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ABSTRACT

Let [ () =n"'logp(x,0) be the log-likelihood of an n-dimensional X under a p-
dimensional 6. Let 8; be the mle under H;: 0' =0},..,6/ = 84 and §, be the unrestricted
mle. Define T; as

270 @0 -100 ] sign @ - 0.

LetT =(Ty,....T,). Then under regularity conditions, the following theorem is proved: Under
0 = 0y, T is asymptotically N (n"V2a, + n™'a,J + n"1Z) + O (n~>?) where J is the identity
matrix. The result is proved by first establishing an analogous result when 0 is random and
then making the prior converge to a degenerate distribution. The existence of the Bartlett
correction to order n~>? follows from the theorem. We show that an Edgeworth expansion
with error O (n72) for T involves only polynomials of degree < 3 and hence verify rigorously

Lawley’s (1956) result giving the order of the error in the Bartlett correction as O (n~2).

(1) This paper was completed while the author was visiting AT&T Bell Telephone Labs, the
Courant Institute and the University of Chicago.

(2) This research was partially supported by ONR Contract N00014-80-C-0163.
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1. Introduction

Let X = (Xy,...,X,) be a vector of observations with joint density p(x,0), 6 € ® open
< R? where we do not assume a priori any particular structure on p (x,0). Consider the
hypothesis H : 6 = 64, ...,6* = 6% Suppose that maximum likelihood estimates  and 6, for

0 € © and 0 € H respectively are well defined. Then let

1.1 18) = n~!log p(X,0)
1.2) 1(6) = maxgl(0)

1.3) 1(6y) = maxy 1(0),
and

(1.4) A =2nd®)-10y)

the usual likelihood ratio test statistic. All these quantities, of course, depend on n but we
suppress this dependence to ease the notation. There is a common approximation to the distri-

bution of A which has the status of a folk theorem:

Lo(A) = x?

for 6 € H. Theoretically this can be interpreted as, for 8 ¢ H,

(1) This paper was completed while the author was visiting AT&T Bell Telephone Labs, the
Courant Institute and the University of Chicago.

(2) This research was partially supported by ONR Contract N00014-80-C-0163.
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(1.5) Po[A<t] = X2 +o (D),
as n — oo, This result was proved by Wilks (1938) and extended by Wald (1943) in the i.i.d.

case, extended to the Markov case by Billingsley (1961) and subsequently extended to many
other dependent and nonstationary situations. Bartlett (1937) noted, in the particular case of
the hypothesis of the equality of variances for k+1 normal populations, that the %2 distxibution'
was a far better fit to the distribution of Kk A/JEgA than to A itself. Followiﬁg work by Box
(1949) and Bartlett (1954), Lawley (1956) by ingenious and difficult cumulant calculations

‘“‘established’’ the folk theorem that quite generally

kA
E

(1.6) Py X )+ 0 (n?)

where

E=k+é

2 = EgA) + 0,07,

and b is a suitable estimate for the coefficient b of n~! in the expansion of Eg(A). Departing
from an asymptotic formula for the conditional density of X given an ancillary due to
Bamdorff-Nielsen (1983), Bamdorff-Nielsen and Cox (1984) showed that (1.6) can be
expected to hold quite generally and derived formulas for estimating b in one important class

of models. Efron (1985) established (for an important special case) a related result. Let,

T = A" sgn(d! - o).
Then



3.

(i.7) Pg[T <1t] = ¢[’_‘l&] +0 (0¥
o(9)
where

_ aO(e) al(e) -3/2.
o) Tt o™

2® = 1+ <D+ 0 (),

where a(, a; and c are suitable functions of 0, not depending on n. As P. McCullagh pointed
out to us, this result implicitly already appears in Lawley (1956) and, in fact, a;=0. It is'
easy to see that, for k = 1, (1.7) finally implies (1.6) (with O (n™2) replaced by O (n~>?)) with
b estimating aZ (0) + c (0).

Our aim in this paper is,

a) To give a generalization of Efron’s result to vector parameters. A closely related result

appears in Barndorff-Nielsen (1986) and is again foreshadowed by Lawley (1956).

b) To apply this extension to establish the validity of Bartlett’s correction for the p variate
joint distribution of the A statistics (deviances) arising from testing the nested hypotheses

H,:® =6}, j=1,..,k, within H,_, for k =1,..,p. That is, to show that, when the
deviances are standardized by their asymptotic expectations to order l, their joint distri-
n

bution, under 0,, differs from that of p independent identically distributed xlz variables by

an error of order n2. This result is also implicit in Lawley (1956) although the calcula-

tions are purely formal. For the case of a single statistic A, this can be obtained in a
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rigorous fashion under appropriate regularity conditions from Chandra and Ghosh (1979).

¢) To give Bayesian analogues of both of these results which we believe provide a key to
understanding the Bartlett phenomenon. The Bayesian analogue is interesting in its own

right, is fairly easy to establish and is the basic step in our arguments for a) and b).

Here is a discussion of the motivation and the structure of our Bayesian argument when we
restrict to the familiar case of i.i.d. observations from a smooth parametric family. It has been
proved in Chandra and Ghosh (1979) that the distributions of the likelihood ratio, as well as
Wald’s anQ Rao’s score statistic, have asymptotic expansions inlpowers of n~!, which are valid
in the sense of Bickel (1974). These types of expansions have been around for a long time,
see Box (1949). When viewed as formal expansions for the density p, (xz) of one of these
statistics, they are of the form ce X2 (1 4y (xDn! + - - - }, where the coefficients
y’s are polynomials in xz. It is easy to check that adjustment of such a statistic through multi-
plication or division by a constant of the form (1 + bn~') will knock off the coefficient of n~!
in the expansion for the adjusted statistic, iff v, is linear. By examining various examples one
can convince oneself that y, is not linear for Wald’s or Rao’s statistic. Moreover it is far
from clear why v, is linear for the likelihood ratio statistic. This paper is addressed to clear-
ing up mysteries of this kind as well as to exploring the duality between the Bayesian and the
frequentist set up which, to first order, was studied extensively by Le Cam under the rubric of

the Bemnstein-von Mises theorem.
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Our Bayesian route could be followed to produce a relatively transparent proof of linearity
of y;. However, since we want to do more, namely, derive the asymptotic expansion for the
joint distribution of the p deviances statistics up to O (n™2), we first note, in a similar vein,
that here also the question boils down to the structure of the polynomialé 'that appear as
coefficients of powers of n~! in the expansion. The relevants results for this purpose are the
Lemmas A2 through A4 in the Appendix. These lemmas need to be applied to the vector
T (8,X) of the signed square roots of the likelihood ratio statistics, defined in section 2. That
the distribution of these statistics has a valid Edgeworth expansion can be shc;wn using
Theorem 2 of Bhattacharya and Ghosh (1978). In the frequentist set-up the sort of structure
one needs for the polynomials is specified in the conclusion of Theorem 3. It tumns out that

~12 and n™! to be of degree at most one and two

one needs the polynomials corresponding to n
respectively. To prove this one first obtains a similar result in the Bayesian set-up, namely,
Theorem 1, which provides an expansion for the posterior distribution of T (0, X) given X.
The likelihood factor in the posterior exp {nl () — nl(é)} is exactly the sum of squares of the
components of T and so no expansion is needed. The coefficient polynomials in the asymp-
totic expansion arise only from the Taylor expansions of the prior density 7t (8) around 6 and a
stochastic expansion of the Jacobian of the transformation of (0 — 6) to T (06,X) viewed as a
function of random 6. For reasons that are not hard to see, in these latter expansions the

degree of the coefficient polynomial matches the power of n~!, vide Lemmas 3.1 and 3.2.

These facts are at the heart of the proof of Theorem 1. Theorem 1 would fail for Wald’s or



-6 -
Rao’s statistic because the likelihood factor exp{n/ (@) ~ nl(6)} can’t be written as the square
of either of them exactly and so an expansion of this term is called for too. Finally, Theorem

3 follows because Theorem 1 is true for a set of priors which is dense in the weak topology.

Our expansions may be used to set up Bayesian or frequentist confidence intervals — see

the discussion following Corollary 1.

We propose to carry out our program without relying on the i.i.d. sampling assumption,
under conditions such as those of Bickel, G8tze, and van Zwet (1985) which emphasizé that
we are, ag with the original Wilks result, dealing with a phenomenon which depends only on
the asymptotic stability of / and its derivatives, moderate deviation properties of 6 and related
estimates and the existence of Edgeworth expansions for the distribution of T. Simple condi-
tions implying those we give may be specified in the case of Markov and independent
nonidentically distributed observations in the same way as is done in Bickel, Gbtze and van

Zwet (1985).

A feature of our approach is that calculations are kept to a minimum so that, we believe,
the phenomena are transparent. The disadvantage here is that unlike our predecessors we do
not arrive at formulae for the (estimated) coefficient b needed in the correction. It is, how-
ever, worth pointing out that, in situations which are like simple random sampling and where
computing power is readily available, we can obtain b without knowing its form by applying

the jackknife for bias reduction - see Efron (1982) for example. That is, we calculate A_;, the



A statistic for the data X, j # i and put

- n
b = 21 (A;) — nk.
1=
The paper is organized as follows. Section 2 contains the statements of the main theorems
plus the necessary assumptions and notations. Section 3 contains the proofs of our results.

Four simple technical lemmas are in the appendix.

2. The Main Results

Since we intend to use tensor notation for arrays we subsequently identify vector com-
ponents by superscripts, for example, 6 = (8',...,67). For given 6 « © define §; as the max-

imum likelihood estimate of © when 0;...,0/ are fixed, i.c.,

@2.1) 16)) = max{l(’t): =07 = ef}.
We shall in the sequel assume that these quantities exist and are unique but will sketch at the
end of the section how this requirement can be weakened. Define, T = (T, ..., TP) where

. 12 N a 12 A .
2.2) T/ =n [2(1(e,~_,)—1(e,-))] sgn 8/, — 0/).

Note that T is a function of 8 and X.

Let & be a prior density on ©. Let P denote the joint distribution of (0, X) and P (- | X) the
conditional (posterior) probability distribution of (8, X) given X. Let r = n~Y2 and consider

the posterior density of »~! (8 — 6) given by

nh|x) = exp{{@+rh)-10))n® + rh)/N(x)



where

(2.3) NX) = [exp{i®+rh)— 1)@ +rh)dn.
Let

0@) = @UP? exp {-% P (,.-)z}
1=
the standard p variate normal density. Let nt7(t | X) denote the posterior density of T, (which

exists under our assumptions with probability 1 — O (r™*+)).

Notation: We postulate m+3 continuous derivatives for /(0), n(0) and wﬁte L ..., for

L'

k .
——‘—lalﬁ etc. Following tensor notation, we indicate arrays by their elements. Thus [
20’ ... 98

is a vector, /;; a matrix etc. We also follow the Einstein convention of summing over a sub-

script which is repeated in a superscript, e.g. ;; I' = Z_lijli. Occasionally we denote a vector
)

array by symbols like v;, so that v;* stands for Eilv,-t"

Here are the main results stated under regularity conditions which appear at the end of the

section.

Theorem 1. If B,, holds then

@4 Ep [lnr ¢1X) =7 (1.X)|dr = O ¢™*)

where

T, (2,X) = 6(t) [1+P,,, (r,X,n:)-i-Qm(rt,X,n)] 1X e S),

P, is a polynomial in r of degree m, Q,, is a polynomial in ¢z of degree m, both without
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constant terms and with coefficients which are rational functions of I, ... b;(é) and

Ry, - 5,0)/ (@) for 1 Sk S n+2,and P [X ¢S ]=0 (r"™*') where S is given in Section 3.
Write

P, (r.,X,m) = 3-’2‘1 P X, m)r*

M3

Q,,,(u,X,ﬂ:) = mel"'b,.(xv"') ubl v u

k=1

and note that P,,, Q,, and S depend on n.

Notes. 1) It is necessary to keep the indicator of § in =, since the coefficients P,

Omb, - - - 5, Need not be bounded outside S .

The proof of Theorem 1 actually also yields that if X € §, ie. with probability

1 - O (r™*h), the random quantity

finr ¢1%) = mp @ 1X)1at

is 0 (r™*).

2) Since P,y and Qpy, 5, depend on r they are not uniquely defined. Since

(2.42) E|fr, ¢, X)dt - 1] = 0 ¢™*)

it is easy to see that we can always take P,,, = Q,,, = 0 and suppose all P,, for k£ odd to be

zero. For example, suppose we are given a set of P} and associated Q,,. Note that

PO + [0uirt6@dt =0 ¢ if m 21
Therefore, P,,(,ll) =0(r). Hence we can define the following set P,,ﬁ) satisfying (2.4).
PyY

P3 =0 P9 = — P2 +P3r, PP =0for k odd and P,Y = P + rP,Y.,,y for k
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even and 2 4.

3) Note that (2.4a) for m =2,3 implies E |[my(¢t.X)dt — 1| = E |Pyr®— 0y, 8 r?| =
O (r?). In view of Notes 1,2 and the above relation we deduce, putting m = 1,2 in (2.4), that
with probability 1 — O (r%) and 1 - O (r®) respectively the posterior distribution of T is
N, (rQy;,J) with error O (r?) and N, (rQy,J + r*(2Qz; — Q2 Q) with error O (r%),
where N, (i, X)) is the p variate normal distribution with mean p. and dispersion ma&ix 2, and
J is the p X p identity matrix. These are the multivariate Bayesian analogues of Efron’s

(1985) resul.

4) The relation (2.4a) for m = 3 implies as above that

E|P3yri- 0487 r% = 0 (Y

and hence that 3 may be written as

rQs; o+ r2Q3,‘j (titj —8‘7) + r3Q3ijk ek + 0(74)

which has the structure of g (¢) of Lemma A2 up to O (r*). This fact will be used in the

proof of Theorem 2.

Let c,(-) denote the %2 density,

DJ

T’y = 2n( ;) - 16,))

the deviance, and

D/ = D/1(1+2r2Q,)

the standardized (Bartlett corrected) deviance. If ®p, nts5 are the corresponding posterior densi-

ties of these vectors D = (D!,...,DP)and D = (D, ..., DP), then one has the following
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result.

Theorem 2. Under B,

2.5) Ep {j |mp (u1X) = T1% ¢y )| de 1(X S>} =0@m™

while under B,

p .
2.6) Ep {j |7p (u1X) - | § FRYS w)|du1(X « S)} =0(n™.
In fact (vide Note 1), with probability 1 — O (n™") and error O (n™!) the posterior distribu-
tion of D is that of p independent xlz, while for D the same claim holds with probability

1 -0 (n72) and error O (n7?).
From this we deduce

Corollary 1. a) Under B, if &, is the posterior distribution of A given by (1.4)
(X)) Ep{j | mau 1X) = cp () |du 1(X e S)} = 0@
_ k
b) Let A=A/{1+2r2k! T 0
J=

Then under B,

(2.8) Ep{jln;\(u 1X) — ¢, (u)|du 1(X e S)} = 0.

So (2.7) says that the posterior distribution of A is y? with error O (n~!) while (2.8) is the
Bayesian analogue of the Bartlett phenomenon. The posterior distribution of the ‘‘Bartlett

standardized”* statistic, A, is x? with error O (n72).
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These results can in principle be used to set Bayesian posten'qr confidence regions for 6 to
order n™!, n™? in a variety of ways. For instance, {8: A <, (1—ot)} where ¥, is the 1
percentile of %2 and A = 2(I(8) — I (8)) has posterior probability 1—o with error O (n™") while
{8:A < Xp (1-0)} has posterior probability 1-o with error O (n7?. of coursé regions could
be based on other functions of D;, D ;, for instance on max; D; or max; D~j.. They could also
be used in investigating the old question of what choices of model and prior lead to posterior
probability regions which are also frequentist regions with error O (n72), see, for example Stein

(1985), Welch and Peers (1963). However, more detailed computation of the Q ; than we pro-

vide seems necessary for this endeavor.
We use these results only in establishing the corresponding result in the frequentist case.

Theorem 3. Suppose that F,, holds and the density of T, py (t|0) admits an Edgeworth

expansion such that, if i2 = -1,

@2.9) 1" tpr 1) - 00) (1 + ér"m @.0)}1dt| = 0 (™)

uniformly in compact sets of 6 and v, where the R, (-,0) are continuous in 6 and polynomials

in ¢, independent of r. Then, the R, are of at most degree k in ¢.

As in notes (2) and (3) after Theorem 1, it is clear that (2.9) implies, on taking v = 0, that
Ry (t,0)=Ry;t/, Ry(t,0) =Ry, (t't/ — 8Y) + Ry t* where &/ is the Kronecker delta. In

the following we shall need a condition analogous to (2.9), namely,

@99 [ Ipr¢10)- 00 (1+ T rF R @OV | = 0 (™
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uniformly in compact sets of 8 and all v. We deduce our generalization of Efron’s result.

Corollary 2: If m = 1, the characteristic function of py differs from that of N (rRy;,J) by

O (r® and if m =2, from N(rR;;,J + r*(2R;; — Ry; Ry;)) by O (7).

Theorem 4. If the assumptions of Theorem 3 and (2.9a) hold for m = 1, then, uniformly in v,

. P .
(2.10) Je* 1o 18) = Me1@)]du = 0 (n™h

P .
i.e. the approximation _I'Ilc, (u’) is good to order n7!.
]=

(b) Further let

D/ = D//(1+2r*Ry).

If (2.9), (2.93) aﬁd F,, hold for m = 3, then uniformly in v,

@11 [e"r* tps 4 18) = T e, ) 1du = O (4™
i

Corollary 3. Under the conditions of Theorem 4, uniformly in v,

(2.12) [e™ pa@18) = cw)1du = 0 (n7).

2.13) fe tpaw18) —c@)ldu = 0 (7.

It turns out that T = r~ (A’ = ') + O(r) (see (3.6) and (3.19)), and r~' (A’ — ') is up
to O (r) a linear function of the first derivatives of the log likelihood evaluated at 6. In fact it
is possible to stochastically expand T in terms of the derivatives of the log likelihood evaluated
at 0, with a leading linear term. In the i.i.d. case if enough moments are finite, we can talk of

a formal Edgeworth expansion for the density or distribution function of T, and under the
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same assumptions the rigorous expansion of the characteristic fuqction of T that we require is
valid, vide the introduction in Bhattacharya and Ghosh (1978). This is all that one needs to
justify the Bartlett correction and the related results as given in Theorem 4. If one wants these
results to be valid for the distribution function in the sense of Bickel (1974), it is enough to
assume that the Edgeworth expansion for the density of T is valid in the L,-sense. This
assumption may be verified via Theorem 2(a) of Bhattacharya and Ghosh (1978), if the deriva-
tives of the log-likelihood appearing in the stochastic expansion for T up to o, (n™*?) have an
absolutely continuous joint distribution. Actually, instead of absolute continuity, it is enough
to assume Cramer’s condition, vide condition C of Bhattacharya and Ghosh (1978), and apply

their Theorem 2(b) instead of Theorem 2(a).

We note again that a form of Theorem 4 appeared in Bamndorff-Nielsen (1986) (with error
0 (n"¥%)). Barndorff-Nielsen’s results focus on conditional inference given asymptotic ancil-
lary statistics. His work implicitly requires conditions for the validity of saddlepoint expan-
sions for the conditional density. These in turn imply but are not necessary for the validity of
Edgeworth expansions for the conditional density. The Edgeworth expansions may be used in
conjunction with our ‘‘Bayesian’’ result to derive the appl;opriate analogues of Theorem 4. We
believe our Bayesian route makes matters easier and more transparent. The assumptions below
may appear rather strong but, as indicated in the remarks, they hold quite generally. Moreover,

they are quite natural if one is to develop a rigorous, rather than a formal, argument.
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Suppose we estimate the correction factor and adjust the likelihood ratio statistic in (1.6).
If in Corollary 3 we replace A by k A/(k + %) then the conclusion of Corollary 3 holds

under suitable regularity conditions. This fact was first noted by Bamdorff - Nielsen and Hall

(1987). The most brutal condition is to suppose that,

(2.14) b =b@+rct +A0)

where

EglA®)] = O (Y.

Of course (2.14) is motivated by a stochastic expansion such as,

(2.15) b =b® = b®) +d; @ -6+0,(?

and the expansion

0 -6 =rD;T" +0, (¢
for a suitable 15,-]-, see Lemma 3.2. To show that (2.14) and the assumptions of Corollary 3

are enough for this result we need only note that the difference between the Fourier transforms

of Aand k A/ (k + b /n) at v can be written as (with an appropriate constant M (0)) as,

M (G)Iexp[(—% f.l[:" Py +ivE[S PUIZE P ') 1rdae + 0 (r%)
1=
uniformly on compact v subsets. The integral vanishes by symmetry.
Condition (2.14) is too brutal but can readily be replaced by the possibility of further
expansion of (2.15) and large deviation estimates for § — 0. Alternatively, we can simply sup-

pose that the Edgeworth expansion of kA(k +b r®)! agrees with that of
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A=k +b@®)r%™r2c; T') with error of order r2. This kind of replacement can be proved
in a standard fashion under the usual protocols for asymptotic expansions of maximum likeli-

hood estimates. See Pfanzagl (1974), for example.

We postulate nonrandom arrays A;, A;; etc. and write,

lil ce ‘-"(O) = X,-l e ,-1(0) + Ail Ce . ik(e).

Here are our conditions. Let |-| denote the /; norm on R?. For all 0<M < and some

0<d<1,¢, 0.
B,: (@) P[16-0|2Mr'°1=0 (r™*)
i) P[I6-06|<M™2]=0 (")
Let
A ={x:forall j, {8:|6(x)-0|<M,r'® c (0:1§,; (x,6) - 6(x)| < M,r'?)).
For all 0<M <o there exists 0 <M, < such that
(ii) P[X¢A]=0 (r™*)
(v) Plsup{lA; ..., B+m):IvIsSMr3)2e,1=0 (™), 1Sk<m+3
(v) The maps 9—)in ... () are continuous, 1 <k <m
(vi) The matrix || 7»,-,- (0)ll is positive definite for all 6
(vii) a) = vanishes off a compact K < ©

b) Plsup{lm; ..., @+m)I/n@): |vI<Mr)2r21=0¢™)

bms2
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F,,: Uniformly on compacts in 0,
@) Pell6-08|2Mr'"?1=0 (™
Gi) Pg[l®-06]<sMr™?]1=0 (r™*)
(i) Po[X€¢A]1=0 (r™*), for A defined in B,,
(iv) Polsup{lA; ... ;@ +r)|:v|SMr'®) 2e,1=0 (™), 1<k <m+3
(v) Condition (v) of B,,
(vi) Condition (vi) of B,,

Remarks. a) We give a qualitative discussion of the ‘‘Bayesian’’ conditions B,,. The fre-

quentist conditions F,, can be viewed in an analogous fashion.

(). Variations of the M.LE. 6 from 6 of order n"24® occur with very small probability.

Thus we can safely think about Taylor expanding ! (8) and ! (§; (6)) around 6.

(ii). This condition says that r 16 - 0) has approximately a bounded density near 0. It is
needed to ensure that the map 0 — 6 — T(6,x) is 1-1 and otherwise well behaved with high

probability.

(iii). This condition assumes that both 6 and 6; are close to 6 and each other simultaneously.

It is needed for expansions of I (8; (8)).

(iv). The coefficients of the Taylor expansion differ little from constants, or more specifically,

1 (0) and its derivatives behave like averages of i.i.d. variables.



- 18 -
(v). Smoothness conditions needed to permit replacement of quantities such as

A

. iy (é,- (0)) appearing as approximations to coefficients in the Taylor expansion of

1B; @) by A; ;6.

(vi). Nonsingularity of the information matrix is necessary even for the statement of the

Bemstein-von Mises theorem.

(vii). We need to expand logn(8) around 6. Condition a) is useful for technical reasons.
while b) is needed to control logwx and its derivatives near the bomciary of K where_
lognt — —oo.

b) The validity of F,, and B, other than (ii), (iii) has been checked for independent
nonidentically distributed and Markov dependent observations in Bickel, Gbtze, and van
Zwet (198S). In particular these conditions hold for exponential families in the i.i.d. case.
They also hold in many examples for such families in the independent non-identically dis-
tributed case, e.g., in regression and GLIM models. Another example is the class of
aperiodic irreducible finite state Markov chains with stationary completely unknown tran-
sition matrix.

¢) Condition B,, (ii) in fact follows from the other B,, conditions since they guarantee an
Edgeworth expansion for nt(h | X).

An Edgeworth expansion uniform on 8 compacts for the distribution of r~(6 — 6) implies

F,, (i) and (ii).



-19 -

Condition F,, or B, (iii) holds if the log likelihood is convex.
d) The conditions on existence of the estimate 6]- can be replaced by requiring the existence
of a preliminary estimate ® with appropriate moderate deviation properties and then
redefining the é,- as the result of m+1 iterations of the Newton-Raphsoﬂ method applied

to the appropriate likelihood equations. See Theorem 4 of Bickel et al. (1985).

e) In the situation of d) suppose that F,, (iv)-(vi) hold and that, uniformly on @ compacts,

for all 0<M < oo,

(2.16) P18 -0]2Mr'%] = 0 (r™*

Pol18 -0 <Mr™2] = 0 (™.

Let A™ = (x:forall j, (6:18—0|<M,r' 3} c(0:16;, —8|<M,r%}}. Then uni-
J

- formly on 8 compacts

Po[X < A*] = 0 (r™*).
If we redefine the set B of Section 3 so that B (ii) is replaced by

Iéb _ eb | >M*rm+2, Iéb - eb | < rl—8
then the proof of Theorems 4 and 5 goes through.
3. Proofs

We need to analyze nr(¢ |X) where we assume that X belongs to a set S on which the
map h —)T(é +rh,X), |h|<M r=3 is invertible with non-vanishing Jacobian and the matrix

Il = l,-j(é) I=C is positive definite. We explain the transformation in more detail and give S
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below. Let D be the unique lower triangular matrix with positive diagonal such that

(3.1) DD =C
and
(3.2) Lm)=1D).

If || 1;;(B) || is the Hessian of / at § and fy =D © then in the usual notation,

(3.3) ~L;) = J,

the p Xp identity. This in the Bayesian domain corresponds to standardizing the Fisher infor-

mation at 0 to be J as is done in the corresponding frequentist calculations. Further define | N

by:
(3.4) L) = max{L®: ¥ =n',..¥ =1/}
and
- 12 . .
35 T = 20 -La) s @L -0,

It is easy to verify that

(3.6) ' T® +rh) = T +rDh).
Now D r~! (8 - ) has posterior density

3.7 D h |1X) |detD)[?
and hence,
(3.8) @t |1X) = exp(—%é1 ('Y =DM + rh () detllAi() ||/ M(X)

where 4 (t) is defined by

(3.9 T +rh@) =t
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and

Ko = 20

]

and

MX) = | exp(—l/zcél ) =D + rh () det(llAie) .

For fixed X, let Ry be the image of {(h:|h|<M r‘s} under the map 4 — T@® +'rh,X).
From (3.8) it’s clear that our task in proving Theorem 1 is to exhibit the set S such that, for

¢ € Ry, h is uniquely defined by (3.9) and such that

(3.10) h(@) = t+r P, X) + 0 ™)

@B.11)  hjit) = §; +r P;(t,X)+ 0 (r™*)

where P and P;; are polynomials in ¢ and to identify the order of the polynomials. Here
O (r™*') means that the remainder is bounded on S by Mr™*! for a generic constant M

independent of n.

We define B as the set where

) sup{m,-1 RPERCER O C)E |v|$Mr'8}Sr'8
(i) M*r"2<18% —0?|<r!8, 1<sb<p
(iii) sup{lA,-l...,-k(é+rv)l:|v|SMr'5}$ €, .

Note that, by B,,,
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a) P [(r"l(é -0),X)e B‘] =0 ("™

b) The x sections of B -intersect each quadrant in an open convex set since |- | is the /;-norm.

There exists a generic constant C >0 such that on B,
) sup{u,-l BYCERSTHIY sm"’}s c

d) C'<A<X<C where ), X are the minimal and maximal eigenvalues of || — J; @I
e) 16, -0, 11<sMyr'2, 16, - 6| <M,;r

We let S be the_image of B under the map (h,x) > (T (0(x) + rh,x),x) and S be just
the projection of S on the x axis, i.e., the set of all x satisfying (i) and (iii) above.
Convention: Expressions such as n,-(n).are calculated atn =1 +rh.

Lemma 3.1. On B, for j 2i+1

j i k b1 by m+1
(3.12) \/ =1 "',‘Esz;"'b;' Al - h*+0 @™
where N; ... ; are polynomials in the derivatives L; ...; of L (evaluated at M), with ¢ < £

and h = r~}(n — ) with no constant term. Letd =1/, —n‘. Then

. . om+l
(3.13) AL-f/= X M d* +0 (4"
where M}/ are polynomials in L;, ... ; and rh which vanish at A = 0.

Proof: Write L, etc. for derivatives of L evaluated at f}. For j 2 i+1

0 = L) -Li() = Lp A7 =0")+ - -
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1 m+1 b b m+l
(3.19) + D! Ljs, -5, k];[l @ -15+0¢™h.

To see this note first that \; =D 9,- and hence in view of e) ||, — | S M3 r1=3. Therefore

applying ¢) and d) again the relevant derivatives of order up to m + 2 of L at 1} are bounded

and (3.14) follows. Note that by (3.3) L,, = -3,, and that

N2 -0% ==rn® for b <i.

So we can rewrite (3.14) in the form

(3.15) Spu® = Pj(u,rh) +0 (r™*h), j 2i+l

where u? = n,-b_l - n,—b and P; is a polynomial of degree (m + 1) in ¥ and rk with no term of
combined degree less than 2 and bounded coefficients which are polynomials in the L ...,

Claim (3.12) follows from a standard Lagrange inversion argument. For (3.13) write for
jzi+1

(3.16) 0 =L;(N)-L;(Niey) = Ly AH)e®

where " is an intermediate value and e® =12, - 2.
Note that

3.17) e® =0, b<i-1, ¢ = d

and

LM = =83 +0 (r)
so that (3.16) yields, for j 2 i + 1,

(3.18) N, -1 = o@)ld|.
Expand further to get
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1 b b
(3.19)  Lp(hi-pe® + -+ + T r L e e et r0 (d™*? =0.
Rewrite (3.19) in the form
A b by b, by . Jbma _ d+ - - - d™ 4+ 0 (dm+
jbe +Ajblb2e e +Ajbl b"“_le e = aja+ +a,. + ( )

where the indices b,b,...,b,, range fromi + 1top

Ly

...b
Ajpy -+ b = “‘#—k M-

and the g; are polynomials in the L, ... ,,(f;_;) and the e®. Expand Aj, ..

. b, around 1| to
m+1 — k terms and use (3.12) to conclude that with remainder O (r™*!) all the Ajp, ... p are

polynomials in Ly, ... b, and rh. Finally note that for b 2i + 1

ef =L - = @2 -1") -l -1°)
can by (3.12) itself be written as a polyhomial of rh and Lj, ..., so that the a; are also, up

to order m + 1 polynomials in 7k and Lj, - by fort <m + 1. The lemma follows. O
Lemma 3.2. On B

(3.19) T +rh) = b +r7'Q(rh) + O (F™*)

where Q is a polynomial of degree m + 1 in rh with no constant or linear term and

coefficients which are polynomials in Ly ...pkSm+2.

Proof: By definition

Fi+rm) = ri|-% 2 i) T =15
- =1 k! by -+ b -1 (=1 i-1— i

12
(3.20) + 0 (N - ™ | senhl, - ).
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Note that L,(f;_)) =0 b =i and 2, =17, b <i — 1 so that the first term in the sum van-

ishes. Expand the coefficients around f| and use (3.18) and (3.13) to get

. m+2
(3.21) T +rh) = rid + kzz c,dt +0 (rld "

where the ¢, are polynomials in rh. Now substitute for d from (3.12)
I TRy k b1 by m+1
3.22) d =rh +k§2Nbl.'..bkrh - R4+ 0 @™
and the lemma follows. [
Lemma 3.3.
@A If 0;, i=1,..,2P are the quadrants of R? then T(| + rh) maps O; N B, into O; for
all i.

@ii) T is continuously differentiable on O, NBy for 1<k <2, Let

=i _ off
Ti = %
JRRNFTY
Then T} is lower triangular and
(3.23) T! = 1+ Pi¢rh) + 0 ™"

where P’ is a polynomial of degree m + 1 with no constant term and coefficients in Ly, ... 4,

k<m+2.
Gii) T is 1 - 1.
Proof:

(i) We need to show that on B,
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(3.24) sgn(Niy -n') = sgnh, i=1,..,p.
By (3.12) on B,

Al - = R+ M) + P M h)

where M, is a polynomial in 2 with bounded coefficients and |M,(h)| is bounded by M, for
all (x,h)e B. But (x,h)e B >aM*r™"' <|hi|<a™'r® where a is positive constant

depending only on the constant C of d).

Choose M ™ so that

(3.25) am™ > M,.
The relation (3.24) follows from

(3.26) A+ aM ™ P — i > (@M - MYr™*2 4+ 0 '™ > 0

and

ﬁ (R +rMA)} = 1+0 ().

(i) It is easy to see that T(f| + rh) is continuously differentiable on B with derivatives

ant, on/
— —-L . (;) —1|.
ah" k(ﬂx) ahl

T = |T' M |L,Mizy)

Note that,

N,
anb

=0, a,b=2i

= 5,,,,, a<i-1

and L,(R;_)) =0, k 2i. Soi<j =>T}=0while
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(3.27) T = =r T L)

Now write

m+1 Libl e bk(ni—l) k

L) = Ly - N2 + ) I (n/ - 0/)

k! j=1

+0 (N - ™D

m+1

(3.28) = El P.(rh)d* + 0 @™?

by (3.13), where d =nii_1 —-n‘' and P, are polynomials in rh such that P;(0) = 1. Now
apply (3.21) and (3.2'8) to (3.27) and then substitute (3.22) for d and (ii) follows.
(iii) Follows from Lemma 1 of the Appendix. [

Proof of Theorem 1. By Lemma 3.3 formula (3.8) is valid for (x,z) € §. Moreover, from

Lemma 3.2

(3.29) R@) = ¢ +rPiGt) + 0 (™Y

where P’ is a polynomial of degree m + 1 in rt with no constant or linear term and

coefficients which are polynomials in L, ... ,,, kK <m + 2. From (3.23) and (3.29)

. w -1 P .
detllhj@)ll = detlTiA+rh@NI = I Ti+rh@) ™

fll(l +Pirh@)) T + 0 (r™Y

(3.30) =1+V@Et)+0 ™



-28 -
where V is a polynomial of degree m + 1 in r¢ with no constant term and coefficients which

are polynomials in Ly, ... p,, k Sm +2.
Moreover, from (3.29) and B,, (i),

(3.31)  w@+rD'h(1)) = ~(B) 1+””—(P)—U” )+ - - - +M(§)Ub‘(rt) co Ut ()
n(6) n(6)

+ 0 (r™*' n(0))
where the U’ are polynomials of degree < m + 1 with no constant term. .Substituting back.
(3.30) and (3.31) in (3.8) provides an approximation to the numerator in (3.8) and integrating
this we get an approximation to the denominator in (3.8). Together these approximations

ensure that

Ep [1mpt1X) = 6) (A + Qe x, W) 1[(¢t,X) € § 11t = O (™)

for a suitable Q,: . We get Q, by dropping all terms of degree m + 1 in Q,: . The

Ry, - b .
coefficients are evidently polynomials in Ly, ... (M) and ‘—n—"—(e), 1<k<m+1. But

the former are polynomials in the elements of D! which are rational functions of L;j(é).

Now,

(332 Ep [0 [QnCt.xm) - 0 ¢t x. W] 1, X) e S1dt = 0 (™
since for x € S all coefficients in both functions are bounded. Further,

(3.33) Ep jnT(t I1X)1((,X)¢S)dt = P[(T,X)¢S] = O (™
by B,,. Finally,
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Ep [6()Qu(rt,x,m) 1(X e S,1t|<M*r™ or |2]2rFdt = 0 (™)

and the theorem follows. [J

Proof of Theorem 2 and Corollary 1: Evidently since D and D are simple transforms of T

we need merely check that the approximation to the density of D, (D respectively) obtained by
p
applying the usual transformation formula to =, (-,X) agree with kl'_Il c l(u" ) with error

O(r"'“) for m = 1,3 respectively. This follows readily from Lemmas A2 and A3 in the
appendix if we identify x,, with g (¢) for m = 2,3, and note that R i = (0] (n'l). Relation (2.6)
follows from Lemma A2 and A3. Corollary 1(a) follows immediately from (2.5), while 1(b)

follows from (2.6) and Lemma A4. (1

Proof of Theorem 3: Evidently F,, = B,, for = satisfying (vii). It is shown in Ghosh, Sinha
and Joshi (1982) and Bickel ez al. (1985) that the set of all such &t is dense in the set of all pri-
ors under weak convergence. Now (2.9) implies that for any ® concentrating on a compact,

the characteristic function of T satisfies the approximation

334 [ prar = [[e™ pr 1) n@) d0dr

= eivjtj o)1 + kgl r JRk(tv 0)n(@)de| dr + O(rm+l)

= exp{-lﬁ M1+ Xt ij v, 0)r(©)do] + 0 (™)
2 j=1 k=1
where exp{—% il (W)?} P, (v,0) is the Fourier transform of ¢ (t) R (¢,9), so that the P,'s are
]=

also polynomials in v. On the other hand, Theorem 1 yields
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fexp( £ P pr @t = Bp (fexp( £ 0P 10 (.0 10K € )1+ 0 (Y
z -

= exp{—— ﬁ(vf)z} 1+ Zr" P EQ L X IX € S)

(3.35) +0 (™

Therefore, multiplying by exp{% f"n (W)%} we get
Jj=

1+ k2=:1 rk ij(v,e)n(O)dO =1+ kz=:l Pk b, --Vb,(")vbl ceey

(3.36) +0 (™

where O is now uniform for |v| < M by the hypothesis of Theorem 3

Define, as usual

By, .5, f @t?) = [Af’ e A:"]f (t,....tP)

where the b; =0, ..., p, ib =/ and
. Jj=1

Acf = Fel ke Py~ f (L)
and Af represents an operator product. Apply Ay ... b, 10 both sides of (3.36) considered as

functions of v. If [ >m we obtain

(3.37) Zl riet [Ay, ... 5 P;(E0)T(O)d0 =0 (r"* ™).
=

1
Let €10 more slowly than 7 /. Then (3.37) yields

P,
j - (v,0)1(0)d0 =0 for all vforalk < m.

b
1 -
0 'u; 0" u,
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But by assumption the integrand is continuous in 8. Since ® ranges over a dense set we con-
clude that the integrand vanishes identically in 6. So P, is a polynomial of degree <k and

hence sois R,. O

Theorem 4 and Corollary 3 follow from Theorem 3 in the same fashion as Theorem 2 and

Corollary 1 follow from Theorem 1. O
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APPENDIX

Lemma Al. Suppose f : C° — R? where C° is an open convex set in R?. Suppose f is

differentiable with Hessian f and,

(A.1) If =J|<1

where J is the identity and |M | is the operator norm on matrices. Then f is nonsingular and

f is 1-1.

Proof: By (Al), f is nonsingular,

fl=u-G-n+G -7
If f (a) =f (b) then

1

0 = z[f(a +Ab —a)dMb - a)
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or

1

(b-a) = —!(f(a + Mb—a)) = J)dA\(b-a).

Then, by (A.1)

|[b—a| < mfxlf(a +AMb-a))-J||b-a|<|b-a]|

unless b =a.
Lemma A2. Let

8 = 601+ Rt + Ryt ¢/~ 89) + Ry 111 1)

be the density of a finite measure . on RP where 87 is Kronecker delta, and let

8 ® = 60 [1+ R; (@) - 1)

similarly correspond to p,. Let 2 (t)=(:')%. Then

“-h—l = Ho Al

Proof: The densities of ph~! and p,h~" at (ul,...,|u? |) differ by the term
2? E[Rl €; Iui Il/2 + R,J*s, Ej |ui Imluj |1/2 + € ej & Rijk Iui |1’2|u° Ilaluk |1/2] =0
where R;; = R;j(1 - §;;) and ¢; are independent +1 with probability 1/2. [J

o(1). Then

Lemma A3. Suppose Z|R;; | =
j

P .
| &) - Jra+ 2R (1 + 2R dr = 0 @Rﬁ)

where ¢, is the standard normal density.

Proof: Taylor expand. [



-33-
k .
Lemma A4. Suppose Zic;; - 1| = o(1) and Z}=c;Y}? where ¥;’s are iid. N (0,1). Let
k
U= FIZY,-Z and V = (ZZA)(1 +X(c; — 1)/k)™". Then U and V have the same characteristic

function up to O (Z(c; - 1)).

Proof. Compute the characteristic function of V, take logarithms and expand. [
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