Hierarchical modeling is a fundamental concept in Bayesian statistics. The basic idea is that parameters are endowed with distributions which may themselves introduce new parameters, and this construction recurses. A common motif in hierarchical modeling is that of the conditionally independent hierarchy, in which a set of parameters are coupled by making their distributions depend on a shared underlying parameter. These distributions are often taken to be identical, based on an assertion of exchangeability and an appeal to de Finetti's theorem. In this review we discuss a thoroughgoing exploitation of hierarchical modeling ideas in Bayesian nonparametric statistics. The basic idea is that rather than treating distributional parameters parametrically, we treat them nonparametrically. In particular, the base measure $G_0$ in the Dirichlet process can itself be viewed as a random draw from some distribution on measures---specifically it can be viewed as a draw from the Dirichlet process. This yields a natural recursion that we refer to as a hierarchical Dirichlet process. Our focus in this chapter is on nonparametric hierarchies of this kind, where the tools of Bayesian nonparametric modeling are used recursively.
Details
Title
Hierarchical Bayesian nonparametric models with applications
Standard Rights Statement
Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user.
Usage Statement
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies).