Go to main content

PDF

Description

Motivation: A classification algorithm, based on a multi-chip, multi-SNP approach is proposed for Affymetrix SNP arrays. Current procedures for calling genotypes on SNP arrays process all the features associated with one chip and one SNP at a time. Using a large training sample where the genotype labels are known, we develop a supervised learning algorithm to obtain more accurate classification results on new data. The method we propose, RLMM, is based on a robustly fitted, linear model and uses the Mahalanobis distance for classification. The chip-to-chip non-biological variance is reduced through normalization. This model-based algorithm captures the similarities across genotype groups and probes, as well as across thousands of SNPs for accurate classification. In this paper, we apply RLMM to Affymetrix 100K SNP array data, present classification results and compare them to genotype calls obtained from the Affymetrix procedure DM, as well as to the publicly available genotype calls from the HapMap project. Availability: The RLMM software is implemented in R and is available from the first author at nrabbee@stat.berkeley.edu.

Details

Files

Statistics

from
to
Export
Download Full History
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS