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Abstract

Backus [1] uses the prior information that the rest mass of Earth's
magnetic field is less than the mass of Earth, or that the Ohmic heat lib-
erated in the core by the currents giving rise to the main magnetic field is
less than the surface heat flow, to compute the lengths of confidence inter-
vals for low-degree Gauss coefficients of the magnetic field. His technique
for producing confidence intervals yields intervals that are longer than
necessary to guarantee the nominal coverage probability. The present
paper uses theory of Donoho [2] to find lower bounds on the lengths of
optimally short fixed-length confidence intervals (minimax confidence in-
tervals) for Gauss coefficients of the field of degree 1 < I < 12 using the
heat flow constraint. The bounds on optimal minimax intervals are about
40% shorter than Backus' intervals: no procedure for producing fixed-
length confidence intervals, linear or nonlinear, can give intervals shorter
than about 60% the length of Backus' in this problem. Procedures that
examine the data before determining the length of the interval can do
arbitrarily better for some data sets.
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fidence Set Inference, Core Magnetic Field, Modulus of Continuity.

Acknowledgements: I am very grateful to David L. Donoho for helpful con-
versations. This work was supported by NASA Grant NAG-883, NSF Presiden-
tial Young Investigator Award DMS-8957573, NSF Grant DMS-8810192 and
donations from the AT&T Foundation and IBM.

1



1 Introduction
Consider the following model of a linear inverse problem. We observe an n-
vector of data 6 related by the linear operator K to the unknown model xo,
with additive noise e:

6=Kxo+e, (1)

where 6, e E R', xo E X = 12(w), the space of weighted square-summable
sequences

00

12(U)) _ X =(Xl,X 2,XX+ E WjX < 00}' (2)
j=1

wj > 0, with norm

llxll- wjz) (3)

the linear data mapping

K: 12+ R"
x,, Kx; (4)

and the components of e are independent, identically distributed errors with
zero mean and variance u2. We assume we know a priori that

xo E C-{x E12(W): ixii < 1}. (5)
Let L be a linear functional

L: 12(W) R
xi-- Lx. (6)

We wish to use the data 1 and the prior information 5 to find a 1- a confidence
interval for Lxo. We refer to the definitions and relations 1-6 as the problem P.

Backus [1] develops a procedure for producing confidence intervals for this
problem. Donoho [2] develops theory for finding the lengths of optimally short
confidence intervals in a class larger than that considered by Backus, for the
case the errors ej are iid Gaussian. The present paper is bounds the improve-
ment one could hope to obtain over Backus' result via nonlinear methods, in
the geomagnetic problem of estimating low-degree Gauss coefficients of the mag-
netic field from satellite observations, using the constraint that the rate of heat
production by currents in the core is less than the surface heat flow rate.

Table 1 gives the lengths of confidence intervals for Gauss coefficients of
Earth's magnetic field derived for this problem by Backus [1], and bounds on
optimally short nonlinearly based confidence intervals computed using Donoho's
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theory [2]. The bounds on optimal intervals are about 59-62% of the length of
Backus' intervals.

Section 2 of the paper outlines Backus' technique and Donoho's minimax
results. Section 3 applies Donoho's results to the geomagnetic problem, giving
the approximations necessary to make direct comparisons with Backus' confi-
dence intervals. Section 4 concludes with a short discussion of variable-length
confidence intervals.

2 Confidence Intervals for Linear Functionals
There are two principal types of procedures for constructing confidence inter-
vals. In the first type, "fixed-length," the length of the confidence interval is
determined without reference to the measurements. The measurements are then
used to determine where to center the interval. This is the most common sort
of procedure for constructing confidence intervals.

In the second type, "variable-length," both the location and length of the
confidence interval depend on the observed data. This sort is less common
(at least among frequentists: Bayesian confidence intervals are often in this
class). It is discussed in the context of inverse problemns by Stark [6], and a brief
indication of the improvement one might obtain over fixed-length procedures
is given in section 4 below. The present paper primarily concerns fixed-length
procedures.

Among fixed-length procedures, the dependence of the center of the interval
on the measured data may be linear or nonlinear. If we are clever at centering
the interval, we may use a shorter interval and still have the nominal coverage
probability. This leads us to the questions of what procedures allow us to use
the shortest intervals, and what are their lengths?

The prior information xo E C is obviously key in constructing short intervals.
Let L(6) be a procedure for determining the center of a confidence interval for
Lxo from data 6. The minimum fixed length of a 1 - a confidence interval for
Lxo centered at L(6), valid whatever be xo E C is

Ca(L, a)--2inf {X: Prob{IL(6)-Lxl < X} > 1-(a,Vx E C}. (7)

Backus [1] considers a finite set of linear functionals {Lk}kN O at which to
center confidence intervals, and finds Ca,(Lk, a). He then picks as his procedure
that with smallest C<,. For the case the errors are Gaussian, Donoho [2] shows
how to construct the affine functional LA with smallest Cc, among all affine
functionals (the affine minimax procedure), and gives exact expressions for the
resulting confidence interval length. Further, he finds upper and lower bounds
on the length of the shortest fixed-length confidence interval based on nonlin-
ear procedures (the nonlinear minimax confidence interval length). Below we
use Donoho's theory to bound the improvement one could hope to obtain over
Backus' results in the most favorable circumstances.
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2.1 Backus' Procedure
We shall state Backus' method for constructing confidence intervals in slightly
more detail, to compare and contrast with minimax procedures. Let N(K)
denote the null-space of the linear function K, and let D(K) = NL(K) be its
orthogonal complement in X. Since K has finite-dimensional range, D(K) is
closed, and any x E X can be written uniquely as the sum

X=XN +XD

where XN E N(K) and XD E D(K); i.e.

X = N(K) ED D(K).

We assume from here on that n = dim{D(K)}. Consider the restriction KD
of K to D(K). The linear function KD: D -_ R" is one-to-one, and hence
invertable. Let {Do, D1, D2, Dn} be a nested sequence of subspaces of D(K)
such that:

dim{Dk} = k (8)
Dk C Dk+1 (9)
Do= {0} (10)
Dn = D(K); (11)

and let KDk be the restriction of K to Dk. Let PD, be the orthogonal pro-
jection operator from X to Dk. Let Rk be the range of KD. Then Rk is
isomorphic to Rk. Let PR, be the orthogonal projection operator from R" to
Rk. Backus considers the following set of estimators of L[xo]:

Lk(6) _ LK- PRk6. (12)

(It follows from the invertability of KD on R" and the definitions that KDk is
invertable on PR R" for a unique element of Dk.) Note that Lk(6) is simply
a linear functional of the data 6 (the composition of two linear functions and a

linear functional), and so can be written

Lk (6) = c(k) -6, (13)
where c(k) = (cj(k))7..1 E R'.

Let us now compare the estimator 12 with Lxo:
Lxo-Lk(6) = Lxo-LKb1PR*(Kxo+e)

= Lxo - LPDX - LK-' PRk C

= LPD.Lxo-LK-' PRkE
= LPD.Lxo-c(k) ., (14)
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where PDL is the orthogonal projection operator onto the orthogonal comple-
ment D- of Dk. Since the error vector e is assumed to have zero mean, the
first term in 14 is the bias of the estimator; the second is a random variable
with zero mean. The distribution of the second term can be deduced from the
distribution of the error vector e, since it is merely a linear functional of e. Thus
one can compute a number 7k such that

Prob{jc(k) * el < Yk} > 1- a. (15)

The bias term can be bounded using the prior information that lixoll < 1:

ILPD±Lxol < JILPr-IIIIxoll
< IILPD.IJ
= IILD 11, (16)

where LD.L is the restriction of L to the orthogonal complement of Dk. Thus
the following intervals are 1 - a confidence intervals for Lxo:

[Lk(6) - IILD-II -7k, Lk(6) + IILD. II +7k]-

These intervals have lengths

Cc,,k(o) = 2(7k + IILDLlj). (17)

Backus then takes as the confidence interval the one with shortest length.
The point here is that Backus picks the best of but n + 1 linear estimators

Lk of Lxo at which to center his confidence interval, where "best" means that
giving the shortest interval. Instead of only the estimators Lk, we could consider
all linear estimators; all affine estimators of Lxo of the form

LA(6)CO+C 6,

where c is the n-vector (c1,.. cn); or even all nonlinear estimators LN with
arbitrary (measurable) dependence on the data; then find the best estimators
in this wider classes. Donoho's results [2] bound the length of the shortest
confidence intervals based on general affine and nonlinear estimates.

2.2 Donoho's Minimax Results
Donoho [2] shows how to find the length of the shortest affine-based confidence
interval for a large class of inverse problems. He shows further that the length
of the shortest confidence interval based on nonlinear functions of the data is
bounded by a fraction of the length of the shortest affine-derived interval.
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A few definitions are required in order to proceed. The length of the minimax
affine confidence interval is

Ca,A(cr) 2inf {X: 3LA affine 3 Prob{ILA(6)-Lxi < X} . -a, Vx E C}.
(18)

The length of the minimax nonlinear confidence interval is

Ca,N(of) -2inf{X: 3LN 3 Prob{iLN(6) - Lxl < X} > 1- a, Vx E C} .
(19)

(Note that these definitions differ from those of Donoho by a factor of two: he
gives the half-lengths of the intervals.)

Donoho's results for the affine minimax confidence interval and his bounds
on nonlinear minimax confidence interval lengths, Ca A(a) and C*,N(o), involve
the modulus of continuity w(p, L, K, C) of the functional L with respect to the
data mapping K and the prior information set C:

w(p, L, K, C) -sup {jLxl- Lx-ll : IIK(xi - x-I)II < p and xi E C}. (20)

The modulus measures how much the functional L can vary among members
of the a priori class C if their predicted data differ by no more than p in the
norm. The arguments L, K, and C will be suppressed in the sequel. Donoho
shows that

2W(2Z1_aoJ) < Ca,,N(uf) < Co,A(u-) < 2w(2Z1,a12a) (21)

C. A(9) S C,N(2

and, if w(p) -- 0 as p -+ 0,

C,A(of) = 2sup w()) Xa,Ay/2oj (23)

(See also Donoho and Low [3] for further discussion and applications.) Here Za
is the lOOa percentage point of the standard normal distribution, and Xa,A iS
the length of the minimax affine confidence interval for a bounded normal mean:

Suppose we wish to estimate 0 from the single observation Y = 0 + Z where
0 is known a priori to lie in [-r, r], and Z is a zero-mean Gaussian random
variable with variance u2. The half-length of the minimax affine confidence
interval for 0 is

XCr,A (r, C)-inf {X : sup Prob{ icY - 0 < X} > 1 - a V0 E [-r, 7]} (24)

That is, Xa,A(r, a) is the smallest number X such that for some c E R the
interval [cY - X, cY + X] is a valid 1 - a confidence interval for 0, whatever be
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6 E [-T, r]. Conservative and optimistic values of Xcx ,A(T, 1) are given by Stark
[5].

The equation 23 is not useful for the present problem as the functional L
that evaluates a single Gauss coefficient has a component in the null-space of
K whenever the number of data n is finite; hence w(p) does not go to zero as p
does.

To use Donoho's results to compute or bound the lengths of the minimax
affine or nonlinear confidence intervals, we must evaluate the modulus. We do
this for the problem of inferring Gauss coefficients of the geomagnetic field in
the next section.

3 Geomagnetism

3.1 The Geomagnetic Problem
Following Backus [1], we represent the magnetic field B outside Earth's core
due to currents within the core as the gradient of a scalar field :

B = -V*)

where I has the spherical harmonic expansion

*I(r) = a (a/r)'+' E x '(a)Y1m(i). (25)
1=1 m=-I

In this expansion, a is the core radius, r is the position vector with origin at
Earth's center, r is the Euclidean length of r, r is the unit vector in the direction
r, and YEm are spherical harmonics normalized so that

41 j IYm2d2r = (21 + 1)<. (26)

In the previous equation, the core-mantle boundary is idealized as a sphere
of radius a. We will define all operations on magnetic field models in terms of
such spherical harmonic expansions. Essentially, the model space for the inverse
problem is a weighted space 12(w) of coefficients xl in these expansions. The
norms considered here have weights wl that depend only on I and not m-they
are invariant under rotations of the field B in RH3. We will denote the magnetic
field of the model whose Gauss coefficients are {xm } by B.

The weights wl we shall use are induced by either the "energy bound" that
the rest mass of the energy of B is less than the total mass of Earth (equation
28, see [1]), or the "heat flow bound" that the rate of Ohmic dissipation in the
core is less than the Earth's rate of surface heat flow (equation 29, see [1]). In
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terms of the coefficients x1, this implies that

00

Zwi Ix (a) I < q, (27)
I=1 m=-I

where for the energy bound

WI = (21 + 1)(1 + 1)-1 (28)
and q = 2 x 1033nT2; or for the heat flow bound

WI = (I + 1)(21 + 1)(21 + 3)1-1 (29)

and q = 3 x 1017nT2, when the units of xm are nanoTesla. Let x and y be
two field models, with vectors of coefficients {4x } and {yl }, respectively. We
define the inner product of the two models to be

00 1

x.yEq'~wi ~j 4~y7' (30)x y=q E wI E xi Yl * 30
1=1 m=-I

With the induced norm

/ 0oo I \1/2
lixii= l EI(wz 2)

1=1 m=-I

the constraint that the rest mass of the energy of B is less than the mass of
Earth, or that the Ohmic heat production is less than the surface heat flow take
the desired form

x E C_ {x E 12(w) : IIXII < 1}.
We are interested in estimating the linear functional L that evaluates a single

Gauss coefficient xm. From the definition of the inner product 30 we may deduce
the form of L:

L =qw-lVYm (31)

Then we have
00

Lx = q'1 , w E qw 166'bM xl' (32)
I'=1 ml=-1'

= xm (33)

(Here 6k {1,j = k; 0,j k}.) Backus [1] shows that these functionals L
are bounded in the norms induced by the energy bound and by the heat flow
bound; in fact, by inspection we find that

1LI12 = q/wI. (34)
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The data will be assumed to be measurements of the three Cartesian com-
ponents of B at locations {rj}fLJ3 on or above Earth's surface r = c. We have
(from Backus eq. 9.9)

00

B=(rj) = (a/rj)1+2 Z xlV[r-ll-Yim(i,)],=i. (35)
1=1 m=-I

The observational errors e consist of random errors of measurement, plus con-
tributions to the magnetic field from the crust, mantle, ionosphere and mag-
netosphere. We will ignore all these except the crust, which we shall treat as
independent, identically distributed Gaussian random errors, statistically inde-
pendent of the measurement errors, following Backus' "most favorable treat-
ment" in equation 9.15 of [1]. Backus takes the measurement errors to be
Gaussian with zero mean and standard deviation oam = 6nT, and the crustal
signal to contribute independent Gaussian errors with zero mean and standard
deviation ac = 12nT. The combined errors are then Gaussian with zero mean
and standard deviation

a= V2 + f2 = 13.416. (36)

If we make the usual correspondence between sets of spherical harmonic
coefficients (xlm)00 m=i and singly-indexed sets of coefficients (xj)5'? 1, then,
with K defined implicitly through 35, the problem of estimating a Gauss coef-
ficient of the field from surface and satellite observations of B takes the form of
the original estimation problem P of the introduction. To apply the theory of
Donoho, we must evaluate the modulus of continuity of L.

3.2 Modulus of Continuity of a Gauss Coefficient
This subsection develops the expressions needed to compute the modulus of
continuity of the functional that evaluates a Gauss coefficient of the magnetic
field at the core-mantle boundary. Let L stand for the linear functional that
evaluates a particular Gauss coefficient xm at the CMB, as defined in equation
31. We have by the definition 20

w(p) - sup {jlxl - Lx_1 I: IIK(xi - x. )II < p and xi E C)
= sup {Lx: IlIKxIl < p and llxil < 2}, (37)

where we have used the linearity of L and K, the symmetry of C, and the fact
that

C \ C - {x = xI - x.1: llxll, iIx_1iI < 1} (38)
= {x: llxll < 2}. (39)

Let A denote the ordered pair (Al, A2) and let

P = {A = (A1, A2) A1A2 >. = {>. 0}
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denote the positive cone in R2. Using Lagrangian duality [4], and the fact that
sup Lx = - inf{-Lx}, we may rewrite the optimization problem 37 as follows:

w(p) < - sup inf {-Lx + Ai(11x112 - 4) + A2(IlKxl2 - P2)}. (40)
A>o XE12(W)

The conditions for equality here are

1. There exists an x E 12(W) such that

11x112 < 4 and IlKxzII2 < p2,
(x = 0 will do),

2. the functional

G: 12(W) R2
x + (1x112 - 4, IlKxli2 _ p2)

is convex with respect to the partial order on R2 induced by the positive
cone P (this follows from the convexity of norms), and

3. w(p) < oo, which follows from the fact that L is a bounded linear func-
tional, and that we are constrained to the ball llxll < 2.

Thus equality obtains in 40.
Define

F[x; A] _-Lx + Ai(iix112 -4) + A2(IIKx1i2 _ p2). (41)

Then
w(p) -sup inf F[x;A]. (42)

A>0 XE12(W)

For fixed A, F is Frechet differentiable with respect to x, and so, since F is
convex, necessary and sufficient conditions for the unconstrained minimum of
F[.;A] are given by OF = 0. Now

-cF = -L + 2A1x + 2A2KTKx, (43)

so the optimal x, x* satisfies

2(A1l + A2KTK)x* = L, (44)

where I is the identity operator on 12(w)*
At this point we begin to make approximations to have results directly com-

parable with those of Backus [1]. In order to find the length of confidence
intervals without reference to the actual locations at which observations were
made, Backus takes the observations to be approximately evenly distributed at
n/3 points on a sphere 400km larger than Earth (the approximate altitude of
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the MAGSAT satellite). If the observations are sufficiently numerous, the in-
ner product in data space is well-approximated by an integral over the sphere.
Now we shall use the felicitous fact that L is the functional that evaluates a
single Gauss coefficient xl'. Backus [1] shows that if we restrict K and L to a
finite-dimensional subspace spanned by spherical harmonics of degree at most
lmax > 1 where lma: is much less than the square-root of the number of data n,
then

KTKL t OIL, (45)

where
i _ 2o2qn/3(a/c)2(112)(1 + l)w-1 (46)

and q and wl are given by equations 27 or 29, depending upon the prior infor-
mation norm we are using.

This will not hold in the case we consider here where 'ma: is infinite; how-
ever, we shall see presently that the effect of the approximation is to make the
confidence intervals shorter, so the results are still a lower bound on the shortest
valid confidence intervals, and bound the improvement one can hope to obtain
through methods more sophisticated than that of Backus [1]-at least for meth-
ods that pick the length of the interval prior to observing the data (see section
4). We have from 45,

(A1i + A2KTK)L ; (Al + A2qI)L, (47)

and hence

2(l + A2KTK ) L L. (48)
2(Al ± A2qS1)

Let
i(A) = X 2(A1 + A2(1)9

What is the effect of approximating x* by *? Since F[x; A] > F[x*; A], we have

sup F[k;A] > sup F[x*;A], (50)
A A\

and
-sup F[x;A] <-sup F[x*;] =w(p). (51)

A A
Thus the approximate modulus will be too small, and the bound on the length
of the minimax confidence interval 21 using the approximate modulus will still
lower-bound the length of the nonlinear minimax confidence interval, as desired.

Let -y _ (A1 + A201)-'. Then x = yL, and

Lx =-yIlLl, (52)

x11*2 = Y2IILII2 (53)
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and
11KiJ12 = 72X, IILII2. (54)

Combining these and substituting into 41 we have

F[i; A] = -yiLl2 + A1 (y2jjLj12 - 4) +
A2 (c2kiILII12 _ p2)

- llLII(X+122-1-4Aip2A2_ (55)

Define
f() -F[i(A);A]. (56)

(It follows from Lagrangian Duality that f is concave in A.) The modulus is
then bounded by

w(p) > min-f(A)
A>o

A>{l{4w (1 +2l-+ +PA72} (57)

This maximization was performed numerically using Stanford Systems Opti-
mization Laboratory code NPSOL, given the analytic derivatives

O¾1(-f) = ..-(A1+ \201)-2 + 4 (58)4wl
8A2(_f) = ~-0,4w (A1+A201)-2 + p2 (59)

Note that f has no stationary point unless qS/p2 = 4, so the maximum occurs
at infinity or on the boundary of the positive cone A > 0. By inspection of f,
the minimum does not occur at A = 0; also, for A > 0,-f grows for sufficiently
large 11Ail, so the minimum occurs on the boundary where exactly one of A1, A2
is zero. For sufficiently small p, the minimum has A1 = 0; eventually, as p
grows, the minimum has A2 = 0. This is an artifact of the approximation 49,
since x is an eigenfunction of KTK- if x* were found exactly using the actual
positions at which measurements were made, in general the minimum would lie
in the interior of the cone. Another consequence of this approximation is that
intervals based on the heat flow bound and energy bound have the same length
up to some critical value of p: for small p only the data constraint is active.

The numerical minimization of -f directly bounds C<,N via equation 21.
Table 1 compares bounds on the half-lengths of nonlinear minimax confidence
intervals with Backus' [1] results in microtesla for the heat flow bound, with the
total error standard deviation a = 13.416, n = 26500, a = 0.0001, 1 < 1 < 12.
The bounds on optimal intervals are all about 60% of the lengths of Backus'
intervals.
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4 Discussion
We have seen that no fixed-length method for finding confidence intervals for
Gauss coefficients of degree 1 < 1 < 12 can produce confidence intervals shorter
than about 60% of the length of Backus' intervals, and still guarantee 99.99%
coverage probability for all models satisfying the heat flow bound. What about
variable-length methods that use the data not only to center the confidence
interval, but also to determine its length?

It can be shown [6] that variable-length procedures exist that do no worse
than the best affine fixed-length procedure in the worst case, and do arbitrarily
better than both the affine minimax and nonlinear minimax procedures for some
data sets. Here we sketch why that is so.

Suppose first of all that both

L+ _ sup Lx < oo (60)
xEC

and
L--- inf Lx >-oo, (61)

XEC
as they are in the geomagnetic problem since L is a bounded linear functional,
and C is the unit ball. Define the interval

J- [L-, L+].

Then with probability 1, J 3 Lxo. For any interval I C R, let jII denote the
length of I. Let I(6) be any procedure for producing a 1- a confidence interval
for the problem P.

Let IA(6) be the affine minimax procedure, with corresponding center

LA(6) = c +C6 (62)

and length
I41 = C.A

(i.e.

IA(6) [LA(6) - Ca,A/2, LA(6) + CO,A/2])
and let IN(6) be a nonlinear mninimax procedure with length

IINj = C,N
Since the errors ci are iid Gaussian, Ilell has positive probability of being

arbitrarily large; hence, by 62 and the symmetry of the n-dimensional Gaussian
distribution,

Prob{LA(6) > /} > 0, V# E R. (63)
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In particular,
Prob{LA > L+ + COF A/2} > 0. (64)

Denote by D1/2 the set of 6 E R" for which LA > L+ + CO* A/2. Since J 3 Lxo
and Prob{ I 3 Lxo} > 1 - a,

Prob{IA(6)n J 3 Lxo} > 1-a: (65)

the variable-length procedure I1A(6) n J has coverage probability at least 1 - a.
The length of IA(6) n J obviously never exceeds that of I(6). In fact, for
6 E D1/2,

ii1(6) n JI < 1/2 I74(6)1. (66)
Similarly for any y > 0 there are sets D.y such that Prob{6 E Dy} > 0 and
whenever 6 E Dz

1i7(6) n JI < 7117(6)1 (67)
As Donoho [2] shows (inequality 22 above) the length of the nonlinear minimax
interval is never less than the constant fraction Z1-a/Z1-.a/2 of the length of the
affine minimax confidence interval length; thus with strictly positive probability
the variable-length procedure IA(6) n J produces intervals arbitrarily shorter
than the the nonlinear minimax length.

For variable-length procedures, we need a new criterion for optimality. For
example, for any procedure I(6) that produces 1- a confidence intervals for the
problem P, valid whatever be xo E C, define

R(I(6)) _ sup EII(6)I, (68)

where E is the expectation operator. This functional is one possibility. Let us
say that It(6) is R-optimal for the problem P if

R(I*) = inf R(I(6)) (69)
procedures I(6)

Do there exist variable-length procedures that are R-optimal and have lengths
never exceeding CQ,N? Can R(I*) < C,.N? What is the R-optimal procedure
for producing confidence intervals for a bounded normal mean (the problem
described above equation 24), and what is its value of R? These questions are
the subject of current research.
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1 rms Backus Nonlinear
xl Interval Bound

1 107.77 0.009 0.0055
2 22.59 0.015 0.0087
3 23.01 0.024 0.0148
4 17.86 0.042 0.0258
5 11.96 0.075 0.0458
6 9:36 0.135 0.0824
7 7.93 0.25 0.1500
8 4.73 0.45 0.2752
9 6.78 0.83 0.5080
10 4.59 1.53 0.9423
11 4.34 2.85 1.7555
12 3.62 5.32 3.2816

Table 1: Average estimated Gauss coefficients, length of Backus' confidence
intervals, lower bounds on lengths of nonlinearly based confidence intervals in
microTesla, at 99.99% confidence, using the heat-flow bound. Columns 2 and 3
from Backus [1989].

16


