall that f = fkA is the Pk density of

X1 + + Xk. For k > ks, by the Edgeworth expansion,

f(t) 2 (1 -6) n(t)/c4 for all t with I t S 1

Then

(4.16) 1IQ-P411 22 (q-fg)+

= 2j (-f--f) f(t) dt

22(1-8) _
_ 1+1_ I) n(t dt

2 2(1 - 8) | - I + 1 - f) n dt

22(1-6)1 (f -1 fn Gt2(-o)(-k) Xd

.~~~~~~~~~~~~ f

For J choose the interval {t<II. T By (4.12) and (4.4), the first term at the end of
(4.16) is at least

- (l-6)2 1 _Z2)+o( k2 n _n

The second term is positive, as before: in (4.15), the density f(t) should be replaced by the

normal n(6)/ac4k, so (4.15) is exactlyJ1 -euZ' (j_e)u2. This is positive by (4.6) or
ZIZ < NflC

direct calculation. Approximate normality or symmetry is not good enough, since we must

estimate to o(k/n) not o(l).
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0

Remark. For part a) of the theorem,

10 2
q ~ ~e2- 1-0

(f -1)-

which is positive for

-2 1-0 1t <
0

log
I

and negative for t2 larger. Furthermnore,

E ~~~e
2

EtJe-21-0 }=i

For part b) of the theorem,

q -I-1k (-t2
f 2 n

which is positive for t2< 1 and negative for t2 larger. Of course, t= 1.

An interesting identity.

fk,x (t)/fkx (t) = e/tk(u)

where t = (t - km')/IcA 4, u = - )cY 4kX, and pk(u) = E).(euX), namely, the P -Laplace

transform of the standardized X: see (4.1). Indeed, the left side is by algebra eut times

e c(C*)k/c(X)k
Now integrate over t against fk : (t); or expand log c(x) around X$.
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5. Examples

The first two examples (gamma with scale or shape parameter) are well known

exponential families, which satisfy the conditions of theorem (1.14). We believe the result-

ing estimates are new, as are the implied forms of de Finetti's theorem characterizing mix-

tures of these families. A little more generally, our conditions (1.8-11) hold if h on (0,oo)
satisfies h(x) / xa-l - A as x -e 0 and h(x) / xV1 -> B as x -* oo, for some positive, finite

ca, ,B, A and B, not necessarily equal.

(5.1) Gamma with scale parameter. To put this in canonical form, fix the shape parameter

p > 0. Let I = (0, oo) and A = (-oo, 0). The carrier density is h(x) = xP1. The PX density is

exx h(x)/c(X)

with

c(X) = RXIP/r(p)

This is the law of -X/ I XI, where X is r7p. The conditions (1.8-11) are obvious.

(5.2) Gamma with shape parameter. If X is rF, the law of logX is in canonical form with

I = (-oo, oo), A = (0, oo), h(x) = ex and c(k) = 1(X). Here, condition (1.8) is easy to

check, but (1.9-11) are not so obvious. The following relationship will be helpful (Ahlfors,

1966, p 198):

(5.3) d2 log R(X) = 1
dX2 ~ n=0(X+n)2

This gives CA by (1.6). Differentiation of (5.3) gives the value for 1c4(X), the 4th cumulant,

by (1.6):

(5.4) K4(k) = 6 E 4
(5.4) ~~~~~~~~~~~n=O (X+n)4

Of course, C4(X) = E f (Xx - mx)4) - 3a4, when Xx is distributed as Px.

There are two cases to consider.
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Case 1: X-0. Then cx2=X-2+O(1) by (5.3). And K4(X)=6X-4+O(1), so

1K4(X)/a 4-6. This settles (1.9) near 0. If X follows the Is distribution, an elementary

argument shows that the distribution of -a0j logX tends to the exponential. Indeed, the den-

sity converges in L1, proving (1.10) for x near 0. It also converges in L2, proving (1.11) for

x near 0 by Plancherel's identity.

Case 2: kA-coo. Now TA2 is between J u-2du = 1/A and J u-2du =/(X+1)=
(1/A) + O(1/X2). Likewise, ic4(A) = (2/x3) + O(1/A.4), so K4(A)/cy 4 = 0(1/A.) -e 0. This proves

(1.9) for large A. For (1.10), if X follows the rJx distribution, then X is about N(A, A), and

4-(logX - log A) - N(0,1). In more detail, let Y be log r'. Then (Y - x) *< has density

fx(z) = e-xg(zlq)

where y(X)-> l as A-4o o and g(u)=eu-1-u. See (Diaconis and Freedman, 1986).

Clearly, fx(z) -> n(z) uniformly in I z I<L as A. -> oo, because g(u) = ½/2u2+ 0(U3) as u - 0.

Here, n(z) is the normal density.

We claim f,-* n in L1, proving (1.10) in Case 2. This reduces to showing that

JlI fx(z) dz is small for L large, uniformly in A.> kA. Only the upper tail will be done.

Now

fx'(z) = -fX(z)g'(zIKK)<K

and g'(u) = eU- 1 is monotone, so

|L fA(Z)dZ<| -fx' (z)dz/g"(LN/4)4)
=fX(L)/g'(/)

, 1 -½AL2

This completes the proof of (1.10).

For (1.11), let fx(t) = el fx(z) dz be the characteristic function. Integrating by parts,
-00

(it)2 f (t) = 0e1 f'i (z) d

So, all we need is
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(5.5) f07(z) vanishes at ± 0o

(5.6) f{'(z) -4 n"(z) uniformly on compacts

(5.7) JIf>'(z)I dz = 0(1) as koo

Relations (5.5-6) are easy to check. For (5.7),

fx (z) = fx(z) - G(z)

where

Gx (z) = Xg"(Z/'1) - [g,(z/ IK)]2.

For k>X0, by differentiation, GA(z) is strictly convex in z with its minimum at z = I/24.

Especially, GA(Z) will be positive for zI >2 if we can make GQ(±2) >0. But GX(z) - z2-

as k-oo.

Now

I fA'(z) I dz = J f('(z) dz

= -fx'(2)

= fx(z) g'(2/<XI>)/
- 2n(2)

This completes the argument for (1.1 1).

(5.8) Remark. mX is not needed for these arguments. However,

mx2- mX1 = 'X dX2 log F(X) dX

0

so m =-2-71+0(1) as kX-0 and mx =logk+0(1) as kX->oo. A more careful argument

shows mx = log k+O(1I/X) as x-oo.
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The exponential family in the next example is non-standard. We were looking for

something which violated (1.8-11), but the gaps were not large enough.

(5.9) Example. Let h(x) = 1 for 2j < x . 2j + 1 and 0 for 2j + 1 < x . 2j + 2, for each nonnega-

tive integer j. So I = (O,oo) and A = (-oo,O). Conditions (1.8-11) are satisfied. Indeed,

c(k) = exx h(x) dx

200 exd
j=0 2j

=1 e -1

1 1
x 1+ex

Of course, c(X) > 0 because k<0. By painful calculation,

1 1
A k I +ex

2. 1 eA

x2 (1+eX)2

More easily,

x 1+ex
X+it 1+ex+it

Abbreviate

fx(x) = ex h(x)/c(X)

Case 1: 2-> oo. Now mx-0 and ax= 1/I I. Consider the density of (-X)Xx, where

X is distributed as Px:

gx(z) = (1+ex)ezh(z/Ik) for z>0
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Let go(z) = e. Now gx -4 go in Ll and in L2: conditions (1.10) and (1.11) follow. Further-

more, fzv g(z) dz gJzvg(z) dz for any positive v, proving (1.9). Condition (1.8) is easy.

Case 2: X -+0. Now mx-*)Co; again, ax= 1/RI|. As before, the normalized density of

(-X)Xx is gx(z). As k-+0, however, (1+ e) h(z/I XI) -+ 1 weakly but not pointwise or in

norm. So g;L-*go only weakly. This complicates the argument appreciably. For (1.11), by
a stroke of luck,

lim sup J [gg(z) - g(z)]2 dz < oo

Plancherel's identity works again. For (1.9), z" gx(z) dz -+J z' go(z) dz.

The argument for (1.10) is harder. Write x = -X' where X'>0, so X'-*0+.

+ e7x'(1 - it)
lAVx(X't) = (1-it) 1 +eX(liE

1+ e4x

1/v~(X't) = (1 -it) I + e-')

We must bound the norm from below, for It 1 8. The denominator 1+e-+2 and is imma-

terial. Now

(1 it)[I + e- ( it)] j2 - (1 + t2)[(1 + e- cos Xt)2+ e (sin X't)2J

= (l+t2)[1+e-2V +2e-L cos X't].

Heuristically, the critical t is / X', giving a value of i2. More carefully, we estimate for t in

the interval 2ki/ '<. t< (2k + 2)n/k'. We divide Gaul into 3 parts:

a) 2k <.'t < (2k + 3 )x4

b) (2k+ 3 )5 < Vt!< (2k + 5 )x

c) (2k+ 5 )tx< 't < (2k + 2)c4

On the 1st and 3rd interval, the cosine factor in the norm is at least

I - 2_e-+e7-2 =2- + O(V')
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so the squared norm is for small k' at least

(1 + t2) (2- 4~2- c)

In the middle interval, we get for our lower bound

[ 1+(2k+328 2X,t2
4 X'9 2

since for small ', crudely,

(I -ek')2> 8 X,2
9

On a) + c), we get

w(')2< 41
| 2 -V2-4-E l +t2

which is tolerable for ItI> 3 say. If ItI .3, there is no problem because "yx(k't) - 1 - it uni-

formly. On b), we get

(5.10) 2w(X't)2 2 <14
2/2

(5.11) Example. In this example, condition (1.8) will fail, but (1.9-11) hold, and the conclu-

sions of theorem (1.14) fail, for a trivial reason. Let h(x)=e-X on I=(0,oo) and take

A= (-oo,O), which is not maximal. By a direct calculation,

d n-I X ~~n-2
(5.12) dn n- for 0.~x.<s

dx s s

Let n - coo. If s/n - 1/0i> 1, the density in (5.12) goes to Oe-x, which is not of the form

(X+ 1)e-(X+l)x for %E A. 0

Conditions (1.8-11) are far from necessary, but something like them is needed to gen-

erate a uniform bound like that in (1.14). That is the point of the next example, which

involves large gaps.

(5.13) Example. In this example, condition (1.8) will hold, but (1.9-11) all fail. Further-

more, for suitable sn,
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(5.14) lim inf,I|| Qnsil- PaI 2
n o-

For the construction, let f(j)=jJ, j = 1,2 ... Let N(a,a2) be the normal distribution with

mean a and variance a2; its density at x will be written 4(a,a2,x). The carrier density h(x)
is defined for x E I=( -oo,oo) by

j= 1
00

As is easily verified, h is continuous and strictly positive; however, J h(x) dx =oo. Chang-
*00ing notation let

(5.15) c(X) =J e- h(x)dx for XE A = (O,oo)
-00

Of course,

(5.16) c(X) = e1/2X200e-xf(J)
j= I

This converges for X E A, but c(O+) = oo. Indeed, associate the integer v to small X by

(5.17) l/f(v) . k> 1/f(V+ 1)

Then

(5.18) c(X)/v-* 1

To prove (5.18), we begin with a lower bound:

c(X) > .v-i e-f)
j=l1

and in this range Xf(j) < f(j)/f(v) . f(v - 1)/f(v) < 1/v. So, c(X) . (v - 1)e-1/v. For a good upper

bound, we need only estimate

(5.19)
00 e-xf()
j=v

In this range, Xf(j) f(j)/f(v + 1) .j -v - 1. So the sum in (5.19) is 0(1), and this completes

the proof of (5.18).

We now define Pa by its density
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(5.20) hX(x)= Le-A h(x) for x e I
cG¼)

As will be clear, A=(O,oo) is maximal, so (1.8) holds.

By an elementary calculation,

(5.21) Px =
0

z wj(X)N(fj)-XI, 1)
j=1

the probability weights being given by

wj(k) = eX-fO)1C(X)

This presents Px as a location mixture of normal distributions.

The argument for (5.18) shows that the w's become uniform on (1,2,..., v} as k 0.

As a result,

(5.22) IIPx- PVI -0
where

P* -, N(f(j),1)
V j=j

In particular, as x -* 0+, the mass in Px drifts off to +oo and spreads out:

(5.23) lim supXPx([x,x+K]}= 0

for each fixed K.

We choose sn=nf(n), and claim

(5.24) 1j Qnsl - N(f(n), (n-l)/n) -- 0

This is the hardest part of the argument. The idea: if X+ +Xn= nf(n), then each Xi
must come from the N(f(n), 1) part of the mixture. If any Xi comes from a bigger part, the

sum will be too big. Conversely, if all come from N(f(n), 1) or less and if any one comes

from a smaller 'art, the sum will be too small.

For the rigor,

(5.25) d Q nsi = h(x) h(n-)(s - x)/h(n)(x)

We claim
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(5.26) h(n)(sn)1/= as n -oo

To start the proof of (5.26),

(5.27) h(n)(sn) = [f(jl)+* +f(in),n,sn]
We consider 3 types of n-tuples:

A) maxji<n and minj'i<n

B) jI = =in = n

C) max ji > n

Plainly, the contribution to the sum in (5.27) from B) is exactly 1/n`. To estimate the

contribution from C), let k=maxji-n. There are at most (n+k)n n-tuples whose max is

n+k. And f(n+k).sn, so each term in C is at most

44f(n + k),n, sn] = 44O,n, sn - f(n + k)]

= 440, n, f(n+ k) - nf(n)]

Overall, the contribution from C) is at most

(5.28) z (n + k)n t0 , n, f(n + k) - nf(n)]
k=1

Crudely,

f(n + k) 2 (n + k)nn

So

(5.29) 40[, n, f(n + k) - nf(n)] < 1 e-n(n+k)

provided n . 3. Now
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c

(n + k)n e-n(n+k) <
c

(n + k)e n+k)
k=1 k=1

< xe-xdx

= (n+ 1)e n

In sum, the contribution from C) is at most

(5.30) 1 - (n+ 1)e7n

Likewise, the contribution from A) is at most

(5.31) nn (O,n,f(n)-f(n- 1))< 1 nne-n2

for n .4. This completes the proof of (5.26).
In principle, we must now estimate the numerator on the right of (5.25). However,

(5.32) J_ h(x) h 'n-1) (s -x) dx = h(n) (s
00

The integral on the left in (5.32) is

00

(5.33) . . f( 1 ), 1,xI O[f(2)+ ** +f(jn), n- 1, sn-x] dx
il , j2 . .. Jn - C'

The term with j1=j2=... jn=f(n) already contributes 0[nf(n),n,sn] = i/f42, so all other
terms amount to o(1 /X1H) and contribute o(1) in variation distance to Qnnj. Up to o(l), then,

Qns,1is L(XjIXj+- +Xn=nsn), where the Xi are iid N[f(n), 1], and this proves (5.24), with

a bound on the error of

(5.34) (n + 1)e-n+ nn e-n2
For our purposes, what counts is that Qns1, when centered at f(n), is tight. We can now

prove (5.14). Start with t=6k. In view of (5.23), Qnn 1 becomes orthogonal to all Px: if x

stays away from 0, this is because f(n) - oo; if X - 0, because PA spreads out and Qnn 1 does

not. The argument for Pg, is similar.

We will now argue that conditions (1.9-11) fail. For simplicity, we let v-*oo with
X=1/f(v). Then c(k)/v -* 1 by (5.18). The same technique shows
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(5.35) c(k)(X) = e-l f(V)k+ e-f(v+l)/f(v) f(V+ 1)k + O(1)

The first term on the right is dominant, so

(5.36) mk= e-if(V)/x

(5.37) (Y2= e-1f(V)2/V

and the 4th standardized moment is of order v. Thus (1.9) fails.

For (1.10) and (1.1 1), recall that Nfx is the characteristic function of Px. We claim

(5.38) Nfr(t) -* 1 uniformly in t with ItI< K/ax

Indeed, from (5.22),

1 v2 +itfo)(5.39) v(t)- -e -2 0

uniformly in t. From (5.37): if ItI<KI/ax= KeI/f(v), and j= 1,.. ,v-1 then |tf(j)|
< [1 + o(l)]K-'/vf(v - 1)/f(v) -*0. So, all but the vth term in (5.39) is practically 1. This

proves (5.38), and shows (1.11-12) to fail. 0

(5.40) Remark. If f(j) =j, then conditions (1.8-1 1) hold. If f(j) = (i for ax> 1, then (1.8-1 1)
all fail, but so does the estimate for part C) of (5.37), SO we do not know what happens.

(5.41) Remark. In these examples, (1.9-11) all hold or all fail. It would be interesting to

have examples which separate the conditions.
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