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ABSTRACT

Let 1 (0) = n1 logp (x, 0) be the log-likelihood of an n-dimensional X under a p -

dimensional 0. Let Oj be the mle under Hj 01 = OdZ ..., 0j = 04 and 00 be the unrestricted

mle. Define Tj as

[2n (I (0j-l) - I (6j)}] sign (0}_1

Let T = (T1, ..., Tp ). Then under regularity conditions, the following theorem is proved: Under

0 = 00, T is asymptotically N (n-1/2 ao + n-l a, J + n-1 :) + 0 (nC3/2) where J is the identity

matrix. The result is proved by first establishing an analogous result when 0 is random and

then making the prior converge to a degenerate distribution. The existence of the Bartlett

correction to order n-3/2 follows from the theorem. We show that an Edgeworth expansion

with error 0 (n-2) for T involves only polynomials of degree < 3 and hence verify rigorously

Lawley's (1956) result giving the order of the error in the Bartlett correction as 0 (n-2).
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Courant Institute and the University of Chicago.

(2) This research was partially supported by ONR Contract N00014-80-C-0163.
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1. Introduction

Let X = (X1, ...,Xn) be a vector of observations with joint density p (x, 0), 0 E9 open

c RP where we do not assume a priori any particular stnrcture on p (x, 0). Consider the

hypothesis H : 0l = 0 *,..., ok = 0 k. Suppose that maximum likelihood estimates 6 and OH for

0 e e and 0 e H respectively are well defined. Then let

(1.1) 1(0) = n-1 logp(X,0)

(1.2) l(O) = maxe l(0)

(1.3) '(AH) = maxH 1(0),
and

(1.4) A = 2n (1(6) - 1 (OH))
the usual likelihood ratio test statistic. All these quantities, of course, depend on n but we

suppress this dependence to ease the notation. There is a common approximation to the distri-

bution of A which has the status of a folk theorem:

L8(A) = 2k
for 0 e H. Theoretically this can be interpreted as, for 0 E H,

(1) This paper was completed while the author was visiting AT&T Bell Telephone Labs, the
Courant Institute and the University of Chicago.

(2) This research was partially supported by ONR Contract N00014-80-C-0163.



(1.5) Pe[A<t] = %k(t)+O(l),

as n e co. This result was proved by WiLks (1938) and extended by Wald (1943) in the i.i.d.

case, extended to the Markov case by Billingsley (1961) and subsequently extended to many

other dependent and nonstationary situations. Bartlett (1937) noted, in the particular case of

the hypothesis of the equality of variances for k+l normal populations, that the X2 distribution

was a far better fit to the distribution of kAIEeA than to A itself. Following work by Box

(1949) and Bartlett (1954), Lawley (1956) by ingenious and difficult cumulant calculations

"established" the folk theorem that quite generally

(1.6) P@[E < t] = Xk(t)+O(n2)

where

E = k + = Es(A) + Op(n-n

and b is a suitable estimate for the coefficient b of n-1 in the expansion of Ee (A). Departing

from an asymptotic formula for the conditional density of X given an ancillary due to

Barndorff-Nielsen (1983), Bamdorff-Nielsen and Cox (1984) showed that (1.6) can be

expected to hold quite generally and derived formulas for estimating b in one important class

of models. Efron (1985) established (for an important special case) a related result. Let,

T = Al/2 sgn(O' 0).

Then
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(1.7) Pq[T <t] = D[j.t(O) 3 +0(nC3/2)

where

) = a0(0) + a1(0) + (n 3r2

a2(0) = 1+ c (0 -0(-/)
n

where a0, al and c are suitable functions of 0, not depending on n. As P. McCullagh pointed

out to us, this result implicitly already appears in Lawley (1956) and, in fact, a = 0. It is

easy to see that, for k = 1, (1.7) finally implies (1.6) (with 0 (n-2) replaced by 0 (n-3/2)) with

b estimating ao () + c (0).

Our aim in this paper is,

a) To give a generalization of Efron's result to vector parameters. A closely related result

appears in Barndorff-Nielsen (1986) and is again foreshadowed by Lawley (1956).

b) To apply this extension to establish the validity of Bartlett's correction for the p variate

joint distribution of the A statistics (deviances) arising from testing the nested hypotheses

Hk : 0' = O0, j = l,...,k, within Hk-l for k = l,...,p. That is, to show that, when the

deviances are standardized by their asymptotic expectations to order I, their joint distri-
n

bution, under 00, differs from that of p independent identically distributed X 2 variables by

an error of order nA2. This result is also implicit in Lawley (1956) although the calcula-

tions are purely formal. For the case of a single statistic A, this can be obtained in a
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rigorous fashion under appropriate regularity conditions from Chandra and Ghosh (1979).

c) To give Bayesian analogues of both of these results which we believe provide a key to

understanding the Bartlett phenomenon. The Bayesian analogue is interesting in its own

right, is fairly easy to establish and is the basic step in our arguments for a) and b).

Here is a discussion of the motivation and the structure of our Bayesian argument when we

restrict to the familiar case of i.i.d. observations from a smooth parametric family. It has been

proved in Chandra and Ghosh (1979) that the distributions of the likelihood ratio, as well as

Wald's and Rao's score statistic, have asymptotic expansions in powers of n-1, which are valid

in the sense of Bickel (1974). These types of expansions have been around for a long time,

see Box (1949). When viewed as fornal expansions for the density pn (X2) of one of these

statistics, they are of the form ce 2a (x2)k/2-l {1 + VI1(X2)n-1 + * }, where the coefficients

V's are polynomials in x2. It is easy to check that adjustmnent of such a statistic through multi-

plication or division by a constant of the form (1 + bn-1) will knock off the coefficient of n-1

in the expansion for the adjusted statistic, iff VI is linear. By examining various examples one

can convince oneself that Nji is not linear for Wald's or Rao's statistic. Moreover it is far

from clear why 'Yf is linear for the likelihood ratio statistic. This paper is addressed to clear-

ing up mysteries of this kind as well as to exploring the duality between the Bayesian and the

frequentist set up which, to first order, was studied extensively by Le Cam under the rubric of

the Bemstein-von Mises theorem.
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Our Bayesian route could be followed to produce a relatively transparent proof of linearity

of l. However, since we want to do more, namely,. derive the asymptotic expansion for the

joint distribution of the p deviances statistics up to 0 (n-2), we first note, in a similar vein,

that here also the question boils down to the structure of the polynomials that appear as

coefficients of powers of n-1 in the expansion. The relevants results for this purpose are the

Lemmas A2 ffirough A4 in the Appendix. These lemmas need to be applied to -the vector

T (0, X) of the signed square roots of the likelihood ratio statistics, defined in section 2. That

the distribution of these statistics has a valid Edgeworth expansion can be shown using

Theorem 2 of Bhattacharya and Ghosh (1978). In the frequentist set-up the sort of structure

one needs for the polynomials is specified in the conclusion of Theorem 3. It turns out that

one needs the polynomials corresponding to n-112 and n-1 to be of degree at most one and two

respectively. To prove this one first obtains a similar result in the Bayesian set-up, namely,

Theorem 1, which provides an expansion for the posterior distribution of T (0, X) given X.

The likelihood factor in the posterior exp {nl (0) - nl (6)) is exactly the sum of squares of the

components of T and so no expansion is needed. The coefficient polynomials in the asymp-

totic expansion arise only from the Taylor expansions of the prior density X (0) around 6 and a

stochastic expansion of the Jacobian of the transformation of (0 - 0) to T (0,X) viewed as a

function of random 0. For reasons that are not hard to see, in these latter expansions the

degree of the coefficient polynomial matches the power of n-1, vide Lemmas 3.1 and 3.2.

These facts are at the heart of the proof of Theorem 1. Theorem 1 would fail for Wald's or



- 6 -

Rao's statistic because the likelihood factor exp{nl(O) - nl(6)) can't be written as the square

of either of them exactly and so an expansion of this term is called for too. Finally, Theorem

3 follows because Theorem 1 is true for a set of priors which is dense in the weak topology.

Our expansions may be used to set up Bayesian or frequentist confidence intervals see

the discussion following Corollary 1.

We propose to carry out our program without relying on the i.i.d. sampling assumption,

under conditions such as those of Bickel, G6tze, and van Zwet (1985) which emphasize that

we are, as with the original Wilks result, dealing with a phenomenon which depends only on

the asymptotic stability of I and its derivatives, moderate deviation properties of 6 and related

estimates and the existence of Edgeworth expansions for the distribution of T. Simple condi-

tions implying those we give may be specified in the case of Markov and independent

nonidentically distributed observations in the same way as is done in Bickel, G6tze and van

Zwet (1985).

A feature of our approach is that calculations are kept to a minimum so that, we believe,

the phenomena are transparent. The disadvantage here is that unlike our predecessors we do

not arrive at formulae for the (estimated) coefficient b needed in the correction. It is, how-

ever, worth pointing out that, in situations which are like simple random sampling and where

computing power is readily available, we can obtain b without knowing its form by applying

the jackknife for bias reduction - see Efron (1982) for example. That is, we calculate Ai, the
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A statistic for the data Xj, j . i and put

b = £ (A.i)- nk.

The paper is organized as follows. Section 2 contains the statements of the main theorems

plus the necessary assumptions and notations. Section 3 contains the proofs of our results.

Four simple technical lemmas are in the appendix.

2. The Main Results

Since we intend to use tensor notation for arrays we subsequently identify vector com-

ponents by superscripts, for example, 0 = (1, ..., 0"). For given 0 e e define Oj as the max-

imum likelihood estimate of 0 when 0..., 0' are fixed, i.e.,

(2.1) I (O) = max{l(t) =01i j}

We shall in the sequel assume that these quantities exist and are unique but will sketch at the

end of the section how this requirement can be weakened. Define, T - (T',..., TP) where

(2.2) Ti nln [2(l(p.i) - 2((1))] sgn(0fr1 - 0')

Note that T is a function of 0 and X.

Let Xc be a prior density on e. Let P denote the joint distribution of (0, X) and P ( X) the

conditional (posterior) probability distribution of (0, X) given X. Let r = n-1/2 and consider

the posterior density of r-1 (0 - 0) given by

A A

n(hlx) a expfl(O+rh)-I(O)ln(O+rh)IN(x)
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where

(2.3) N(X) = fexp{l(6+rh)-1(6)lit(O+rh)dh.

Let

1(t) = (2t)-P/2 exp{- 2 .i (ti)2}

the standard p variate normal density. Let XT(t I X) denote the posterior density of T, (which

exists under our assumptions with probability 1 - 0 (rm+l)).

Notation: We postulate m +3 continuous derivatives for 1(o), i(O) and write 1i j. for

~9i1.aeiZ etc. Following tensor notation, we indicate arrays by their elements. Thus P
ao'l ..ao'k

is a vector, 4ij a matrix etc. We also follow the Einstein convention of summing over a sub-

script which is repeated in a superscript, e.g. lij 1 = Ylijl.. Occasionally we denote a vector

ii

array by symbols like vi, so that viti stands for zvit'

Here are the main results stated under regularity conditions which appear at the end of the

section.

Theorem 1. If Bm holds then

(2.4) Ep JI2T (t IX) -lCm (t,X)Idt = 0 (rm+l)

where

tm (t,X) It)()[1 + Pm (rX ) + Qm (rt,X,ln(X E S),

Pm is a polynomial in r of degree m, Qm is a polynomial in rt of degree m, both without
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constant terms and with coefficients which are rational functions of lb, ... bk(6) and

Xb* bk(6).(6) for 1 S k < n+2, and P [X d S ] = 0 (rm+l) where S is given in Section 3.

Write

m

Pm (r,X,l) = _P (X )r_

m b
Qm (U X, It) = k (X C)U *... bU

and note that Pm, Qm and S depend on n.

Notes. 1) It is necessary to keep the indicator of S in 7Cm since the coefficients Pmk,

Qmb,... bk need not be bounded outside S.

The proof of Theorem 1 actually also yields that if X e S, i.e. with probability

1 - 0 (rm+l), the random quantity

J ICT (t IX) - 7Cm (t IX) I dt

is 0 (rm+l).

2) Since Pmk and Qmbl...,bk depend on r they are not uniquely defined. Since

(2.4a) E I m(t,X) dt- 1 = 0 (rm+l)

it is easy to see that we can always take P,,!O = Qmo= Oand suppose all Pmk for k odd to be

zero. For example, suppose we are given a set of P,k) and associated Qm. Note that

P m( r + |Qml rt 4 (t) dt = 0 (r2) if m > 1

Therefore, PIDj - 0(r). Hence we can define the following set P,2 satisfying (2.4).

- =r
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even and . 4.

3) Note that (2.4a) for m = 2,3 implies E 1J12(t,X)dt - I I = E IP22r2 - Q2ij &-j r2i -

0 (r3). In view of Notes 1,2 and the above relation we deduce, putting m = 1, 2 in (2.4), that

with probability 1 - 0(r2) and 1 - 0 (r3) respectively the posterior distribution of T is

Np (rQ1j,J) with error 0 (r2) and Np (rQ2,,J + r2(2Q2ij - Q2. Q2j)) with error 0 (r3),

where Np (±, 1) is the p variate normal distribution with mean j± and dispersion matrix £, and

J is the p x p identity matrix. These are the multivariate Bayesian analogues of Efron's

(1985) resulL

4) The relation (2.4a) for m = 3 implies as above that

E IP32r2 Q3ij,8tr2I = 0(r4)

and hence that 7C3 may be written as

rQ3i t' + r2Q3ij (titj - Bij) + r3Q3ijktititk + 0 (r4)

which has the structure of g (t) of Lemma A2 up to 0 (r4). This fact will be used in the

proof of Theorem 2.

Let Ck(.) denote the %2 density,

Di = (Tj)2 - 2n(I(Oi_.)--(6d)
the deviance, and

D = D /(1 + 2r2Q2j)

the standardized (Bartlett corrected) deviance. If ltD, ir, are the corresponding posterior densi-

ties of these vectors D = (D 1, . . . , DP) and D = (D 1, . . . , IP), then one has the following
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result.

Theorem 2. Under B

(2.5) Ep {fID (U IX) - rlfi Cl (Uj) I dt (X S)} =e( )

while under B 3,

(2.6) Ep {1c (u IX) - J1j=l c I (uj)I du 1(X e S)}= O (n2).

In fact (vide Note 1), with probability 1 - 0 (n-1) and error 0 (n-1) the posterior distribu-

tion of D is that of p independent X2, while for D the same claim holds with probability

1 - 0 (n 2) and error 0 (n 2).

From this we deduce

Corollary 1. a) Under B 1, if ?CA is the posterior distribution of A given by (1.4)

(2.7) EP{f ItA(u I X)-Ck (u)Idu I(X e S)} = 0 (p1)

b) Let A/ 1 + 2r2Ak- I Q2jj

Then under B3

(2.8) Ep{J xiA(u IX) -ck(u)Idu (X e S)} = 0(n 2).

So (2.7) says that the posterior distribution of A is Xk with error 0 (n-F) while (2.8) is the

Bayesian analogue of the Bartlett phenomenon. The posterior distribution of the "Bartlett

standardized" statistic, A, is Xk with error 0 (ni2).
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These results can in principle be used to set Bayesian posterior confidence regions for 0 to

order n-1, n-2 in a variety of ways. For instance, f0: A < Xp (1--a)) where Xp is the 1o-a

percentile of 2 and A = 2(1(6) - 1 (6)) has posterior probability 1-a with error 0 (n-1) while

{0: A < Xp (1-a)} has posterior probability 1-a with error 0 (n 2). Of course regions could

be based on other functions of Dj, D5j, for instance on maxj Dj or max- D . They could also

be used in investigating the old question of what choices of model and prior lead to posterior

probability regions which are also frequentist regions with error 0 (n-2), see, for example Stein

(1985), Welch and Peers (1963). However, more detailed computation of the Qj than we pro-

vide seems necessary for this endeavor.

We use these results only in establishing the corresponding result in the frequentist case.

Theorem 3. Suppose that Fm holds and the density of T, PT (t 10) admits an Edgeworth

expansion such that, if i2 = -1,

(2.9) IJei j [PT (t I0) - (t) {1 + I rk Rk (t, 0)} ] dtI = O(rm+l)

uniformly in compact sets of 0 and v, where the Rk (,0) are continuous in 0 and polynomials

in t, independent of r. Then, the Rk are of at most degree k in t.

As in notes (2) and (3) after Theorem 1, it is clear that (2.9) implies, on taking v = 0, that

Rl(t,0)=RljtJ, R2 (t,0)=R (ti tj - 6ij) + R2i t' where Si& is the Kronecker delta. In

the following we shall need a condition analogous to (2.9), namely,

(2.9a) IJeLVitJ [PT (t 10) - 4(t) (1 + I r Rk (t, 0)} ]dt | = 0 (rd+t)
k=1
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uniformly in compact sets of 0 and all v. We deduce our generalization of Efron's result.

Corollary 2: If m = 1, the characteristic function Of PT differs from that of N (rR,j, J) by

0 (r2) and if m = 2, from N(rRij,J + r2(2R2j - R1i R1j)) by 0 (r3).

Theorem 4. If the assumptions of Theorem 3 and (2.9a) hold for m = 1, then, unifonnly in v,

p. ~~~~p
(2.10) Jeivu [PD (u I 0) - H c I (ul) ] du = (n-1)

j=1

p
i.e. the approximation HI c I (uJ') is good to order n1.

j=1

(b) Further let

Dj = Dj/(1+2r2R2jj).
If (2.9), (2.9a) and Fm hold for m = 3, then uniformly in v,

(2.11) e [P5 (u I10) - rIHcI(uJ)]du = 0 (n-2).
j=1

Corollary 3. Under the conditions of Theorem 4, unifonnly in v,

(2.12) feivu [PA(U10) -Ck(u)]du = 0 (n1).

(2.13) eivu [PA(U I0)-Ck (u)du = 0 (ni2).

It tums out that T' = r-1 (f' - il') + 0(r) (see (3.6) and (3.19)), and r (1 - in ) is up

to 0 (r) a linear function of the first derivatives of the log likelihood evaluated at 0. In fact it

is possible to stochastically expand T in terms of the derivatives of the log likelihood evaluated

at 0, with a leading linear term. In the i.i.d. case if enough moments are finite, we can talk of

a formal Edgeworth expansion for the density or distribution function of T, and under the
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same assumptions the rigorous expansion of the characteristic function of T that we require is

valid, vide the introduction in Bhattacharya and Ghosh (1978). This is all that one needs to

justify the Bartlett correction and the related results as given in Theorem 4. If one wants these

results to be valid for the distribution function in the sense of Bickel (1974), it is enough to

assume that the Edgeworth expansion for the density of T is valid in the LI-sense. This

assumption may be verified via Theorem 2(a) of Bhattacharya and Ghosh (1978), if the deriva-

tives of the log-likelihood appeanng in the stochastic expansion for T up to op (n-3 2) have an

absolutely continuous joint distribution. Actually, instead of absolute continuity, it is enough

to assume Cramer's condition, vide condition C of Bhattacharya and Ghosh (1978), and apply

their Theorem 2(b) instead of Theorem 2(a).

We note again that a form of Theorem 4 appeared in Bamdorff-Nielsen (1986) (with error

o (n-312)). Barndorff-Nielsen's results focus on conditional inference given asymptotic ancil-

lary statistics. His work implicitly requires conditions for the validity of saddlepoint expan-

sions for the conditional density. These in tum imply but are not necessary for the validity of

Edgeworth expansions for the conditional density. The Edgeworth expansions may be used in

conjunction with our "Bayesian" result to derive the appropriate analogues of Theorem 4. We

believe our Bayesian route makes matters easier and more transparent. The assumptions below

may appear rather strong but, as indicated in the remarks, they hold quite generally. Moreover,

they are quite natural if one is to develop a rigorous, rather than a formal, argument.
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Suppose we estimate the correction factor and adjust the likelihood ratio statistic in (1.6).

If in Corollary 3 we replace A by k A / (k + b) then the conclusion of Corollary 3 holds
n

under suitable regularity conditions. This fact was first noted by Bamdorff - Nielsen and Hall

(1987). The most brutal condition is to suppose that,

(2.14) b = b () + rci t +A(o)

where

EeIA(O)I = 0(r2).

Of course (2.14) is motivated by a stochastic expansion such as,

(2.15) b b () b () + di (=' - 0i) + op (r2)
and the expansion

'= r D1iT' + Op (r2)

for a suitable Di, see Lemma 3.2. To show that (2.14) and the assumptions of Corollary 3

are enough for this result we need only note that the difference between the Fourier transforms

of A and k A / (k + b / n) at v can be written as (with an appropriate constantM (0)) as,

M (0)Jexp[((- [tt ]2) + iv,[ti ]2] [I[ti ]2(c, t')]r3dt + 0 (rd)

uniformly on compact v subsets. The integral vanishes by symmetry.

Condition (2.14) is too brutal but can readily be replaced by the possibility of further

expansion of (2.15) and large deviation estimates for 0 - 0. Altematively, we can simply sup-

pose that the Edgeworth expansion of k A (k + b r2)-1 agrees with that of
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A(1 - (k + b (O)r2)-1 r2 ci T') with error of order r2. This kind of replacement can be proved

in a standard fashion under the usual protocols for asymptotic expansions of maximum likeli-

hood estimates. See Pfanzagl (1974), for example.

We postulate nonrandom arrays Xi, %ij etc. and write,

lil... ik(0) = Xi * iLk(0) + Ai * ik

Here are our conditions. Let I * I denote the 11 norm on RP. For all O<M oo and some

0<<1, £n Jk.

Bm: (i) P [II II Mrl4]=O (rm+l)

(ii) P[I6OIj<Mrm+2]=O(rm+l)

Let

A = {x: for all j, {G: I (x)-O1 < Mlr'4 C {(O: 10j (x,0)-O(x)I < M2r"4)}.

For all O<M1 < oo there exists O<M2<oo such that

(iii) P [X A ] 0 (r^+l)

(iv) P [sup{Ii, ... ik(+ rv)j: Iv Mr14J > e] = 0 (rm+l), l.k.m+3

(v) The maps 0 X+i, ... ik(O) are continuous, 1 < k < m

(vi) The matrix II-Xij(O)11 is positive definite for all 0

(vii) a) i vanishes off a compact K C e

b) P[sup {1iltj1 i,2(o+rv) /7(O): Iv < Mr4) .r4] - 0(rm+l)
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Fm: Uniformly on compacts in 0,

(i) Pol - 01 't Mr'--] = (rm+')

(ii) Pe[IO-01 <Mrm+2] = (rm+l)

(iii) PF[XA ] = 0 (rm+l), for A defined in Bm

(iv) Pe[sup{lAi... ik(0+ rv): Iv I Mr14) 2 ]=0 (rm+l),1<k.m+3

(v) Condition (v) of Bm

(vi) Condition (vi) of Bm

Remarks. a) We give a qualitative discussion of the "Bayesian" conditions Bm. The fre-

quentist conditions Fm can be viewed in an analogous fashion.

(i). Variations of the M.L.E. 0 from 0 of order n-l/2(' ) occur with very small probability.

Thus we can safely think about Taylor expanding 1 (0) and 1 (6j (0)) around 0.

(ii). This condition says that r1 (0 - 0) has approximately a bounded density near 0. It is

needed to ensure that the map 0 - - T (0, x) is 1-1 and otherwise well behaved with high

probability.

(iii). This condition assumes that both 6 and Oi are close to 0 and each other simultaneously.

It is needed for expansions of I (0j (0)).

(iv). The coefficients of the Taylor expansion differ little from constants, or more specifically,

I (0) and its derivatives behave like averages of i.i.d. variables.
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(v). Smoothness conditions needed to permit replacement of quantities such as

kij ... ik (0,(0)) appearing as approximations to coefficients in the Taylor expansion of

I (Oj (0)) by 0i..,k().

(vi). Nonsingularity of the information matrix is necessary even for the statement of the

Bemstein-von Mises theorem.

(vii). We need to expand logic (0) around 0. Condition a) is useful for technical reasons.

while b) is needed to control logs and its derivatives near the boundary of K where

logs -+ -0c.

b) The validity of Fm, and Bm other than (ii), (iii) has been checked for independent

nonidentically distributed and Markov dependent observations in Bickel, G6tze, and van

Zwet (1985). In particular these conditions hold for exponential families in the i.i.d. case.

They also hold in many examples for such families in the independent non-identically dis-

tributed case, e.g., in regression and GLIM models. Another example is the class of

aperiodic irreducible finite state Markov chains with stationary completely unknown tran-

sition matrix.

c) Condition Bm (ii) in fact follows from the otlier Bm conditions since they guarantee an

Edgeworth expansion for ic(h I X).

An Edgeworth expansion unifonn on 0 compacts for the distribution of r'(0 - 0) implies

Fm (i) and (ii).
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Condition Fm or Bm (iii) holds if the log likelihood is convex.

d) The conditions on existence of the estimate O can be replaced by requiring the existence

of a preliminary estimate 6 with appropriate moderate deviation properties and then

redefining the Oj as the result of m +1 iterations of the Newton-Raphson method applied

to the appropriate likelihood equations. See Theorem 4 of Bickel et al. (1985).

e) In the situation of d) suppose that Fm (iv)-(vi) hold and that, uniformly on 0 compacts,

for all O<M <0,

(2.16) P[16-01 > Mr'4] - O(rm+l)

Pe[ 1 -01 < Mrm+2] - 0 (rm+").

Let A =1x:forallj,{0:0106 <Mir "1c{<:I0 -0I<M2r'114. Then uni-

fonnly on 0 compacts

P0[X rA = 0(rm+l).

If we redefine the set B of Section 3 so that B (ii) is replaced by

lob _ (b I > M*rm+2, 16b _ (b | <

then the proof of Theorems 4 and 5 goes through.

3. Proofs

We need to analyze 2CT(t I X) where we assume that X belongs to a set S on which the

map h -e T(6 + rh, X), I h I < M r4 is invertible with non-vanishing Jacobian and the matrix

11 - li (6) 11 = (f is positive definite. We explain the transformation in more detail and give S
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below. Let D be the unique lower triangular matrix with positive diagonal such that

(3.1) D D C

and

(3.2) L = I(D _1').

If 11 lij(O) II is the Hessian of I at 6 and I =DA then in the usual notation,

(3.3) -Li1 (A1) = J,

the p xp identity. This in the Bayesian domain corresponds to standardizing the Fisher infor-

mation at 0 to be J as is done in the corresponding frequentist calculations. Further define lij

by:

(3.4) L(1j) = ma L(y):+ = ', ..., y = 1

and

~-i 1/2
(3.5) T' (11) = r 2(L(ni-.) - L(i))] sgn (1I - T).

It is easy to verify that

(3.6) T(O+ rh) = T(fl+r Dh).

Now D r- (0 - 0) has posterior density

(3.7) iC(D'I h IX) Idet(D)r1
and hence,

(3.8) '(T(t IX) = exp(- 2 (ti)2 i(51(1 + rh(t))) detIIhj(t)II IM(X)IhT ht ItXs =defi2 i=ib

where h (t) is defined by

(9T( + rh(t)) = t(3.9)
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and

a3hhj (t) = at1 (t)

and

M(X) = Jexp(-l/2(i (ti)2) r(A-'(fl + rh(t))) det(IIhj(t)lI.
For fixed X, let Rx be the image of {h: h I<M r4} under the map h -* T(O +rh,X).

From (3.8) it's clear that our task in proving Theorem 1 is to exhibit the set S such that, for

t ERx, h is uniquely defined by (3.9) and such that

(3.10) h(t) = t + r P(t,X) + 0 rm+l)

(3.11) hj(t) = + r Pij(t,X) + 0 (r mt)

where P and Pij are polynomials in t and to identify the order of the polynomials. Here

0 (rm+l) means that the remainder is bounded on S by Mrm+l for a generic constant M

independent of n.

We define B as the set where

(i) sup {Iicl ... +2(A + rv)j/i(6): lvj <Mr4} <r

(ii) M*rm+2 < lob _ ob I< rl, I < b. p

Note ) I AiI. ik(6h+rvt )b:v<Mr <Entb

Note thiat, by Bm
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a) P [(r(6 - O), X) e Bc] = 0 (r+l)

b) The x sections of B intersect each quadrant in an open convex set since 1 is the 1 1-norm.

There exists a generic constant C > 0 such that on B,

c) sup{lil... ik(O+ rh)L: Ih I< Mr4}.C

d) C-1 < x < x < C where X, I are the minimal and maximal eigenvalues of Ij- 1q (6)

e) 16i - j-1 I < M2r'4, 16j - 61 M,r'-8.

We let S be the image of B under the map (h,x) -> (T (0 (x) + rh,x),x) and S be just

the projection of S on the x axis, i.e., the set of all x satisfying (i) and (iii) above.

Convention: Expressions such as fi(l() are calculated at n = 1i + rh.

Lemma 3.1. On B, for j > i+1

m+1
(3.12) Nf 1 Nb br/ h ..k . h + o ( m+l)

k=2 1 brh 0 r
where Nil ... j. are polynomials in the derivatives Li, ...i, of L (evaluated at fi), with t < k

and h = r-1(1 - f) with no constant tenm. Let d = il- l. Then

m+1
(3.13) 1I - fli - £ Mk' dk + 0 (Id Im+2)I k=1

where M1'/ are polynomials in Li, ik and rh which vanish at h = 0.

Proof: Write Lab etc. for derivatives of L evaluated at 1. For j 2 i+l

0 = Lj(fi)-Lj(fl) = Ljb (M i -1 )+
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(3.14) + 1 ~~~~~~~~~+1 b~ bk +(3.14) + ~~~Lj,b1 bm+ Hi (k1 _ A ) +0(r).(m+1)! ' +1 k=1
To see this note first that fli =D Oi and hence in view of e) jfi - 1I < M3 r 4. Therefore

applying c) and d) again the relevant derivatives of order up to m + 2 of L at i are bounded

and (3.14) follows. Note that by (3.3) Lab = -8ab and that

b lb = _rhb for b < i.

So we can rewrite (3.14) in the form

(3.15) jb U = Pj(u ,rh)+0(rm+l), j>i+l

whereu=ub -I I and Pj is a polynomial of degree (m + 1) in u and rh with no term of

combined degree less than 2 and bounded coefficients which are polynomials in the Li, ...

Claim (3.12) follows from a standard Lagrange inversion argument. For (3.13) write for

j 2 + 1

(3.16) 0 = Li (fli)-L(f-ji-1) = -Ljb ( )eb

where f* is an intermediate value and eb = tab -

Note that

(3.17) eb = 0, b < i-1, ei = d

and

Ljb(f) = jb + 0 (r)

so that (3.16) yields, for j > i + 1,

(3.18) Ilil- = 0(r)IdI.

Expand further to get
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(3.19) Ljb(<i-1)eb + +(m+1)! Ljbb b,,+i(i- l)e ... e m + 0 (Id |`2) = 0.

Rewrite (3.19) in the form

Ajbeb +Ajblb ebleb2+AAjbl b,e'eb * ebm+l = a1d+ +am+ldm+l+0 (dm+l)

where the indices b, bI..., bm range from i + 1 top

Ajbl bk= Lb1 ... bk

and the ai are polynomials in the Ljb ... bk(li-1) and the eb. Expand Ajb, ... bk around I to

m+l - k terms and use (3.12) to conclude that with remainder O(rm+l) all the Ajb1I ... bk are

polynomials in Ljb. b, and rh. Finally note that for b . i + 1

eb = b nb =
=

b1 b) _ (lb lb)

can by (3.12) itself be written as a polynomial of rh and Ljb1 ... so that the aj are also, up

to order m + 1 polynomials in rh and Ljbl ... b,, for t < m + 1. The lemma follows. E

Lemma 3.2. On B

(3.19) TP(f+rh) = hi+r-lQi(rh)+0(rm+l)
where Q is a polynomial of degree m + 1 in rh with no constant or linear term and

coefficients which are polynomials in Lb, ... bk' k < m + 2.

Proof: By definition

Ti( + rh) = r [- k-!Lb, . bk (fli-1) M(fli-1 _Ii

1/2

(3.20) + O(0 -_, Im+) ] sgn/2(
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Note that Lb(fli-l) = 0 b . i and f P1=l,, b < i - I so that the first term in the sum van-

ishes. Expand the coefficients around fl and use (3.18) and (3.13) to get

m+2
(3.21) TI(f1+rh) = r-'(d+ I ckd +O(r-lld1m+2)

where the Ck are polynomials in rh. Now substitute for d from (3.12)

m+1 kb k1(3.22) d = rh5 + I Nbl-Ij .bk r h ... h +O (rm+l)

and the lemma follows. El

Lemma 3.3.

(i) If0i, i =1,...,2P are the quadrants of RP then T( + rh) maps Oi n B. into Oi for

all i.

(ii) T is continuously differentiable on Ok r B1x for 1< k < 2P. Let

p -

Then T) is lower triangular and

(3.23) = 1 + Pi(rh) +O (rm+l)
where Pi is a polynomial of degree m + 1 with no constant term and coefficients in Lb, .. bk'

k <m +2.

(iii) T is 1 - 1.

Proof:

(i) We need to show that on B,
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sgn(1l'_l -Tj') = sgnh, i = 1,...,p.

-E ri = rh' (1 + rMj(h)) + rm+2M2(h)

where M1 is a polynomial in h with bounded coefficients and I M2(h) is bounded by M2 for

all (x, h) e B. But (x, h) e B :' aM *rm+l < I h I < a-' r where a is positive constant

depending only on the constant C of d).

Choose M * so that

(3.25)

The relation (3.24) follows from

(3.26)

and

aM * >M2.

11(1 + aM* rm+2) - hi > (aM* - M)rm+2 + 0 (rm+3) > 0

d h'(1 + rM,(h))1 = 1 + 0 (r).dh j

(ii) It is easy to see that T(f + rh ) is continuously differentiable on B with derivatives

= ir [LC(n1) n _-Lk(f) ai

Note that,

= 0 a,b > i

= 6ab' a < i-I

and Lk(fi-l)= O,k > i. So i <j => Tj = 0 while
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(3.27) Ti= -r1IT'j-rLi(fj)

Now write

b b ~m+41 Lib.. bk (fi-1) k
Li(ni) Lib(i-1)(IH (ni 1) + 1i n - i11)L~(f~~) L~(f1~i)(f1 ~ kk=1 j=1

+ 0 |, _l ^

m+1
(3.28) = £ Pk(rh)d + 0 (dm 2)

k=1

by (3.13), where d = tt'-1 - ri and Pk are polynomials in rh such that P1 (0) = 1. Now

apply (3.21) and (3.28) to (3.27) and then substitute (3.22) for d and (ii) follows.

(iii) Follows from Lemma 1 of the Appendix. El

Proof of Theorem 1. By Lemma 3.3 formula (3.8) is valid for (x, t) e S. Moreover, from

Lemma 3.2

(3.29) hi(t) = t' + r-lPt(rt) + 0 (rm+l)

where P' is a polynomial of degree m + 1 in rt with no constant or linear term and

coefficients which are polynomials in Lb, ... bk' k < m + 2. From (3.23) and (3.29)

detllh(t)II = detIT)(11 + rh(t)) = I T( + rh(t)) -

p
HI (1 + PI(rh(t)))-f + 0 (rm+l)
i=1

= ( + V(rt) +0 (rm+l)(3.30)
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where V is a polynomial of degree m + 1 in rt with no constant term and coefficients which

are polynomials in Lb, ... bk k <m +2.

Moreover, from (3.29) and Bm (i),

(3.31) it(0+rD1"-'h(t)) = -X(O)Fl+ KX Ub (rt)+ + b1-b,2 ( (r)U.b rtl

+ 0 (rm+l X(O))

where the Ub are polynomials of degree < m + 1 with no constant term. Substituting back

(3.30) and (3.31) in (3.8) provides an approximation to the numerator in (3.8) and integrating

this we get an approximation to the denominator in (3.8). Together these approximations

ensure that

Ep f IT(t IX)-4)(t)(1 + Q (rt,x,7t)) I [(t,X)e S]Idt = 0 (rm+1)
for a suitable Qm*. We get Qm by dropping all terms of degree m + 1 in Qm. The

coefficients are evidently polynomials in Lb, ... bk(f) and
IC

(6), 1 < k < m + 1. But

the former are polynomials in the elements of D"1 which are rational functions of Lij(6).

Now,

(3.32) Ep f(¢(t) [ Qm (rt,x,tc)-Q: (rt,x, rc)] 1 [ (t,X)E S]dt = O (rm+l)

since for x e S all coefficients in both functions are bounded. Further,

(3.33) Ep f XT(t IX) l((t,X) S)dt = P [(T,X) d S] = 0 (rm+l)

by Bin. Finally,



- 29 -

Ep J4(t)Qm(rt,x,7)(X e S,It I <M*rm+l or It I 2 r4)dt = O (rm+l)

and the theorem follows. C1

Proof of Theorem 2 and Corollary 1: Evidently since D and D are simple transforms of T

we need merely check that the approximation to the density of D, (D respectively) obtained by

applying the usual transformation formula to tm (,X) agree with [1 c 1(uk) with error
k=1

o(rm+l) for m = 1,3 respectively. This follows readily from Lemmas A2 and A3 in the

appendix if we identify t,m with g (t) for m = 2,3, and note that Rjj = 0 (nW). Relation (2.6)

follows from Lemma A2 and A3. Corollary l(a) follows immediately from (2.5), while l(b)

follows from (2.6) and Lemma A4. El

Proof of Theorem 3: Evidently Fm => B,m for iX satisfying (vii). It is shown in Ghosh, Sinha

and Joshi (1982) and Bickel et al. (1985) that the set of all such X is dense in the set of all pri-

ors under weak convergence. Now (2.9) implies that for any i concentrating on a compact,

the characteristic function of T satisfies the approximation

(3.34) fetjpT (t)dt = ffeiVJtpT(t 10) t(0)d0dt

= ei"t 4(t)1+ IrkfRk(t,0)t(0)d0] dt + 0(rm+l)

k=.

= exp{- 2iv)2}[1+ rk P, (V 0)i (0) d0 ] + 0 (rm+l)
2 j=i k=1

where exp{- 2 i (Vj)2} pk (v, 0) is the Fourier transform of 4 (t)Rk (t, 0), so that the Pk 's are
2 j=1

also polynomials i'n On the other hand, Theonrem 1 yieldse
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fexpd (vP)2}PT(t)dt = Ep [ exp (vJ)2)7i(,X)1(X S)dt ] + 0 (rm+l)
j=1 j=1

= exp{-'I (vj)2}
2 j=i

(3.35)

I + I rkt 1
k=l

* * t EQb ... b (X, i) 1(X e S)]

+ 0 (rm+l)

Therefore, multiplying by exp{2 J (Vj)2) we get
2 j=i

m
1 + I rk Pkf(v,0)x(o)d0

kc=l

(3.36)

m
= 1+

k=l
r k Cb (. V b I

+ 0 (rm+l)

where 0 is now uniform for I v I < M by the hypothesis of Theorem 3

Define, as usual

where the bj=O,...,p, ibj=I and
j=1

Akf = f (tl -.tk-l tk + ,tk+l,...,tP)f (t,t...,tP)

and Af' represents an operator product. Apply Ab1 ... b to both sides of (3.36) considered as

functions of v. If I >m we obtain

m

(3.37) , r £|' Ab1 bp Pj (£)0 (0) d O= O (rm++e7).
1

Let £ I O more slowly than r T.Then (3.37) yields

F COP Pk
(v,0)() dO =O0 for all v,forallkk m.aUl U I ... DOP Up

bkV

r

bi b I= Al ... App f (t g... 9tp )
.0Ab,... bp f (t II... tp )

d
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But by assumption the integrand is continuous in 0. Since ic ranges over a dense set we con-

clude that the integrand vanishes identically in 0. So Pk is a polynomial of degree <k and

hence so is Rk. Cl

Theorem 4 and Corollary 3 follow from Theorem 3 in the same fashion as Theorem 2 and

Corollary 1 follow from Theorem 1. E
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APPENDIX

Lemma Al. Suppose f: C0 -- RP where C° is an open convex set in RP. Suppose f is

differentiable with Hessian f and,

(A.1) 11-11<1
where J is the identity and IM I is the operator norm on matrices. Then f is nonsingular and

f is 1-1.

Proof: By (Al), f is nonsingular,

f = J-(f-J)+(f-J)2...

If f (a) = f (b) then

0 = jf(a +X(b -a))dk(b -a)
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or

(b-a) = -I(f(a + k(b a)) - J) dX (b -a).

Then, by (A.1)

Ib-a I<maxlf(a +X(b-a))-JI Ib-aI <Ib-a I

unless b = a.

Lemma A2. Let

g(t) = 4(t)[l +Riti +Ri1(tit -6'j) +Rjk ti tj tk]

be the density of a finite measure L on RP where 8'i is Kronecker delta, and let

go (t) = j)(t) 1 + Rj((tj)2-1)]
similarly correspond to go. Let h (t)=(ti)2. Then

gh-' = goh

Proof: The densities of gh1 and g0h at (I u ' 1, ..., I uP 1) differ by the term

2P E(Ri ei IuuiI/2 + R£i ej I ui 11/21 Uj i1/2 + £i ejek RijkIui l/2iU°i1/2iuk1=i °

where R,j = R (1 - Si,) and ei are independent ±1 with probability 1/2. 0

Lemma A3. Suppose IjR11 I = o(l). Then

p
go (t) - H (1 + 2R11)-14 (tJ(l + 2R11)-12) dt = O (XR1)

j=1 ist

where 01 is the standard normal density.

Proof: Taylor expand. El
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k
Lemma A4. Suppose £cjj - 1i = o(1) and j2 = cjy2 where Yj's are i.i.d. N (0,1). Let

k
U = ,jy2 and V = (yZ,2)(1 + (C- 1)/kk. Then U and V have the same characteristic

function up to -( (Cj _ 1)2).

Proof. Compute the characteristic function of V, take logarithms and expand. E
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