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Abstract

We propose the discretization of real-valued financial time series into few ordinal
values and use non-linear likelihood modeling for sparse Markov chains within the
framework of generalized linear models for categorical time series.

We analyze daily return and volume data and estimate the probability structure
of the process of extreme lower, extreme upper and the complementary usual events.
Knowing the whole probability law of such ordinal-valued vector processes of extreme
events of return and volume allows us to quantify non-linear associations. In particu-
lar, we find a (new kind of) asymmetry in the return—volume relationship which is a
partial answer to a research issue given by Karpoff (1987).

We also propose a simple prediction algorithm which i1s based on an empirically
selected model.
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1 Introduction

Many of the time series occurring in finance suffer from the fact that there are no simple
mechanistic models which substantially reduce the complexity of the data and still explain
it well. Either the models are too simple to explain the nature of financial phenomena or
the model is too complex so that over-fitting occurs. Over-fitting results in high variability
of estimates and reproducibility in a similar situation cannot be satisfactorily achieved.

If we believe in an intrinsic high complexity of the financial nature, we seem to be
forced to work with models having many parameters and hence with estimates being highly
variable. We propose one way out of this impasse by the following question: Why modeling
the whole structure of an observed financial time series, rather than modeling only some
structure, such as extreme events? We propose here a discretization of a real-valued
financial time series into only three ordinal categories, corresponding to extreme lower,
extreme upper and the complementary (usual) events. This results in a huge reduction of
the number of parameters for a model and still allows to explore questions about extreme
events, such as unusual values or large positive or negative increments.

We exemplify the method by analyzing daily data of return from the Dow Jones index
and volume from the New York Stock Exchange (NYSE). For analyzing the three events
(lower extreme, upper extreme and usual) we use a likelihood modeling approach based
on a higher order Markovian assumption, and model cumulative probabilities within the
framework of generalized linear models with lagged variables treated as factors. The
word ‘linear’ can be misleading, our model class is very general and broad, since we are
treating lagged variables as factors. This then includes processes similar to arbitrary finite
order Markov chains. By putting a natural hierarchy on such models we typically model
sparse rather than full Markov chains, which allows to avoid the curse of dimensionality,
cf. section 3.1. Such models are very flexible, one can also include continuous covariates
and explanatory exogenous factors for describing the dynamics. For a good overview in
the independent set-up, cf. McCullagh and Nelder (1989). Within this model class, the
selection of a model can be supported by considering measures of predictive power such
as Akaike’s information criterion (AIC), cf. Akaike (1973). Having selected a model, we
also propose a simple prediction algorithm.

By discretizing we pay a price by restricting the focus to extreme events (and the
complementary usual events). On the other hand we gain a lot in the process of empirical
model searching and fitting. Moreover, our conclusions are probabilistic statements rather
than the often used correlation which measures only linear association.

We obtain by our method fully probabilistic interpretations for the relationship of
extreme events of return from the Dow Jones and volume from the NYSE. This gives new
insight into the structure of financial markets. In particular, our empirical results are an
answer to a research question posed by Karpoff (1987): for our data, the volume-return
relationship, at least for extreme events, is in a new sense asymmetric.

This paper is organized as follows. In section 2 we describe the data set, in section 3
we explain the modeling and prediction techniques, in section 4 we report our empirical
findings for the analyzed data set, in section 5 we draw some conclusions and in section 6
we briefly outline some more mathematical and computational details.



2 The data

The data is about daily return of the Dow Jones index and daily volume of the New York
Stock Exchange (NYSE). The daily measurements are from the period July 1962 through
June 1988, corresponding to 6430 days 2. What we term ‘volume’ is the standardized
aggregate turnover on the NYSE,

t—1

Vol; = log(F;) — log( Z F,/100),

s=t—100

where F equals the fraction of shares traded on day s.
The return is defined as

Rety = log(Dy) — log(Dy—1),

where Dy is the index of the Dow Jones on day ¢. This is the same data with the same
standardization as in Weigend and LeBaron (1994). Figure 1 shows these standardized
financial time series; the time t=6253, where return Ret; < —0.2 corresponds to the 1987
crash. Besides this special structure around the crash, both series look quite stationary.

3 Modeling

Since mechanistic theories for volume or return are not broadly accepted, we want to use
a modeling approach which is in a nonparametric spirit. OQur models in sections 3.3 and
3.4 can easily be extended to include some usual parametric parts, yielding then a kind of
semiparametric model.

3.1 The curse of dimensionality for full Markov chains

The most natural model for a stationary process { X, };ez (X¢ € R), assuming no particular
underlying mechanistic system, is maybe a full Markov chain of order p, i.e.,

]P[Xt < $|Xt_1,Xt_2,. . ] = ]P[Xt < $|Xt_1,. . .,Xt_p], reR, 1< p<oo.

This implies the only implicit assumption, namely that the process {X;}icz has a finite
memory of length p.

Such models are very general and usually too complex. Even if X; would only take
values in a finite space S of cardinality |S|, these models involve |S|PT! —1 free parameters
to estimate. For example, |S| = 5,p = 5 yields 15624 free parameters, which is prohibitive!
Such an explosion of parameters corresponds to a space which is very hard to cover with
data points. This phenomenon is called the curse of dimensionality.

We learn that full Markov chains with values in a space § with about |S| > 4 do often
not yield a big reduction of the complexity in the data, unless the sample size is huge.

2This data is publicly available via the internet:
http://ssdc.ucsd.edu/ssdc/NYSE.Date.Day.Return. Volume. Vola.text



3.2 Discretizing into ordinal values

Given a single realization Retq,..., Ret, from the stationary (which we assume), financial
time series of returns, we discretize the data into a small number of ordinal values yielding
Ry,...,R,. We propose here

1, if Ret; < ¢
Ry = {2, if e7 < Ret; < ey, (3.1)
3, if Ret; > ¢3
where ¢1, ¢ are the 2.5% and 97.5% sample quantiles of Retq, ..., Ret,.
Thus, R: # 2 describes an extreme event with expected occurrence being about 5%.
Analogously asin (3.1) we can discretize volume yielding Vi, ..., V). For the data described
in section 2, the discretized series of daily return and daily volume are shown in Figure 2.
The more extreme activities can be exploited a little bit by eye: for the series of returns
around time points 3000, 5000 and 6200, extreme events are clustered together. This
clustering is also visible from the original series of returns in Figure 1. Some clustering
for the volume series is also but less clearly visible.

Ordinal data is generally referred to quantities whose values are categories falling on an
ordinal scale, cf. McCullagh and Nelder (1989, Ch. 5). Other discretizations are possible,
for example into binary variables. However, the number of different ordinal values should
be kept small in order to avoid the curse of dimensionality.

The discretization in (3.1) reduces already the complexity of the data. Modeling such
ordinal data is now an easier task than modeling the original financial time series. Of
course, we can now only say something about ‘usual events’, described by R; = 2, and
extreme events, described by Ry = 1 or Ry = 3. By paying a price to consider only ‘usual’
and two kinds of ‘extreme events’, we have a much better chance to find good models
for such ordinal data. We address in section 3.6 the issue about loosing information by
discretizing and introduce there a state space type model for the real-valued time series
of return and volume. In the sequel we consider only ordinal-valued time series.

3.3 GLM for individual ordinal-valued time series

Generalized linear models (GLM) can be used to model ordinal time series data. For
data as in (3.1), the idea is to model the complementary cumulative probabilities IP[R; >
J1 (j = 2,3) as a function of the history R;_4,..., R;_, for some 1 < p < oo.

In the independent set-up, a link function g : (0,1) — IR is specified and then trans-
formed probabilities are modeled as

g(P[R; > jlz)) =6, + 2'a, 1 =2,3; t =1,...,m, (3.2)

where z is a p X 1 explanatory vector, @ a p X 1 parameter vector and 6y > 5 parameters
in R.
Typical link functions g are the logit-, probit- and complementary loglog-function. For an
overview, see McCullagh and Nelder (1989, Ch. 5).

The model (3.2) for independent data can be adapted to the time series case. We
follow the idea of likelihood modeling, based on the history of the process. Assuming



the Markov property of order p for { R;}:cz. the conditional log-likelihood function, given
Ry,..., R,, can be written as

(P R)= > log(pp(Re|Ri—v, ..., Rey)), (3.3)
t=p+1
where pg(R¢|Ri—1, ..., Ri_p) is the conditional distribution of R; given by some parametric

model with parameters 3, see formula (3.4) and (3.5). As explanatory variables z we thus
choose the lagged observations R;_q,..., R;—,. We treat here these lagged variables as
factors, each of them having in our case 3 levels.

Treating the lagged variables as factors is a crucial distinction which brings us away
from pure linear modeling. In the sequel, we denote by R¢_1,..., R, the factors cor-
responding to the lagged variables R;_q,..., R;_,. We are also using the notation as in
cross-classification, c¢f. McCullagh and Nelder (1989, Ch. 3.4). For example, we write
R¢—; for the main effect, Ry_; R¢_; for the second order interaction and Ri_; * Ri_; =
Ri—i+Ri—;+Ri—i Ri_; for the full (saturated) second order model; an analogous notation
is used for three or more terms.

We work here only with the logit link function g(p) = logit(p) = exp(p)/(1+ exp(p))
which has a probabilistic interpretation with the logistic distribution for an underlying
latent variable, namely for the original value Ret; of the financial time series. Also,
we usually look p = 5 lags back into the past. Inspired from (3.2), our model for the
conditional distributions pg(R¢|R¢_1,..., Ri—p) then becomes

logit(P[R; > j]) =0, + Ri_1 * Ri—a * Ri—3* Ri—a*Ry—s5, j=2,3; t=1,...,n, (3.4)

or some sub-model thereof, such as

5 5 5
logit(IP[R; > j]) = 0;+ ZRt—i + ZRt—l-Rt—i + ZRt—Z-Rt—i

=1 =2 1=3

5
+ > RiaRii+Ri—aRiss, j=2.3;t=1,...,n.  (3.5)

1=4

In both models (3.4) and (3.5), we have 6 > 03 € R.

We then estimate intercepts 63, 65 and the main and interaction effects (all abbreviated
by a parameter vector ) by maximum likelihood. Maximization of the log-likelihood
function in (3.3) with p = 5 can be achieved by an iteratively reweighted least squares
algorithm, cf. McCullagh and Nelder (1989, Ch. 2.5).

The full (saturated) model (3.4) is similar to a full Markov chain of order 5, as described
in section 3.1. Model (3.4) has 245 free parameters. Model (3.5) exhibits some hierarchical
structure: the main effects and all second-order interactions. Model (3.5) has 52 free
parameters. By looking at the number of free parameters, it should become clear that
models (3.4) and (3.5) are quite different from classical linear AR-type models which would
include only as many free autoregressive parameters as lagged variables.

With models (3.4) or (3.5) (or other sub-models of (3.4)), we can quantify probabilities
for extreme small or extreme large events of our series of returns. Also, having a model
we can do prediction for usual and two kinds of extreme events.



3.4 Joint GLM for two ordinal-valued time series

There is a substantial interest to quantify the dependence or association between return
and volume, cf. Karpoff (1987). Most of the previous work was done by looking at
cross-correlations, a measure for linear dependence. We will develop here joint likelihood
modeling, resulting in estimates for the joint probability of discretized return and dis-
cretized volume. In other words, we will track down the ultimate aim in this set-up,
namely the knowledge of the whole probability structure for usual and extreme events of
return and volume.

As in (3.1) we discretize return and volume into 3 ordinal values, yielding Rq,..., R,
for discretized return and Vi, ..., V, for discretized volume. We study first the relationship
of return given volume, according to a Wall Street saying that ‘it takes volume to make
prices move’. This means that R; should depend on V; for the same time point t.

For likelihood modeling, we again assume the Markov property of order p for the
ordinal-vector process {( R, Vi) }rem. The log-likelihood function, conditional on Ry, ..., R,,
Vi,...,V,, then becomes

K(ﬁ7 R7 V) = Z log(pﬁ(Rtv ‘/25|Rt—17 ‘/t—lv ey Rt—pv ‘/t—p))

t=p+1
= Z lOg(pﬁR(Rt“/tv Rt—h ‘/t—lv sy Rt—pv ‘/t—p))
t=p+1
+ Z lOg(pﬁV(‘/t|Rt—17 ‘/25—17 ey Rt—p7 ‘/t—p))
t=p+1
= (B R.V)+ (8" R V), (3.6)

where the pg(.].)’s are the conditional probabilities given by some parametric model with
parameters 3 as in formula (3.7).

We thus introduce an explanatory factor V; with 3 levels corresponding to the vari-
able V;. Additionally, the factors for the lagged variables are denoted by R;_; and V;_;
(i=1,...,5). Similarly as in models (3.4) and (3.5) we model

5 5 5
logit(IP[R; > j]) = 9? + Vi + ZRt—i + Z Ri1.Ri—i + Z Ri—2.Ri—s
=1 1=2 1=3

5
+ Z Ri—3.Ri—i + Ri—4.Ri—_s,

1=4

logit(P[V; > j])

5 5
0;/+th—i+z7€t—ivj:273;tzlv"'vnv (37)

where 05t > 0 0Y > 0Y.

Of course, other models than (3.7) are possible. In particular, the model for IP[V; > j]
could be thought to be without the factors R;—; (¢ = 1,...,5). Model (3.7) has for the
R;-part the same structure as model (3.5), except that we include now in addition the no
lagged cross-dependence factor V;. This model (3.7) exhibits again a hierarchical structure,
involving 76 free parameters.



The factorization of the likelihood function in (3.6) which yields the separation of
the parameters 3% from 3", has the computational advantage, that the maximum like-
lihood estimates can be found by maximizing each of the two parts in the log-likelihood
function separately. Note, that putting a logit-link function as in (3.7) on each of the
terms pgr(Re|Vi, Ri_1, Vica, .., Re_p, Viop) and pgv(Vi|Ry—1, Vica, ..o, Re_p, Vi_p) in the
log-likelihood function in (3.6) is different than using a logit-link function for the joint
distribution pg( Ry, Vi|Ri—1, Vic1, ..., Re—p, Viep).

With model (3.7) we can quantify joint, and hence conditional and marginal proba-
bilities for usual and extreme events of return and volume. Moreover, prediction can be
done based on the past of both series.

3.5 Prediction of return

Though prediction of extreme events in a financial time series seems to be an extremely
difficult task, we analyze here the prediction power of our model (3.7) for forecasting
return. The one-step ahead prediction can be realized by the following algorithm.

1. Given Ry,..., R, V1,...,V,, compute the estimates

PRy = |Vipr e Vi Reca, Vi),
]P[‘/t—l—l = j|Rt7 Vieo ooy Ri—a, ‘/25—4]7 J=1,2,3,
according to the estimated parameters in model (3.7).

2. Predict

Vg1 = argmaxj]f’[vnﬂ =JjlRn Vs ooy Rp—ay Vi_als
which is the MAP (maximum probability) estimator.

3. Predict

Ry = argmaxj]P[RnH = j|Vigts Ry Vi o ooy Ry—ay Via_a],

which is the MAP estimator, with the predictor Vn—l—l from step 2 plugged in for the
unknown value V, 41.

For predicting return, both quantities P[R,q1 = 7|Via1s Rus Vi o ooy Ryeas Viea] (5 =
1,2,3) and R,,41 are of interest, the first being a kind of prediction density and the second
being the MAP predictor itself.

3.6 Loosing information by discretizing?

We briefly address the issue of modeling and predicting without using directly the full
information of the real-valued financial time series at the beginning. When taking the
view of being only interested in extreme events (and their remaining complementary part),
the question to be asked is whether the discretized time series, as given by (3.1) is still a
sufficient statistic for the problem to analyze.



A simplified situation is given by the following state space type model,

]P[Rt = jv ‘/t = k|Rt—17 ‘/t—lv .. ] = fj,k(Rt—lv ‘/t—lv sy Rt—pv ‘/t—p)
(Rets, Voly) = g( Ry, Viy Ri—1, Victy e ooy Rieg, Vieg, Zt)
1<p,g<oo; j,k=1,2,3;te 7, (3.8)

where {Z,; }1c is a stationary sequence, independent of {( R, V) }iew and g = (g1,92)" is
an R?-valued function, compatible with the discretization operation in (3.1), e.g.,
g1(L,vp, 14, Ve, oy Te—gy Vi—gy 2) < €1 for all vy, me_q, 001,00 Ty, Uiy, 2, Where ¢ s
defined in (3.1).

By allowing quite general processes {Z;}:cz and functions ¢, this model includes very
complicated dynamics for the R*-valued series {(Ret;, Vol;)'};ez. The dynamics for
{(R¢, V1) }+cm can be motivated by the description of the market, that extreme events
are only triggered by previous extreme events and not influenced by other characteristics
of {(Rets, Vol;)' }tem. This corresponds to a self-generating trade: extreme events act as
local generators, influencing the next few outcomes of return and volume. For such a
model, the conditional probability law

,C(Retl, . .,Retn,Voll, . .,V01n|R1, . .,Rn,Vl, . ,Vn)

does not depend on the functions f;; describing the dynamics of {( R, Vi)' }iez.

This is the analogon to sufliciency, saying that the ordinal-valued observed time series
{(R¢, V4)'}}—, contains the full information about the functions f;x. Thus, for learning
about extreme events, namely learning about the functions f;;, we would not gain by
using the real-valued data {(Ret;, Vol¢)'}7,.

Granger (1992) has proposed switching regime models for {Ret; };ez. Our model (3.8)
involves some kind of non-lagged switching variables (R, Vi, Re—1, Vicq, ..., Ri—g, Vig, Z4)',
some of them being as extreme events of interest themselves. Our model (3.8) allows a
quite simple empirical model search for R; and V;, but generally not for Ret; and Vols.
This is a main advantage over switching regime models, where the empirical selection of
regimes, explanatory variables and specification of their functional form are very hard to
do.

Even though the model (3.8) might be too simple, we believe that under certain cir-
cumstances an analysis can be based on discretized observations without loosing much
relevant information. We have also tried a version of model (3.7) including real-valued
observations,

5 5 5
9? + Vi + Z Ri—i + Z Ri—1.Ri—i + ZRt—2-Rt—i

=1 =2 1=3

logit(P[Ry > j])

5 5
+ Y Riss R+ Ri—aRims + ) vili—i,

=4 =1
5 5 5 5
logit(P[Ve > j1) = 6 +> Vi + > Remi+ > &R + > AiVii, j=2.3,
=1 =1 =1 =1

resulting in 15 additional parameters.
For our data set in section 2, this model had less predictive power than model (3.7). In



addition we tried to include not only linear but also higher order polynomials as explana-
tory real-valued variables. Again, such models were slightly worse than (3.7) in terms of
prediction.

More work is needed concerning the issue of discretization. The operation in (3.1)
works well for our particular data set. We enjoy the advantage of having a reduction in
the complexity of the data, which makes the empirical modeling part a much easier task,
still getting satisfactory answers.

4 Empirical results

We report here our results for the data described in section 2 by using the models from
sections 3.3 and 3.4, respectively.

4.1 Results for individual series of return

For individual series, we only report our findings for returns, which is often the more
interesting quantity. The conceptual modeling for the volume series is the same.

Model (3.4) is with 245 free parameters already quite complex and we do not try it.
Instead, we want to see how well some simpler models like (3.5) explain the return data. As
a measure for selecting between competing models we use Akaike’s information criterion

(AIC) (see section 6),
AIC = —2((3; R) + 2(number of free parameters),

where K(ﬁ; R) is the log-likelihood function evaluated at its maximizer ﬁ
Based on the log-likelihood function in (3.3) we tried the models,

Mretl) logit(IP[R; > j]) = 6; + >0 Ri—i

Mret2) logit(P[R; > j]) = 0; + S0, Rei + Sty Re1. Ry

)
)=
)= 0 + 3200 Rimi+ iy Riet Rimi + iy Rim2 R
5)

( )
( )
(Mret3) logit(IP[R; > j]
(Mretd) as given in (3.
( )

Mreth) logit(P[Ry > j]) = 0,43 7y Ri—it+> img Rec1. Ricit Yt Re—2 Rimi+ Y imy Ri—s. Ri—i+t
Ri—aRi—s + Ri—1. Re—2.Ri—3

Note that we have here a nested sequence of models (Mretl) C (Mret2) C ... C (Mreth).
All of these models are hierarchical, in (Mret2), (Mret3) and (Mret5) in the sense that
factor R;_1 is assumed to be more important than R;_» and so on. The values of the AIC
statistic are given by the following table.

(Mretl) (Mret2) (Mret3) (Mretd) (Mreth)
AIC  2978.5 29784  2947.1  2908.9 -

In model (Mret5), the third order interaction was not estimable and hence we do
not consider this model anymore. By looking at the AIC statistic, we thus select model
(Mret4) which is model (3.5).



In the following we give now the more detailed analysis of model (Mret4). The reduc-
tion in the deviance (see section 6) from an independence model to our current model is
196.8, achieved by 50 additional parameters, i.e.,

20( Barrers; R) — 20(Bo; R) = 196.8,

where f3y corresponds to the model logit(IP[R; > j]) = 0;, j = 2,3.

Therefore, our model (Mret4) seems highly significant. The coefficient estimates for 65, 63
and for the different effects are given in Table 1 in the Appendix. Corresponding t-values
for such individual parameters depend on the unknown underlying stochastic process and
are not easily available in a way, being robust against model misspecification, see sec-
tion 6. A possible way to do nonparametric, model-free inference is given by resampling
techniques, see section 6.

In Figure 3 we show the fitted probabilities

P[R; = j|Ri—1,..., Ri_s] (j = 1,2,3).

The activity for extreme events around time points 3000, 5000 and 6200 is clearly visible.
Moreover, we have a quantification for usual and the two kinds of extreme returns, namely
the probabilities for these events. In Figure 4 we show two graphical tools to check the
goodness of fit of our model (3.5) for the return series. Based on the fitted probabilities
in Figure 3 we compute

3
E[R¢|Ri—1,...,Ri_5] = Zj]P[Rt =JjlRi—1,. .., Ri_s),
7=1

and plot it, together with the observed data, against the time axis . The technique of
uniform residuals is explained in section 6. From Figure 4 we do not see any severe lacks
of our model and we have some confidence in it.

4.2 Results for joint modeling of return and volume

Besides the model (3.7) we consider some other competing models, all being logit-models

for the conditional probabilities of psr( Re|Vi, Ri—1, Vi1, ..., Ri_p, Vip) and pgv (Vi Ry, Vi1,
..o, R, Vi) in the decoupled log-likelihood function in (3.6). It is then sufficient to
find good models for logit(IP[R, > j]) and logit(P[V; > j], j = 2,3. Our candidates are

as follows.

(JMretl) logit(P[R; > j]) = 0% + Vi + 30 Rieci + iy Ri—1. R

(JMret2) logit(IP[R; > j]) = 0% + Vi + 2 Rei + 300y Viei + 3ty Ric1.Ruci
(JMret3) as given in the first part of (3.7)

(JMvoll) logit(P[V; > j1) = 6F + 37, Vi

(IMvol2) logit(P[V; > j]) = 6Y + S0y Viei + Vic1. Vs

( )

JMvol3) as given in the second part of (3.7)

10



(IMvold) logit(P[V; > j]) = 8Y + S0y Viei + Yooy Rici + Re—1. Rz

(JMvol5) logit(P[Ve > j]) = 0Y + 371 Vici + Yoimy Rici + Yimg Ri—1. R

This is not a nested sequence of models, there are many possibilities for competing models.
The variety of different models is actually prohibitively large. Here, we make an intuitively
reasonable (and small) search, we again use the AIC statistic (see section 6) for selecting
models. The following Table gives the numerical values.

(JMretl) (JMret2) (JMret3)
AIC  2960.6 2963.8 2889.5

(JMvoll) (JMvol2) (JMvol3) (JMvold) (JMvol5)
AIC 2542.4 2544.5 2446.4 2448.9 2454.3

By looking at the AIC statistic, we thus select model (JMret3) and (JMvol3) which is
model (3.7). Lagged cross-dependence of R; from V;_; (i > 0) as in model (JMret2) seems
non-relevant, which is a consistent finding with the result in Rogalski (1978).

In the following we give now the more detailed analysis of the joint model (JM-
ret3)&(JMvol3). The reduction in the deviance (see section 6) from an independence
model to our current model is 812.3, achieved by 74 additional parameters. Therefore,
our model (JMret3)&(JMvol3) seems highly significant. The coefficient estimates for
Hf, 0;/ (j = 2,3) and for the different effects are given in Table 2 in the Appendix.
Corresponding t-values for such individual parameters, which are asymptotically correct
and robust against model-misspecification, are again not easily available and a possible way
to do nonparametric, model-free inference is given by resampling techniques, see section
6.

We are particularly interested to assess some measures of uncertainty for the estimated
factor V;. The difference in the deviance (see section 6) from model (Mret3)&(JMvol3)
without the factor V; to the model (JMret3)&(JMvol3) with the factor V; is 23.4, achieved
by 2 additional parameters, which appears substantial. Asymptotically correct nonpara-
metric, model-free confidence intervals can be constructed with the aid of the blockwise
bootstrap, see section 6. By using 100 blockwise bootstrap ® replicates we obtain the
99%-confidence intervals

[—1.452, —0.114] for the coefficient V1,
[—0.800, —0.149] for the coefficient Vo,
where Vy; denotes the coefficient of the factor V; on level i € {1,2} and the constraint
that summing over all levels equals zero is implicitly made.
Both confidence intervals do not contain zero, so that the factor V; is significant. The
standard errors, estimated nonparametrically by the blockwise bootstrap are
S.E.(Vo1) = 0.253,
S.E.(Vo2) = 0.148.

Our significance results are obtained in a model-free way, which emphasizes the ‘true
relevance’ of the variable V; in explaining the variable R;, given the history H;_ 1 =

(Ri—1,Vi-1,...).

3We used the blocklength ¢ = 38 ~ 2n'/2.

11



In Figure 5 we show the fitted probabilities
PR, = j|V; = k., Re—1,Victs ..., Rims, Vios], j.k = 1,2,3.
From the coefficient estimates in Table 2, we get
argmax, P[Ry; = j|Vi =k, Ri_1,Vi_1,..., Ri_5,Vi_s) = 4, j = 1,3, forall t,  (4.9)

saying that the same extreme events are more likely to be present in R; if they are already
present in V. We refer to this as a positive association, in the same spirit as a positive
correlation. But note that we have here an association in terms of conditional probabilities,
whereas correlation measures only a linear association. There is a lot of discussion in the
literature about association between return and volume, mainly about correlation. For an
overview see Karpoff (1987).

For comparison with Figure 3 we show in Figure 6 the fitted probabilities

PR, = j|Vis Ric1, Viet, -+ oy Rims, Vies), § = 1,2,3.

In Figure 3 we did not include the information about volume. Comparing the Figures 3
and 6 is hard to do by eye, the absolute value of actual differences can be as large as 0.19.
This is consistent with the result above that volume at time ¢ is significant for explaining
return at time ¢.

In Figure 7 we check the goodness of fit of our model (JMret3)&(JMvol3) for the return
series. Based on the fitted probabilities in Figure 6 we compute

3
]E[Rt“/tv Rt—17 ‘/t—lv .. '7Rt—57 ‘/25—5] = Z]]P[Rt = ]H/tv Rt—17 ‘/t—lv sy Rt—57 ‘/25—5]7
7=1

and plot it, together with the observed events, against the time axis {. We also show a
plot of uniform residuals, see section 6. From Figure 7 we do not see any severe lacks of
our model.

4.3 Karpoff’s asymmetric volume—return relationship

We are also able to answer in some sense Karpoff’s first research issue (Karpoff, 1987, Sec.
VI). He poses the question whether the volume—price relationship is asymmetric. Loosely
speaking the question is, whether the volume is negatively correlated with negative price
changes and positively correlated with positive price changes. Clearly, a linear function
could not describe such a relation and this question can only be answered by analyzing
non-linear relations, as we do. The possible association is here directed, namely studying
volume as a function of price changes. This is the inverse relation of our analysis exhibited
in Figures 5 and 6. We take the point of view that the relation of V; given R, should be
studied as a function of the history H,—1 = (Ri—1, Vi—1,...). Only such a view allows
to quantify the dependence of V; from R; after the effect of the history H;_1 has been
removed. This seems much more natural than studying the effect of R; on V; without
regarding the history H;_;. With our model for the joint distribution for R, V; given the
history of the first five lagged variables, we are able to calculate

PV, = j|R; =k, Vi1, Ri_1, .., Vies, Ris], 4,k =1,2,3.
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In Figure 8 we plot these probabilities against the time axis ¢. In Figure 9 we give a
magnification for the above probabilities with j = 1; k = 1,3. The Figures 8 and 9
suggest that a similar formula as in (4.9) is no longer true. By exact computation we get
the following,

argmax, P[V; = j|Ry = k, Vi_y, Re_1, ..., Vi_s, Ri_s] # j, j = 1,3, for some t. (4.10)

The volume-return relationship is asymmetric in the sense of formula (4.10). In particular,
as suggested by Figure 9, the conditional probability for an extreme negative event of
volume (V; = 1) is often more likely when the return at the corresponding time point is
extremely high (R; = 3) than extremely low (R; = 1). Suggested by Figure 8 and exactly
computed from the coefficients estimates in Table 2, Formula (4.10) sharpens informally
to,

argmaxke{L?)}]P[W = 1R =k, Viey, Re—q, ..., Vies, Ri_s5] = 3, for ‘quite many’ ¢,
argmaxke{L?)}]P[W =3|Ri =k, Viy, Re—q, ..., Vi_s, Ri_5] = 3, for ‘almost all’ ¢.

This gives a positive answer in probabilistic terms to Karpoff’s question. Our analysis
allows to quantify the volume-return relation of extreme events.

4.4 Results for prediction

For the prediction purpose, we fit our model (3.7) for the first n = 6130 observations and
use then this estimated model for predicting the last 300 remaining values of the return
series. To be precise, we are doing here one-step ahead predictions as described in section
3.5, but our estimated model will always be the same based on the first 6130 observations.
Figure 10 shows the prediction probabilities

P[Ryt1 = §|Vigts Rus Vis o+ oy Rty Vo], 7 = 1,2,3; n = 6130, ...,6429.

These predicted probabilities clearly reflect some of the exceptional behavior of the return
series around time points 6250-6300, which correspond to the times around the 1987 crash.
In Figure 11 we show the MAP predictor

Ryy1, n=6130,...,6429

and the actual values which occurred. Only rarely, our MAP rule predicts an extreme
event: 4 out of 5 extreme event predictions are correct. This shows that our algorithm
is not really making magnificent predictions, but we still can gain, in that 80% of the
few extreme value predictions are correct. Note also that the MAP predictor from step
3 in section 3.5 is conservative. For example, if we could gain a lot by making a correct
extreme event prediction, an alternative predictor might be defined as

) 1, if ][Dl > dlllsg and 1151 > 1153
Rn—l—l =1 3, if P3s > d;Py and P53 > 1Py

2, otherwise

where ]F’j = ]P[RR_H = j|Vn+1,Rn,Vn, veoy Rp_4, V4], and dy, dy could depend on some
cost function. This then would yield more progressive and risky predictions.
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Other explanatory quantities might improve the power for predicting extreme values of
return. LeBaron (1990) has used volatility (and not volume) as an additional explanatory
variable, acting as a switching variable. Our modeling and prediction approach could be
extended in a straightforward way to include other variables.

5 Conclusions

We have presented an approach for modeling extreme events in financial time series. The
discretization into three ordinal categories and the likelihood modeling using the frame-
work of generalized linear models with lagged factor variables seem to be an innovative
and new idea in the field of finance.

Our models have the attractive feature to draw direct probabilistic statements, here
given for joint, marginal and conditional distributions of return of the Dow Jones and
volume of the NYSE at time ¢, always given the history ¢ — 1,2 — 2,.... Unlike the
frequently used correlation for measuring association, our estimated (joint) probabilities
are not restricted to linear associations. Correlations between changes of volume and
price (or absolute value of price) were often found to be weak, cf. Crouch (1970a, 1970b),
Rogalski (1978). But this might be due to a substantial non-linear association which
cannot be picked up by the correlation measure. Our models are an attempt to describe
the whole probability structure of the vector time series of extreme events for return and
volume. Given the history, volume at time ¢ appears to be significant for explaining
the conditional probability of return at time ¢. This conclusion can be drawn from the
coefficients of the factor V, which are significant, as well as from the reduction of the AIC
statistic 2908.9 of model (Mret4) to 2889.5 of (JMret3), which is remarkable. Moreover,
volume at times t—1, (¢ > 0) seems unimportant for explaining the conditional probability
of return at time ¢, indicating an independence of return and lagged volume. A related
result is given in Rogalski (1978).

Using such estimates of the whole probability structure, we are able to give an answer
to the first research issue proposed by Karpoff (1987): the volume-return relationship,
at least for extreme events, appears to be asymmetric. This asymmetry has been found
after the effect of the history has been removed, thus establishing a probabilistic result
about the sample path of the financial process, rather than only for one time point, such
as ‘today’. Beaver (1968) suggests that returns correspond to changes in the expectation
of the market as a whole, whereas volumes correspond to changes in the expectation of
the individual investor. Thus, the asymmetry in (4.10) and its following formulas imply:
given the history, an extreme negative change in the expectation of the individual investor
is often more likely under a given extreme positive than negative change in the expectation
of the whole market.

Our models also yield a natural prediction algorithm. Its predictive power is neither
magnificent nor impractically poor.

6 Mathematical and computational remarks

GLM, deviance and AIC
The modeling approach as described in sections 3.3 and 3.4 is an extension of cumulative
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logits models for independent observations to the dependent Markovian case. References
for the independent case are Agresti (1990), McCullagh and Nelder (1989) and for the
dependent case Fahrmeir and Tutz (1994, Chs. 6.1, 8.2-8.3), Brillinger (1996).

The deviance is a measure for goodness of fit, which is useful for non-normal and
non-linear models. A model (M) of interest is compared to the baseline model (My),
which has as many parameters as observations. Given data X = (X1,..., X,), we denote
by K(BM; X) the log-likelihood function evaluated at the MLE estimate BM under model
(M). The deviance is defined as

Dar = 2(0(Brtg; X) — U Bar; X)),

which is two times the log likelihood ratio statistic. Having nested models (M;) C (M),
the difference of deviances is defined as

AD]\41§]\42 = DM1 - DM2 = 2(£(6M2; X) - K(ﬁMﬁ X))v

which measures the significance of model (M3) relative to its sub-model (My). For a more
detailed treatment, cf. McCullagh and Nelder (1989, Ch. 2.3).

Comparing the predictive power of different models can be done with Akaike’s infor-
mation criterion (AIC). The goal is to minimize

AIC = =2((fr; X) + 2(number of free parameters in model M),

where the minimization is done over different models M of consideration.

Since the MLE estimate BM is the maximizer of {(.; X) for model M, the first term on the
right hand side of the AIC statistic decreases for larger models, whereas the second term
acts as a penalty for large models. See Akaike (1973).

Model-free inference and bootstrap

Assessing correct asymptotic standard errors, asymptotic confidence intervals or to con-
struct asymptotically correct tests is completely different (and inherently more difficult)
from the set-up with independent data. With dependent data, techniques for estimating
variances from the independent case are asymptotically valid, only if the (GLM-) model we
work with is correct. But this is a rather stringent assumption and we often cannot trust
it. Our model might be good for approximating the ‘truth’, but assessing accuracy of such
approximations or testing if the model approximates well should be done in a model-free
fashion. To get model-free, nonparametric variance or distribution estimates, the idea of
bootstrapping can be used. Efron’s (1979) classical bootstrap will fail, since we are dealing
here with dependent data. One has to rely on techniques adapted to the dependent case.
A model free resampling scheme is given by the blockwise bootstrap proposed in Kiinsch
(1989) and further developed in Biithlmann (1994).

Uniform residuals

The plot of uniform residuals was developed by Brillinger and Preisler (1983). Suppose X
is an ordinal-valued variable with IP[X = 1] = py, P[X = 2] = p;, P[X =3] = 1 —p1 —p2.
Then, the variable

Uniform on (p1,p1 + p2], if X =2

Uniform on (0, p1], ifX=1
/- {
Uniform on (p; 4 pa,1), if X =3
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has a Uniform distribution on (0,1). This can then be used to plot such a variable
7 = Z(x) versus different points on the z-axis with now p; = p;(2) depending on z.

Computations

The computations can all be carried out by a statistical package which is able to fit
cumulative logits models as in (3.3)-(3.7). In particular, since the log-likelihood function in
(3.6) separates into two parts which are modeled individually, both terms £(5%; R, V') and
((3Y; R, V) can be maximized separately and no multivariate techniques are necessary. All
computations and graphics have been done with S-Plus, cf. Becker et al. (1988), Chambers
and Hastie (1992). The cumulative logit model has been fitted with the additional function
logist from a special library called logist.

Appendix

The Tables 1 and 2 give the MLE estimates of our analysis. Identifiability constraints are
chosen such that summing over all levels of a factor equals zero. Denote by éj the estimates
for §; (7 = 2,3), by 7@2'7]‘ the estimates for the factor R;—; (¢ = 1,...,5; 7 = 1,2) and by
7@2'7]‘;2'/7]‘/ the estimates for the factor R;—;. Ri—ir (1,7 = 1,...,5; 7,7 = 1,2). Analogously
for the factors V;—; (¢ = 0,1,...,5) and interaction factors.

Acknowledgments: 1 would like to thank David Brillinger for many helpful com-
ments and discussions.
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6y = 3.80

Rig = —0.94
Raq = 2.72
R31 = —0.35
Raq = 0.54
Rs1 =033
7?1,1;2,1 = —-0.09
Riza =148
Rinan = —0.41
7?1,1;5,1 =-0.35
7?2,1;3,1 =—-0.53
Ra141 =043
R271;571 =1.95

7:33 14,1 = —2.03
7?3,1;5,1 = —0.54
Rii1s51 =211

1499y

fs = —3.85
Ryy = —0.47
Roo = —0.69
R32 = —0.07
Raq =048
Rsz2 = 0.33
7?1,2;2,1 =—-0.36
R172;371 =-0.24
=0.73
R = —0.45
7?2 2:3,1 = 0.36
R0 = —0.61
Ragis1 = —0.81
7?3,2;4,1 = —0.06
R39:51 = 1.00

1499y

Raos1 = 0.62

1499y

1499y

7:31,1;2,2 =0.98
7?1,1;3,2 =-0.96
Ri142=0.01
7?1 1;5,2 = —0.06

Ra32= —0.01
Raa2 = —0.47
Ras2 = —2.08
R3a2 = 1.19

Ransn = —0.26

Rais9=—0.15

1499y

7:31,2;2,2 =0.09
Ri232=0.84
Ri242 = —0.16
Rig5.2 = —0.14
Rap32=0.15
7?2,2;4,2 =0.03
R272;572 = 0.69

7:33,2;4 2 = —0.82
7?3,2;5,2 =-0.29
Ri252=0.09

1499y

Table 1: MLE estimates for model (3.5)
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fy = 4.03

Vo1 = —0.71
Riq = —0.80
Ry = 2.73
Raq = —0.35
Ra1 = 0.54
Rsq = —0.31

Rl 12,1 = —0.20

)

fs = —3.68
Voo = —0.43
Riz=—0.34
Rz = —0.59
Rz = 0.04
Raz = 0.46
Rz = 0.37

Ri2.21=-0.44

1494y

Ritsi =145  Rigss=—0.23
Ritun = —048 Ryga1 = 0.69
Ritsi=—039 Rigsi=—045
Rois1=—0.58 Rozsq = 0.36
Rotua =034  Rogar = —0.57
Roisa =187  Rassi=—0.84
Riagu1 = —2.15 Ragu1 = —0.03
Rais1=—0.69 Rizasi=1.06
Rats1=1.99  Rayzsi=0.60
0, = 4.15 fs = —4.30
Vig=-226 Vio=0.02

Vo1 =080 Vyo=—0.24

Va1 =083 Viy=—0.05

Vi = —117 Vo= 0.04
Vsi=—0.64 Vsq=0.04

Ri1 =016 Ryp=—1.41

Raq1 =045 Ryy=0.30
R31=-052 Rag=0.35
Ra1=—0.05 Ryy=0.35
Rsi1=—0.57 Rsg=0.56

Rig2 = 0.97
Riis2 = —0.99
Rit42 = 0.04
Riis2=—0.10
Ro132 = 0.04

R271;472 = -0.39
RQ 1.59 = —2.11

Rtz = 1.22
R31.52 = —0.21

1499y

Rai52=-0.11

1499y

Ri2:9.2 = 0.07
Ri2:32 = 0.85
Ri242=—0.10
Rizs2 = —0.17
R.2:32 = 0.08
R.2:42 = 0.00
Razs2 =0.71
Rz = —0.85
Ri252 = —0.34
Razs2 = 0.08

1499y

Table 2: MLE estimates for model (3.7)
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