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Maxdimum entropy reconstruction has been applied to inverse problems in a variety

of fields (1-8). In NMR spectroscopy (8), for example, maxdimum entropy reconstruction

has been used to obtain dramatic improvements in signal-to-noise ratio over conventional

discrete Fourier transform spectrum estimates. Unfortunately, it is not clear just how max-

imum entropy reconstruction achieves these impressive results. This is largely because in

the general case there is no analytical expression for the maximum entropy reconstruction,

which must therefore be obtained by numerical methods. In order to gain some insight into

the maximum entropy method, we consider maximum entropy reconstruction applied to

a special class of reconstructions for which a formal analytical solution can be found. We

show that the reconstructions take the form of a single non-linear transformation applied

point-by-point to the discrete Fourier transform of she data. This result explains many

published examples of maximum entropy reconstructions, and shows that the maximum

entropy method does not, by itself, improve sensitivity.

Figure 1, reproduced from Sibisi et al. (3), is typical of maximum entropy spectrum

reconstructions appearing in the literature. The feature of the reconstructions most often

emphasized is the suppression of noise near the baseline; however, close examination reveals

another characteristic feature: while de-emphasized relative to strong signals, the structure

of the noise near the baseline is mostly preserved. A third characteristic feature is shown

in the reconstruction in Figure 2: noise near the baseline is suppressed more effectively

than noise superimposed on a peak. All of these effects can be explained by the following

analysis.
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the introduction of a Lagrange multiplier A to form the objective function

1' 2

Q = - fwlogfw-A E| Ee2feitw N- d- (3)
t=1 w=1

The solution we seek corresponds to a cnrtical point of Q, with the value of A chosen so that

C = Co. There is no known formal solution to this problem for the general case N, > Nt,

and the general problem must be solved numerically by simultaneously optimizing the N.

elements of f.

However, when N,= Nt, Parseval's theorem provides the equality

Nt d 2 2 (42

t=l W;=1

where f is the Founrer transform of d. Thus, equation (3) becomes

N,w1Vw 2
Q = -, logf^ -Alf,-fs . (5)

This problem is easily solved; at a critical point we must have

3Q0= -(logf,+1) -2A(fi -Re(fa)) for all w. (6)

Let the function 6A,(z) be defined as the solution to the equation

0 = -(logS + 1) - 2A(6 - Re(z)). (7)

LFrom the definition of 8x and equation (6), the solution to the maximum entropy problem

is

fa=8,A (f ,) for all w. (8)
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and is applied to each frequency independently, the reconstructed spectrum possesses ex-

actly the same structure as the orignal spectrum. (For example, if the intensity is greater

at frequency j than at frequency k before reconstruction, then the same must be true

after reconstruction.) This means that if 95 per cent of the noise values in the discrete

Fourier transform spectrum are expected to be less than some value W, then in the re-

constructed spectrum 95 per cent of the values will be less than 6x(W). Consequently

peak identifications-as signal or noise-based on an expected noise distribution (such

as a Gaussian distribution) will always give the same results for the conventional Fourier

transform spectruim and for the maximum entropy reconstruction.

Although we have been concerned only with a special case, some of the phenomena

described above, such as noise remairning when it is superimposed on a peak, are frequently

observed in the more general case where NJ > Nt (9). Maximum entropy reconstruction

has been and will no doubt continue to be the subject of vigorous debate (7,11,12). The

analysis presented here illustrates, for a specific case, just how maximum entropy recon-

struction works, and demonstrates in concrete terms that maximum entropy reconstruction

can improve signal-to-noise ratio without improving sensitivity.
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Fig. 3. u, 'II9p9;rum ovl 2' Inyl pyridine produced by conven-
tional Fourier translor:n. b, Corresponding MEM spectrum.

itoe (1 .6 .sLs). We corrected the baseline of the FID and conver-
ted it from quadrature to iosine form" over 8,192 points before
zero tilling to 16,384 points. The Cambridge MEM algorithm22.
was used te findt the two principal phase parameters, by maximiz-

ing the entropy ovcr both the spectrum and these parameters
simultancously. The phase pajrameters were then used for both
the conventional F-T ind MEM spectra shown in Fig. 1.

In the conventional FT spectrum, Fig. Ia, the signals assigned
to C-3. C-4, C-5, C-6, C-7 anrd C-8 are reasona.bly clear of the
nuise, but thc signal fromn C-2 is only marginally higher than
some of the noise peaks (marked with asterisks). In the corre-
sponding MEMN spectrum obtained from the same data (Fig.
I b), noise is dramatically decreased, so that the peak for C-2
appears much more convincing. The reliability of the lines shown
in the MEM spectrunm can be assessed by comparison with a
conitrol FT spectrum (Fig. 2) produced from the same sample,
using a longer pulse time ( 13 pLs) to increase the signal-to-noise
ratio. This proves that the C-2 line picked out by maximum
entropy is a true signal, as opposed to the noise peaks marked
with astenisks in Fig. la. The ability of MEM to discriminate
in 1'avour of real signals, and against noise of similar intensity,
wa.s reproduced in three other test spectra determined in the
same conditions.
The 'H data were recorded in a similar manier on a lIruker
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Flg. 4 a, Expansions of the multiplets A and B in theconventional
spectrum (Fig. 3a). b, Expansions of the multiplets A and B in

the MEM spectrum (Fig. 3b).

for producing NMR spectra. Details of the Cambridge MEM
algorithm used to produce these spectra will be published else-

where22. The disadvantage of MEM is the extra compuiing
involved, amounting to about I min on a IBM3081 mainframe
computer. The algorithm requires eight times the store and about
30 times the central processing time of an ordinary Fourier
transform. Funher work is in progress on the application of
M EM to 'IH and 2H NM R spectra, and also on the more sophisti-
cated approach in which a two-dimensional map is reconstructed
from one-dimensional data".
We thank the SERC and St John's College, Cambridge, for

financial suppon, and Drs 1. D. Mersh and J. K. M. Sanders
for use of their data transfer software. We also thank Dr Sanders
for helpful comments.
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