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Abstract

Consider an exponential family PA which is maximal, smooth,
and has uniformly bounded standardized fourth moments. Consider
a sequence Xl,Xz,... of iid random variables with parameter A.
Let QnSk be the law of Xl""’xk given that Sn=X1+...+Xn=s.
Choose A so EA(XI):S/H' If k and n » o but k/n - 0,

k k k
| - Il = X L
'IQnsk Pa H LA 0(n)

where Y=1/2E{!1-Zzl} and Z is N(0,1). The error term is uniform
in s, the value of Sn' Similar results are given for k/n -+ 8,
and for mixtures of the PAk. Versions of de Finetti’s theorem

follow.
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1. Introduction

Let X X e ey Xn be independent and identically

1’ “2°
distributed. Let Snz X1+ X2+ R Xn' Under suitable
regularity conditions, if k is small relative to n,

the variables X .,Xk are to a good approximation

EE
conditionally independent given Sn’ with a
common distribution depending on the value of Sn. Such

theorems have been proved by Lanford (1973), Martin Lof (1970),

Stam (1987), Tjur (1974), and Zabell (1980).

Our object is to prove such a theorem with an explicit error

bound, uniform in the value of Sn; and we allow k to increase

with n. Our interest in these refinements will be disclosed
below, but first some examples. We work in the variation norm:
P - Q] = 2 SUPA!P(A) - Q(A) |

Let Z be N(0,1) and define y as follows:

(1.1) Yy = 1 /2E{]1-22 )



i) The binomial. Let Xi be 0 or 1 and independent,

with P{Xi=1}=p. The law of Xl""’xk will be denoted Ppk.

be the law of X

Let ..,Xk given Sn:s, namely, the

sk 17
law of k draws made at random without replacement from a
box of n tickets, where s are marked "1" and the remaining

n-s are marked "0". This law does not depend on the parameter

p, so Sn is said to be "sufficient."

If k » »« but k/n - 0, there is little difference between

drawing with or without replacement. More precisely,
LS k k
(1.2) llQnSk— Ps/n|| = Y5 + 0(n)
This explicit rate is uniform in s. The theorem also covers

the case where k=0(1), but then the result is a little harder

to state.

ii1) The normal. Let Zi be independent N(0,02) variables.

. Let X.:Z.2 and S _=X_.+...+X
k i 71 n 1 n

.,Zk given Snzs. This time, Q

Write Pok for the law of Zl,...,Z

Let Qnsk be the law of Z

1’°° nsk

can be visualized as the law of the first k coordinates of a

point drawn at random from the surface of a sphere of radius

lJs in R". Again, QnSk does not depend on the parameter o, and Sn

is sufficient. The conditioned 1limit theorem takes the

same form as before: if k + o but k/n - 0, then uniformly in s,
k.o _ k., _k

(1.3) !‘Qnsk- sz:‘ = Yn * O(n)



The asymptotic rate yk/n in (1.3) is exactly the same as in
(1.2). This rate also turns up for geometric and exponential
variables (Diaconis and Freedman, 1987). The object in the
present paper is to state and prove a general theorem, covering
many of these special cases. The discrete case is a little

easier, so the theorem is given in the absolutely continuous case.

In the rest of this section, we state the theorem carefully;
proofs are deferred to sections 3 and 4. Section 2 makes the
connection with de Finetti’s theorem, and gives a relatively
simple proof of a theorem of Kuchler and Lauritzen (1986),
characterizing mixtures of exponential families; this proof
is self-contained. Examples are given in section 5,
including the gamma; other examples show that when the
conditions of the theorem are violated (grossly enough),
the rate of convergence depends on the value of Sn’

so the conclusions of the theorem are false.
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For the main result, consider an exponential family

of probability measures {PA: AEA} on the fixed interval I.
Assume I=(a,b) is an open interval; a or b may be finite or
infinite. Likewise for A=z(a,B). Assume that the base measure
for {PA} is absolutely continuous, with a nonnegative, locally

integrable density h on I. By definition,

(1.4) PA(dx) = exxh(x) dx/c(A)
where
(1.5) c(n) = [ eMnx) ax

I

is finite for AEA. Let XA have distribution PA. Let

_ 2_
mA—E{XA} and OA = var XA

As is well known,

- _d
m. = n log c(A)
1.6 2 dz

= (=3

(1.6) OA Az og c(A)
.th . di
4 the j cumulant of XA is 733 log c(A)

As (1.6) implies:
(1.7) m, is strictly increasing with A

A

A standard reference on sufficiency and exponential families is

Lehmann (1986, ppl8 and 57).



Four regularity conditions will be needed.

(1.8) A is maximal: as A-+-x, the mass 1in PA concentrates

at a+; as A+B, the mass concentrates at b-. It follows that

m,+ a or b as A+ « or B; see (1.16) below for details.

(1.9) Fourth moments: E{(XA— mA)4}/oA4 is uniformly

bounded for AgA.

(1.10) Smoothness: sup lwA(t/oA)i <1,

SUP e A

itlI>6

where wA(t) is the characteristic function of PA and 6 is
any positive number. In effect, this says that h does not

concentrate near a lattice, even after rescaling.

(1.11) Integrability: sup, . f xw,\(t/oAu” dt < e,

for some v21. This too 1s a smoothness condition on h.

Let Xl,Xz,... be independent random variables with common

distribution PA. Let Sn=X1+...+Xn. We next define the regular

conditional distribution Qnsk for Xl"""k given Snzs.

(A reference on rcd’s is Freedman, 1983, Appendix Al0.)

{1.12) Definition. Let t=x.,+...+x, . Then @ is for k<n
— 1 k nsk

the absolutely continuous distribution on Rk with density

h(xl)...h(xk)h(n—k)(s—t)/h(n)(s)
at xl,...,xk, provided s&¢nl and s-tf£({n-k)I and 0<h(n)(s)<m.
If k=n, the distribution 1s singular; the Qnsn—law of Xl,...,X
is Qnsn—l’ and xnzs-(x1+...+xn_1).

n-1



In (1.12), s€¢nI means s/n€l. Furthermore, h(j) is the j-fold
convolution of h with itself. This must be finite: For example,
take j=2. Fix any A£A. Then eAxh(x)/c(A) is an L1 function,
whose convolution with itself is another L1 function, namely,
s-e™ h'%) (s)/c(rn). so n'?) is finite, at least ae.

As will be seen in (3.6), for sufficiently large n,

)

the function h(n is positive everywhere; it will be continuous
for n2v by (1.11). For any n, however, {s: 0<h(n)(s)<m} has
measure 1 for all PA. "It can be shown that Qnsk is a regular
conditional distribution for Xl,...,Xk given Snzs, relative to

P simultaneously for all A€A.

A)

Recall y from (1.1). Let Z be N(0,1). Define ¢(8) as

follows, for 0<8<1:

e’/z 072

(1.13) ¢(8) = E{I1 - J1-8 I}

Let PAk denote the k-fold product of PA with itself.

(1.14) Theorem. Suppose conditions (1.8-11). Let
k and n - ». Let sfnI. Choose AfA so mAzs/n. Thus,
A=A depends on n and s.

ns

a) If k/n - 0, then uniformly in s,

Qe Pl = v B v o(ky

b) If k/n - 8 with 0<¢8<1, then uniformly in 6 bounded

away from 1, and uniformly in s,

i1 - Pl - d(8)



~1

Part a) of the theorem shows that the conditional law

Qnsk of Xl""

PAk, namely, the law of k independent variables having a

,Xk given Snzs merges in variation distance with

common distribution drawn from the given exponential family.
The parameter A is chosen to match the means: m, = s/n.

That is the usual maximum likelihood estimate (Lehmann, 1986,
pl6). From another perspective, matching on the means is the

Esscher tilting in disguise (Feller, 1971, sec XVI.7;

Cover and Csisizar, 19xx).

The rates in the theorem-- vk/n and ¢(8)-- are the same

for all the exponential families which satisfy conditions

(1.8-11). The proof of a) works even if k=O(1), and shows
. k _ k k
where
-l ooy, 2,
Yk - 2 E{II Zk i}

and Zk is the standardized version of Sk:

Zk = (Sk - kmA)/oAJk

If k-, then Zk* N(O0,1) uniformly in A by (1.9), so

YtV In any event, Yksl.

The uniform 4th moment condition is stronger than it
may appear at first glance: it rules out, for instance,
the binomial. The assertion about m, made in (1.8)

is easily checked for finite endpoints; the next

remark covers the infinities.



(1.16) Remark. Suppose I=(-w,w) and Az(-w,») is

maximal. Why does m, - w as A - »? By assumption, PA

drifts off to o, so S” x PA(dx) -+ o. What remains to
(/]

show is that fiw x P,(dx) = O(1). Fix 6>0. Now }xli(elxl -1),

SO
0 0
1 AX 1 x| AX
=ty I_”lxl e™ hix) dx ¢ 0 f-i - 1) e™ n(x) dx
_ c(A-1)

c(m) Pa-1(m=0) = Pyl==,0)

This tends to 0 as A-w, provided we can bound c(A-1)/c(A).
Now c(A)=co (A)+c1 (A), where co(A)zfiweAxh(x) dx - 0 as A-w,
while cl(A):f: eAXh(x) dx is monotone increasing with A.

Thus, 1lim supA*wc(A—l)/c(A) < 1. Also see Waterman (1971).

The page numbers skip from 8 to..... 11
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2. de Finetti’s theorem

Let XI'XZ"" be an infinite exchangeable sequence of 0’'s
and 1’'s (its law P is invariant under finite permutations).
Then P is a mixture of coin-tossing processes:

(2.1) P = P._* p(dp)
f[0.1] p

Here, Pp°° makes the X’s independent, and Pp{Xi:I}zp.

For finite sequences, the theorem fails: for example,
let XI’XZ""’Xn be the result of drawing n times at
random without replacement from a box of n tickets, where
some are marked "1", and the others, "0". (This distribution

keeps turning up because it is a typical extreme point of the

relevant convex set, as explained below.) Since X1+...+Xn
is constant, the law P of Xl,...,Xn cannot be
a mixture of coin-tossing processes. However, 1if k is
small relative to n, then Xl”"'xk is nearly a mixture of
coin-tossing processes.

To make this precise, let Pk be the law of Xl""’xk’

and let Ppk be the law of k tosses of a p-coin. Then, for

a suitable p,

, k ) k k
(2.2) e, - P u(dp)il = v = + o)
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The argument: By symmetry, the law Qnsk of Xl""’Xk
given that Sn=s is the law of k draws made at random
without replacement from a box with n tickets, where
s are marked "1" and the remaining n-s are "0". (The
computation is done relative to our exchangeable
probability P; the result is the same as for the independent

case, covered in example i of section 1.)

By the law of total probability,

n
(2.3) P, = ) Q. PIS =s}

s=0
And

. T k

(2°4) !lQnSk‘ PS/nll =Y n + O(H)
In principle, (2.2) follows from (2.3-4) using the convexity
of the norm, provided (2.4) is uniform in s-- which it is.
The mixing measure p in (2.2) is discrete: it is the P-law
of Sn/n. To get the infinite form of the theorem, let n-+w.
For details, see Diaconis & Freedman (1980); for a general

discussion of exchangeability, see Diaconis & Freedman (1984).
The vy in (2.4) is defined by (1.1), and is a universal constant--

of this paper anyway.

To set this argument up in greater generality, let
{PA} be an exponential family satisfying conditions
(1.8-11). Let X

1""’Xn be the coordinate functions

on I", and S =X, +...+X
n 1 n
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“
Let Qnsk be the regular conditional PA—distribution

for Xl,...,Xk given Snzs, defined in (1.12).

n
(2.5) Definition. Let Cn be the set of probabilities P on I

such that:

i) Pth(™ (s ) > 0)) =1

ii) Qnsn is a regular conditional distribution for P

iven S =s.
g n

Clearly, P n g Cn' And so is Pun’ defined as f, P "

A A Py pldn).

The set C_ is convex, with extreme points Q . Any
n nsn

PEC is exchangeable, because the Q are.
n nsn
Write Pk for the P-law of Xl,...,Xk.

matter almost of notation, Pnk= Pk' A finite version

of de Finetti’s theorem can now be stated, characterizing

If k<n, as a

mixtures of the basic exponential family in terms of their

sufficient statistics.

(2.6) Theorem. Suppose conditions (1.8-11). For PECn, let
p:unp be the P-law of the A solving mA=Sn/n. Let k and n » =

with k/n - 0. Then
L k
»!Pk - P“kl!/YH -1

Proof. As in the coin-tossing example, using Theorem (1.14a)

to estimate the conditional probabilities Qnsk' Ej
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In this theorem, the class Cn is defined as all probabilities
which have the same conditionals given Sn as the fixed
exponential family {PA:AEA). As far as the law Pk of

the first k=o(n) coordinates is concerned, any PECn

is nearly a mixture of the power probabilities PAk.

The particular mixing measure p constructed in (2.6)
is nearly optimal, as shown by the next theorem, whose

proof is deferred to section 4.

(2.7) Theorem. Fix A™EA., Let k and n tend to ». Let

Sznem Drop conditions (1.8-10), and assume (1.11)

AxS

only at A™ rather than uniformly.

a) If k/n - 0, then

: | R 4 k
lnfp | IQnSk - Pukl | - Yn + O‘n)
b) If k/n -~ 8 with 0<8<1, then
[ - ! -
1nfp "Qnsk Ppk‘i d(8)

To see more explicitly why (2.6) is sharp, fix A®EA and let

S=nem Now Q ¢C , and this will be the test P in (2.6).
nsn n

A*S
If k/n - 0, (2.7a) shows that no mixing measure can beat the
one constructed in (2.6), by more than o(k/n). On the other
hand, if k/n - 8 > 0, then (2.7b) shows that QnSk is close to

no mixture of PA’S, and our finite version of de Finetti'’s

theorem cannot hold for such large k. The ¢(8) is as in (1.13).
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For the infinite version, in the setting of Theorem (2.6),
let Xl’XZ"" be the coordinate functions on I¥, and Sn:
X1+...+Xn. Define Qnsk by (1.12). Let Pn be the P-law of

X y X

1o X

(2.8) Theorem. Suppose (1.8-11). Let P be a probability on

I”, such that P €C_ for all n. Then P is exchangeable, and

P = fA P.% p(da)

The mixing measure p is the weak-star limit of the law

pn of m~t(Sa/n), as n - w.

Proof. This follows by a limiting argument from (2.6),
provided we can show p, is tight, and that is a
consequence of (1.8). Suppose, for instance, that a
and « are finite. Given € > 0 there is a 6§ > O
with PA{(a,a+c)} > 1-€¢ for x < A < o+6. Let k and n

approach infinity, with k=o(n). By (2.6),

P{a<X; <a+e} 2 P, {a<Xi<a+€e} pnl(dAr) + O(%)

(ox,ax+6) A
k
2 (l-€)pn {((x,ax+6)} + 0(5)

Therefore, lim6*0 lim sup_ po {(x,x+68)} = 0. [j
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This infinite version of de Finetti’s theorem for
exponential families is available under much weaker
conditions: see Kuchler & Lauritzen (1986). The following
simple argument for a special case of their theorem may be
of interest. To set it up, and avoid irritating technicalities,
drop (1.8-11) and assume (2.9-10) instead. (Half-finite or finite
state spaces are easily accommodated; roughly the same argument
works even for general, locally integrable h-- but the analysis

is a little delicate.)

(2.9) Let h be a positive, continuous function on (-w,x),
with

® ax
(2.10) ctar = [ ™ hix) dx ¢ » for A inside the

- 00

maximal interval A, which is nonempty.
[n particular, h‘n, is positive and continuous for all n.

The exponential family {(P.:A€A} 1is defined by (1.4-5),

A

as before. Recall that XI’XZ”'° are the coordinate functions

on I”. Define Qnsk by (1.12), as usual. For any probability

P on 1%, recall that P is the law of X .++X_ . Define C_

1’

by (2.5). Define M., a set of probabilities on I”, as follows:

Q

PEMQ iff PnECn for all n. Informally, PEMQ it it has the same

conditionals given Sn as the P;. In particular, P is

exchangeable; the next theorem shows it is a mixture of PAN.



17

(2.11) Theorem. Assume (2.9-10) rather than (1.8-11). Then

PEM . iff
Q i
P = f P,” b(da)
A
Proof. The "if" part is easy, and p is unique by
standard arguments. For "only if", we use the general

theory in Diaconis and Freedman (1984). If PEM then

Q’
P =17 an(dn), where Qﬂ is 0-1 on the o-field I =

n oS ,X

n n n+1’xn+2"'} and Qn£ M

Q Especially, Q“ is

exchangeable; since it is 0-1 on £, it makes the Xi

independent and identically distributed. It remains

only to show that Qﬂ: P. for some Af£A, and that follows

A
from (2.12), which writes L(Y) for the law of Y, and L(Y|X)

for the law of Y given X.

(2.12) Suppose X1 and XZ are iid and L{X1!X1+X2=s}=Q

) = PA for some AEA.

2s1°’
Then L(X1

Here is the argument for (2.12): Q°sl
(2)

(s). Now L(X

has the continuous,

positive density x -+ h(x)h(s-x)/h ) is a mixture

1

of L(X1]X1+X2=s), so it too has a continuous positive density;

call the latter f. Of course, L(X1{X1+X2=S) can be computed

directly from f, so
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(2.13) £(x) f(s — x)/f@(s) = h(x) h(s —x)/h@Xs)

Let

fx) . £(0)
he) %8 h0)

A(x) = log
and

SORIPSE (]

¢(s) = log —h—(i)(—s) h(0)
Take logs in (2.13) and regroup:
A(X) +A(s—X) = (s)
Put s=x: since A(0)=0, we get ¢(s) =A(s), so
A(x)+A(y) = Mx+y)
Now A(x) =Ax for some real number A, proving (2.11) and the theorem. ©)

(2.14) Example. An exponential family for which de Finetti’s theorem fails: (2.9) does not
obtain. Indeed, the base measure B is discrete, assigning mass 1 each to 1,e,e?,... Con-
sider the exponential family {P,} through B. Now a finite sum ag+a,e+- - - +a,e¥ determines
the integer coefficients a;. Thus, S,=X;+:--+X, determines the order statistics of
Xps..» X, and Qs assigns equal weight to all permutations. If now X, are iid with values

l,e,e2

,-.. then the law of X ,..., X, given S, =s is Q--whether or not the law of X; is of
the form P,. (It is in this sense that ‘‘de Finetti’s theorem’’ fails; properly speaking, his

theorem holds, but our variant of it fails.)

(2.15) Example. Another example for which de Finetti’s theorem fails: the base measure B
is continuous, with a singular component. Let B, be uniform on the Cantor set, and
B1=N(0,1). Let B="2(By+B;). Consider the exponential family {P,} through B. The natural

parameter space is the whole line. Now B§™ is supported on the Lebesgue-null set C,,
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IBo(t)] =1. Let Q, be a regular conditional distribution for X, ,...,X

because lim supIll n

—_

given S, =s, with respect to B°°; and R, with respect to B§>. Now Q. =R, for B§V-almost

all s. In particular, By=P; for no A. Yet, with respect to B, Q, is a regular conditional

distribution for X;,..., X, given S,=s. This may seem like a cheat, since Q.  has a bigger
domain than R . If so, consider P="%(Bg +B°). This has Q, for the law of X, X,

given S, =s, but cannot be represented as J'P;'f p(dA).

For more discussion, see Diaconis & Freedman (1984).
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3. The proof of Theorem (1.14)

This section will prove Theorem (1.14), starting from assumptions (1.8-11). We view s
as variable and choose A = A to solve m; = s/n: the solution exists by (1.8) and is unique
by (1.7). Let (~2 be the Q. y-law of Sy = X;+---+X} and P the Pf-law. (Dependence on
n,s,k is not made explicit). By the sufﬁciency. lemma (2.4) of Diaconis and Freedman
(1987), we have ||Quq —PX||=|Q-P|l. Let fi(t) = fia(t) be the PX-density of S,,
namely,

@3.1) eMh®(ty/cL)k
so Q has density
(3.2) q(®) = () £,y (s = V/E(s)
= hR(OHRO=F)(s - ty/h(s)
Now,

fn—k(s -t

)
3.3) Il Queic =P I =f £ -1 lfk(t) dt

We will estimate f,_, and f, using the Edgeworth expansion. Let t be t standardized for f,

that is,

(34) T=(t- k%)/\/on

Let t be t standardized for u— fok(s—u), that is,

(3.5 t=—iki(nk) t
We claim the following.
(3.6) Lemma. Let 0<6;<1. Then
£ (s—t/f.(s) = Va(n=k) e~ %% + O(Kk/n) |t | + O(1/n)
uniformly in n, k, s, t with k<8;n. |

Proof. Recall that my =s/n, so A depends on s and n. Abbreviate ¢ = 0. By the

Edgeworth expansion,
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1 1
£.(s) e [ +0(n)]
(3.8) £ (-t = ———— %1+ 98 b @14 O(1/6n™)
ov2n(n—k) Vn—k

The O-ierms are uniform by (1.9-11): see (3.12) below. As a matter of notation,
H;(x) = x3-3x, and qA) = —;— E,[(X-m;)*)/o5. The latter is uniformly bounded by (1.9).
By (3.7), if n2ny then f(s) = f;;_(s) is positive for all s. Therefore h™(s)>0 for all s: see

(3.1). As aresult, f;-(s)>s for all A" and s, even for A’#A ;. Now

£, (s—0/f(s) = Vn/(n-k) 4P [1+0( ! > )| Hy(® | 1+0(1/n)
.
But
eHPHH < [T (2 +3) e %Y
= o(1))
= O(Wk/n)- |t] o

(3.9) Lemma. If k = o(n), and IEI <8, < oo, then uniformly in s and t,
£ (s—0/f,(s) = 1+ %%(1 “1)+00k/m)|T]
+O(k¥n?)(t?+t% + O(1/n) + O(k¥/n?)
Proof. From (3.6),

(3.10) £ (s—t)/E (s) = (1+%—‘-;-) &2+ O(K/n)|T[+O(1/n) + O(k¥/n2).

Now
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L t2+0(t4)
2
_ 1 1% Ak T
=1 St +O(n2)t

= 1——;--lit2+0( =)t +1h

O

(3.11) Lemma. ﬂﬂ"fk(t)dt = O(1) uniformly in Ae A for v =1,2,3,4, under condition'
(1.9).

Proof. Only the case v = 4 need by proved. By an elementary calculation,

vary(Sy) = ko#

E, {(S, —km;)*} = kE, (X, —my)*} +3k(k— 1) o3
So
[ t* £ dt = B, (S —kmy)*)/ [vary, (s,()]2

lEl{(Xl my)*}/ o3 p3kl

o

Proof of Theorem (1.14b). We compute as follbws:

f(s—1t)
| QucPEIl = |- 1] @
1 kD
=J'| —n{—ke 2nk llfk(t) dt+o(1)

r_l 1.8
=E{| —1——9-621_9 _1|}+0(1)

The first line is (3.3). The second is (3.6), with (3.11) to control the error term in t, and

(3.5) to evaluate t. The third is the central limit theorem. Changing variables gives ¢(8). O
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Proof of Theorem (1.14a). As before,

ek =LK s -sm a
| Qus=PA 2nI|z|se, |1-t2] fi(®

A / LT | f (t) dt+o(k/n)
n-k

Now |t| >6, implies |t| > %n/k8, by (3.3), an event of probability Q(k?/n?) by (3.9). This

+ II

‘l|>02

eliminates the 2nd term, and the first is asymptotic to —12——:—13{ |1-272]). o

(3.12) Remark. The Edgeworth expansion can be done by following the argument in
(Feller, 1971, sec XVIL.2). Let X; have law P,. We work on the standardized variable
(X;—my)/0y, and make the estimates uniform in A, to approximate the density for
(S,—nm,)/o;¥n. The density for S, itself comes out by a change of scale. In Feller’s equa-
tion (2.4) on p. 533, =1 by the standardization. Next, Feller’s q5 comes from (1.10), and
the LY - bound on the characteristic function from (1.11). The contribution near 0 can be

estimated uniformly in A by condition (1.9).
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4. Proof of Theorem (2.7)

This section will prove Theorem (2.7). We drop conditions (1.8-10), fix Ae A and
assume (1.12) only for A=A", that is, we assume, ;- (t/Gy) € LY. Condition (1.11) holds
for A = A" by the Riemann-Lebesgue lemma. Condition (1.9) holds for A = X" by an elemen-

tary argument: P, has a fourth moment. In particular, the Edgeworth expansion is available.

There is a shift in viewpoint. In the previous section, s varied and A followed. Here,

the main A of interest is A", and s’ = n m,-. The first result is the analog of (2.6). To state

it, let
@.1) T = (t—k=>)"Kkoy
4.2) t=—Vi/(n-k) t

These are the two standardizations of t.

(43) Lemma. Let 0<6;<1 and 6,<oco. Then
£y e =0/, 5 () = Yln—k) e +O(k/n) +O(1/n)

uniformly in n,k,t with k<8;n and [t]| < 6,.

Proof As in (3.6). o

The next result is the analog of (3.9). _
(44) Lemma. If k=o(n) then uniformly in t with |t] <6, f,_ (s —t)/f (s)=

11Xy K
2n n
Proof As in (3.9): if T is bounded then t is very small, by (4.2). O

Some additional estimates will be presented.
(4.5) Lemma. Ya(e"+e™)<e%™, with equality only at u = 0.
Proof. The left hand side is 3 u?/(2j)!, the right is ¥~ u%/2)j!, and (2j)!22}j! with
=0 '

i=0
equality only at j =0 or 1. @)

(4.6) Lemma. Let Z be a symmetric random variable. Fix € with O0<g<1. Let 0<T<1
with T2<1-¢. Then
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P(|Z|<T}2e -0 [ eiZgp
|Z|<T
with equality only at u = 0.
| Proof. By symmetry and (4.1),

J

eZ dp = j e 2 4p
|Z|<T

|Z|<T

= f Voe'Z +e'Z) dpP
|Z|<T

<e%¥T p(|Z|<T)

Abbreviate m = my- and ¢ = G,-. We now consider A near A" and t near km.

(4.7) Lemma. Fix £>0. For all k>k, and |A-X"| <170/Vk,

C(Mk > C(x)k ekm(x—):) +%(1 - £)ko2(A-A")?

Equality holds only at A = X",

Proof. Use Taylor’s theorem on logc(A), with (1.6) to identify the first two derivatives
at \'. O

The P¥ density of S, = X;+ * - - + X, at t is fiu (1) = eMh® (1)/cM)k.

(4.8) Lemma. For all k>k, and |A-X"| <170Vk,
Fio (/e (1) Sev — 20—

where u = (A =X")- ok and t = (t—km)/ovk. Equality holds only at u = 0, that is, A = A".
Proof. This is immediate from (4.7). O

(4.9) Lemma. For vke I, let ¢, (A) = eM/c(L)k. Then A — log d(A) is strictly concave, with

its maximum at A = Ay, the solution to m; = vk.

Proof. From (1.6),
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F(;C log &, (A) = t—kmy,

d2
e log ¢, (A) = —ko£.

Recall that 0<e< 1.
(4.10) Lemma. Let e<8<1. For k>kg, for all t with |t| <1-3,
a) |A =N <Vovk
b) A=At =A"+2/cVk entails ¢ (L) <O (M)
c) ASA™ =X -2/ovk entails O (A) <Py (X))
d) |A=A"| 22/0Vk entails ¢ (A) <P (X

Proof. Claim a). This is so because 4 m, = 62 —>cZas AN\

dA
Claims b) & c). These follow from a) and (4.9).

Claim d). This follows from b) & c), once it is established that ¢kt(li)<¢kl(7\*). But,

for example,
¢k[()\.+)/ q)kt(x‘) < eu-t.— (1 - e)u?
by (4.8) on A = A%, with u = (W*~X") - ovk = 2. Now

lut] < 2(1 -8) < %(1 —g)u?

Proof of Theorem (2.7b). Let q be the Q,q-density of X;+---+X,: see (3.2). Recall

that f,, is the PY density of S,: see (3.1). Let f, = jfk.l H(dA) be the P, -density. Abbreviate
f for fi,-. Then
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@1 1Q-P, Il =2[@-f)*

22[ @-f)"

>2 jJ @Q-£,)

=2f (-cfi— l)f+2fl(1——ff£)f
Of course,
(4.12) qtY/f(t) = (s —t)/f(s)

For J we choose the approximate interval where q > f, namely, (t: |.t'| <0,}; where

(4.13) 07 = 1—elog L <1

(To see where 6, comes from, check that

exactly for |z| £ 6,.)

The first term at the end of (4.11) is ¢(8)+o0o(1) by (4.12) and (4.3). It is only left to
show that

(4.14) L(1-%3f20u)

This will be so for any interval J of the form {|t|<T<1}, where T is now fixed. Indeed,
the left side of (4.14) is linear in [, so we need only take pu = §,. As a matter almost of

notation, when p = &,
£, (/1) = oy W)/ (V)

There are two cases in the proof of (4.14) for u = §,.

Case 1: |A-X"|<17/oVk. Now by (4.8) the integral is for k >k, at least

(415) J'I_l . [1 _eu?—%(l—e)uzl f(t) dt
ti<

In this case, u = (7»—7:) -ovk is at most 17 in absolute value. As k — oo, the expression in
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(4.15) converges uniformly in u to

fger e

which is positive by (4.6). This completes the proof of (4.14) in Case 1.
Case 2: |A-X\'| 2 2/oVk. In this case, Lemma (4.10d) completes the proof of (4.14).0

Proof of Theorem (2.7a). This is quite similar, but a little more delicate. Let

n(x) = L e’

2n
X+ -+X. For k>ks, by the Edgeworth expansion,

be the normal density. Recall that f=f,- is the Pf density of

f(t)> (1 -8) n(t)/oVk for all t with |t|<1

Then

(4.16) 1Q-Pull 22 @-£)"

=2 (-—-—’i)+ £(t) dt

22<1-5>jj(%-1+1__ g“ﬁ
22(1—6)jj(—qf--1 )“(‘)

22(1- a)j(q ) B 0 " due2(1-8)f (1- “) “(‘) dt

For J choose the interval {|t|<VI—g¢}. By (4.12) and (4.4), the first term at the end of
(4.16) is at least
—‘5(1-6)2j (1-7%) +o(X)
2 n Z*<1-¢ n
The second term is positive, as before: in (4.15), the density f(t) should be replaced by the
normal n(t)/ovk, so (4.15) is exactly J l—e“Z'%(l'E)“z. This is positive by (4.6) or
<‘J
direct calculation. Approximate normahty or symmetry is not good enough, since we must

estimate to o(k/n) not o(1).
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Remark. For part a) of the theorem,

q 1 e
(=-1= e 2170 _
f V1-9
which is positive for
~ 1-0 1
te< 1
o t1-g

and negative for 12 larger. Furthermore,

For part b) of the theorem,

1-1=3=a-1

s |x

1
2
which is positive for t2< 1 and negative for t2 larger. Of course, j?z = 1.

An interesting identity.
fir O/Foe (© = €0y (w)

where t = (t— kmx)/o'l. Jk, u = (l—)»') Oy vk, and O (u) = Ex(e“;‘), namely, the P{-Laplace

transform of the standardized X: see (4.1). Indeed, the left side is by algebra &' times

c(k_ Kokmye cAK/c(L)k

Now integrate over t against f_,-(t); or expand log c(A) around A".
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5. Examples

The first two examples (gamma with scale or shape parameter) are well known
exponential families, which satisfy the conditions of theorem (1.14). We believe the result-
ing estimates are new, as are the implied forms of de Finetti’s theorem characterizing mix-
tures of these families. A little more generally, our conditions (1.8-11) hold if h on (0,00)
satisfies h(x)/x"‘“1 — A as x > 0 and h(x)/xB“1 — B as x — oo, for some positive, finite

o, B, A and B, not necessarily equal.

(5.1) Gamma with scale parameter. To put this in canonical form, fix the shape parameter

p>0. LetI = (0,00) and A = (-o0,0). The carrier density is h(x) = xP1. The P, density is
eM h(x)/c(L)
with
cd) = |A|P/T(p)

This is the law of —X/|A|, where X is I',. The conditions (1.8-11) are obvious.

(5.2) Gamma with shape parameter. If X is I';, the law of log X is in canonical form with
I = (-00,00), A =(0,00), h(x) =e® and c(A) =[(A). Here, condition (1.8) is easy to
check, but (1.9-11) are not so obvious. The following relationship will be helpful (Ahlfors,
1966, p 198):

oo 1

2
(5.3) 4 joeTM) =
da? ogTh) Zn:()(}.-f-n)z

This gives 0';% by (1.6). Differentiation of (5.3) gives the value for K4(A), the 4" cumulant,
by (1.6):

oo 1

(5.4) W) =6

Of course, x4(A) = E{(Xl—mk)4} —30;‘3, when X, is distributed as P,.

There are two cases to consider.
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Case 1: A—0. Then of=A"2+0(1) by (53). And x,\) = 6A*+0(1), so
K4(7»)/0;‘3—>6. This settles (1.9) near 0. If X follows the I'; distribution, an elementary
argument shows that the distribution of —G3 'log X tends to the exponential. Indeed, the den-
sity converges in L1, proving (1.10) for A near 0. It also converges in L2, proving (1.11) for
A near O by Plancherel’s identity.

Case 2: A—oo. Now of is between J:ou'2 du =1/A and j:lu'z du=1/A+1)=
(1/A)+O(1/A2). Likewise, K (A) = (2/A%)+O0(1/A%), so x4,\)/ox = O(1/A) > 0. This proves
(1.9) for large A. For (1.10), if X follows the I'y distribution, then X is about N(A,)), and
VA(log X —logA) = N(0,1). In more detail, let Y be log [;. Then (Y-A)-VA has density

£ (2) = LA @D
M= e ¢

where Y(A)>1 as A—oo and g(u) =e'—1-u. See (Diaconis and Freedman, 1986).
Clearly, fj(z) = n(z) uniformly in |z|<L as A — oo, because g(u) = 4u?+0(’) as u—0.

Here, n(z) is the normal density.

We claim f, —»n in L!, proving (1.10) in Case 2. This reduces to showing that

J'! | Lf;‘(z) dz is small for L large, uniformly in A>2A, Only the upper tail will be done.
z|>

Now

f)'(2) = ~fL(2)g" @MV

and g’(u) = e"—1 is monotone, so

jL°° f@dz <[~ -’ @) dz/g (LNANR

= f; (L)/ g’ (LNA)VA

1 w2
- —¢ *"/L.

2n
This completes the proof of (1.10).

For (1.11), let f“x(t) =I°° eitz f,(z) dz be the characteristic function. Integrating by parts,

@26 =[" = f{(2)dz

— o0

So all we need is
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(5.5) fy’(z) vanishes at £ oo
(5.6) f{’(z) — n”(2) uniformly on compacts
(5.7 [16@)]dz=0(1) as A > o0

Relations (5.5-6) are easy to check. For (5.7),

£12) = f1(2)  Gy(2)
where

Gy (2) = Ag” (z/VN) - [g'(z/VW)]%

For A>A, by differentiation, Gy(z) is strictly convex in z with its minimum at z = %V,
Especially, G;(z) will be positive for |z| 22 if we can make G)(+2)>0. But Gy(z) »z*-1

as A — oo,
Now
[@ldz = [ f(2)dz
2 2
=-f,/(2)
= f)(z) g’ NAVA
—2n(2)
This completes the argument for (1.11). o

(5.8) Remark. m, is not needed for these arguments. However,

A\ d?
my —my = jlx W logI'(A) dA

SO my = -A"14+0(1) as A—0 and m, = logA+0O(1) as A > oo. A more careful argument

shows m; = log A+ O(1/A) as A — oo,
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The exponential family in the next example is non-standard. We were looking for

something which violated (1.8-11), but the gaps were not large enough.

(5.9) Example. Let h(x)=1 for 2j< x< 2j+1 and O for 2j+1<x<2j+2, for each nonnega-
tive integer j. So I = (0,00) and A = (-00,0). Conditions (1.8-11) are satisfied. Indeed,

cA) = j0°° eM h(x) dx

2j+1
=y j eM dx

=0 “2j

1
A 1_62)\.

Of course, c(A)>0 because A<0. By painful calculation,

My = =+ —
> A1+t
2= L __ ¢
YT (1+eM?
More easily,
A 1+et
W) =

A+it 1+ek+it

Abbreviate
f,(x) = e™ h(x)/c(h)

Case 1: A —oo. Now my —0 and oy = 1/|A|. Consider the density of (=A)X;, where
X is distributed as P, :

g.(2) = 1+eM e 2h(z/|A]) for z>0
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Let go(z) =% Now g, — g in L! and in L% conditions (1.10) and (1.11) follow. Further-

more, Iz" g(2)dz —-)sz go(z) dz for any positive v, proving (1.9). Condition (1.8) is easy.

Case 2: A—0. Now m; — oo; again, 03 = 1/|A|. As before, the normalized density of
(-M)X, is gx(z). As A—0, however, (1+eMh(z/|A]) > 1 weakly but not pointwise or in
norm. So g, — g only weakly. This complicates the argument appreciably. For (1.11), by

a stroke of luck,

Ii = - g@)]?dz<
imsup [ (8@ - (@I dz <o

Plancherel’s identity works again. For (1.9), jz" g(2)dz— Iz" go(z) dz.

The argument for (1.10) is harder. Write A = —A” where A">0, so A" — 0*.

~A'(1—it)
W) = (1-ip+E—
1+e”
-A(1-it)
1y =(1- it)—1+—eT—
+e”

We must bound the norm from below, for |t|>8. The denominator 1+¢ — 2 and is imma-

terial. Now
|(1=ip[1+e™ 31012 = 1+ D1+ cos A2 +e P (sin A'1)?]
= (1+)[1+e 2 +2e7™ cos A1),

Heuristically, the critical t is /)’, giving a value of ©2. More carefully, we estimate for t in
the interval 2kn/A’ <t< (2k+2)m/k’. We divide Gaul into 3 parts:

a) 2k7t$?»’t$(2k+%)1t
b) (2k+%)n$l’t$(2k+%)n
) (2k+%)n$l’t$(2k+2)n

On the 1st and 3rd interval, the cosine factor in the norm is at least

1-V2e*+e V' =2-v2+0(\)
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so the squared norm is for small A” at least
(1+t2)(2-V2-¢)
In the middle interval, we get for our lower bound

215 8 1 2
[1+(2k+4) }\"2] 21\7

since for small A’, crudely,
(1-e¥ )2> A2
On a) + ¢), we get

4 . 1
2-V2-¢ 1+¢

[y (A'1)]2<

which is tolerable for |t|>3 say. If |[t|<3, there is no problem because y;(A't) > 1 —it uni-

formly. On b), we get

(5.10) Vo2 —— <1 o
lwaA'D)| 25

(5.11) Example. In this example, condition (1.8) will fail, but (1.9-11) hold, and the conclu-
sions of theorem (1.14) fail, for a trivial reason. Let h(x)=e™ on I=(0,00) and take
A =(—00,0), which is not maximal. By a direct calculation,

(5.12) dx —“1(1—1) for 0<x<s

—-Bx

Let n—> oo, If s/n—1/0>1, the density in (5.12) goes to 6e >, which is not of the form

A+ De=MDX for A e A. o)

Conditions (1.8-11) are far from necessary, but something like them is needed to gen-
erate a uniform bound like that in (1.14). That is the point of the next example, which

involves large gaps.

(5.13) Example. In this example, condition (1.8) will hold, but (1.9-11) all fail. Further-

more, for suitable s,
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(5.14) lim inf, || Qus,1 =Py ll =2
n—oo
For the construction, let f(j)=j), j=1,2... Let N(a,0?) be the normal distribution with
mean o and variance 6% its density at x will be written d(o,02,x). The carrier density h(x)

is defined for x € I=(—c0,00) by

h(x) =}:,°°1¢(f(i>, 1,x)
‘

As is easily verified, h is continuous and strictly positive; however, fooh(x) dx=o00. Chang-

ing notation let

(5.15) c) = [~ eMh@)dx for he A = (0,00)
Of course,
(5.16) c(h) = "M 3 T MO

=1

This converges for Ae A, but c(0+) =oco. Indeed, associate the integer v to small A by

(5.17) 1/f(v) 2 A> 1/f(v+1)
Then
(5.18) cA)/v—1

To prove (5.18), we begin with a lower bound:

c(A) = Zv—l g MO
1=1

and in this range M) <fG)/f(v) <f(v—1)/f(v)<1/v. So, c(A)=(v-1)e V. For a good upper
bound, we need only estimate

(5.19) | Z OOC_MG)

j=v
In this range, Af(j)2f(j)/f(v+1)=j—v—1. So the sum in (5.19) is O(1), and this completes
the proof of (5.18).

We now define P, by its density
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(5.20) hy(x) = _c& ~Ax h(x) forxel

As will be clear, A=(0,00) is maximal, so (1.8) holds.
By an elementary calculation,

oo

(5.21) Py=% lwj(?»)N(f(i) -\ D

J:

the probability weights being given by

wj(h) = e M0/c()

This presents P, as a location mixture of normal distributions.
The argument for (5.18) shows that the w’s become uniform on {1,2,...,v} as A —0.

As a result,

(5.22) |P,=P,]| =0
where

Py = - ¥ " N(f(),)
VvV =1
In particular, as A — 0%, the mass in P, drifts off to +oo and spreads out:

(5.23) lim  sup,Py{[x,x+K]} =0
A—-0
for each fixed K.

We choose s, =nf(n), and claim

(5.24) l| Que,1 = N(E(m), (n=1)/n) || -0

This is the hardest part of the argument. The idea: if X+ - -+ +X,=nf(n), then each X;
must come from the N(f(n), 1) part of the mixture. If any X, comes from a bigger part, the
sum will be too big. Conversely, if all come from N(f(n), 1) or less and if any one comes
from a smaller part, the sum will be too small.

For the rigor,

(525) = Quut = hGO K™D (5= x)/h(x)

We claim
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(5.26) h™(s )= 1/N2nn as n—> oo

To start the proof of (5.26),

(5.27) () =% Of(G)+ - +£Gn).n,5,]
We consider 3 types of n-tuples:

A) maxj;<n and minj;<n

B) jj='"=j,=n

C) maxj;>n

Plainly, the contribution to the sum in (5.27) from B) is exactly 1/v2rn. To estimate the
contribution from C), let k=maxj;—n. There are at most (n+k)" n-tuples whose max is

n+k. And f(n+k)2s,, so each term in C is at most

o[f(n+k),n,s,] = 6[0,n,s,—f(n+k)]
= ¢[0, n, f(n+k) — nf(n)]

Overall, the contribution from C) is at most

(5.28) %, ~ (@+k)"0[0,n, f(n-+1) —nf(n)]
Crudely,
f(n+k) 2 (n+k)n"
So
(5.29) 010, n, f(n +k) —nf(n)] € ——e )

V27n

provided n=23. Now
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had (n+k)" e—n(n+k) < oo
Zk =1 Zk=

(n+k)e~mh)
1

had —
SI xe X dx
n

=(n+1)e™
In sum, the contribution from C) is at most
1 -

5.30 ‘(n+1)e™
( ) V2nn
Likewise, the contribution from A) is at most

1 _n2
(5.31) n"$(0, n, f(n) —f(n—1)) < ‘ne™

® ( V2rn

for n>4. This completes the proof of (5.26).

In principle, we must now estimate the numerator on the right of (5.25). However,

(5.32) [~ heo h™D (s, —x) dx = h® (s,)

The integral on the left in (5.32) is

(5.33) Y [T OLfG), 1, XIQMEG) ++ -+, n—1,5,~x] dx
hs)2-oJn TO°
The term with j,=j,=---=j,=1f(n) already contributes ¢[nf(n),n, sp] = 1/N27%n, so all other

terms amount to o(1/vn) and contribute o(1) in variation distance to Qns,,l- Up to o(1), then,
Qps,1 18 L(X,| X+ - - - +X,=ns,), where the X, are iid N[f(n), 1], and this proves (5.24), with

a bound on the error of

(5.34) (n+1)e " +nte™

For our purposes, what counts is that Qnsnl’ when centered at f(n), is tight. We can now
prove (5.14). Start with p=3,. In view of (5.23), Q. becomes orthogonal to all Py: if X
stays away from 0, this is because f(n) — oo; if A — 0, because P, spreads out and Qps,1 does
not. The argument for P, is similar.

We will now argue that conditions (1.9-11) fail. For simplicity, we let v — oo with
A=1/f(v). Then c(A)/v—1 by (5.18). The same technique shows
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(5.35) c®R) = e W)k + e TVHEV £y + 1R+ O(1)
The first term on the right is dominant, so

(5.36) my, = e f(v)/v

(5.37) of= e f(v)%v
~ and the 4™ standardized moment is of order v. Thus (1.9) fails.

For (1.10) and (1.11), recall that v, is the characteristic function of P;. We claim

(5.38) y() = 1 uniformly in t with |t|<K/oy,
Indeed, from (5.22),

_lp itfGi
(539) \V}‘([)—%Eve 2[+l[ 0)_)0

1=1
uniformly in t. From (5.37): if [t|<K/oy=Kvev/f(v), and j=1,..,v—1 then |tf(j)|
< [1+o(1)]KVev f(v-1)/f(v)—>0. So, all but the v term in (5.39) is practically 1. This
proves (5.38), and shows (1.11-12) to fail. O

(5.40) Remark. If f(j)=j%, then conditions (1.8-11) hold. If f(j)=od for o> 1, then (1.8-11)
all fail, but so does the estimate for part C) of (5.37), so we do not know what happens.

(5.41) Remark. In these examples, (1.9-11) all hold or all fail. It would be interesting to

have examples which separate the conditions.
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