Go to main content

PDF

Description

The problem of recovering the sparsity pattern of a fixed but unknown vector $\beta^* \in \real^p$ based on a set of $n$ noisy observations arises in a variety of settings, including subset selection in regression, graphical model selection, signal denoising, compressive sensing, and constructive approximation. Of interest are conditions on the model dimension $p$, the sparsity index $s$ (number of non-zero entries in $\beta^*$), and the number of observations $n that are necessary and/or sufficient to ensure asymptotically perfect recovery of the sparsity pattern. This

Details

Files

Statistics

from
to
Export
Download Full History
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS