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Abstract.

Consider developing a regression model in a context where substantive theory is weak.
Search procedures are often used to develop the equation: eg, fitting the equation, dropping
insignificant variables, and refitting. As is well known, this can seriously distort the conven-
tional goodness-of-fit statistics. Furthermore, the bootstrap and jackknife may not help in
high-dimensional cases.

1. Introduction.

When regression equations are used in empirical work, the ratio of data points to parameters
is often low. Further, the exact form of the equation is seldom known a priori, so investigators
will often do some preliminary screening before settling on the final version of the equation.
One stylized version of this strategy is as follows:
(i) Fit the equation witlh all variables included.
(ii) Screen out variables whose coefflcients are insignificant at the 25% level. (This level is
used to represent "exploratory" analysis.)
(iii) Refit the equation on the remaining variables.
Real investigators use more complicated - and subjective - screening procedures; the version
just presented is mechanical, and therefore amenable to statistical analysis.

As is well known, screening procedures introduce substantial distortion into the conventional
measures of goodness-of-fit, like R2, t or F. See (Lovell, 1983) or (Freedman, 1983), and (Gong,
1986) on logistic regression. Perhaps the bootstrap or jackknife can be used to eliminate these
distortions? This question will be investigated here by simulation.

Consider the basic linear model

Y = XV3+ . (1)

Here, X is an nXp matrix of iid N(0,1) variables; and e is another nX 1 vector of iid N(0,c2)
variables. These distributional facts are known to the investigator. The n X 1 vector Y is com-
puted from (1). The investigator observes X and Y, but not E. The p X 1 vector d of parameters
is unknown, as is 2, and these are to be estimated from the data.

Two statistical tasks are considered:
(i) Estimation. The object is to estimate /3k; and #2,...,#p are introduced to control other
sources of variation and improve the precision in estimating /31. This is like a standard problem
in clinical trials: 01 is the treatment effect, and columns 2,3,... in X represent covariates.



(ii) Prediction. Let e be another 1 X p row vector of iid N(O,1) variables, and 6 an independent
N(O,U2) v-riable; 6 is unobservable. Suppose

=~3+6. (2)

The 1-vector here is the same as in (1), and is unknown to the statistician. The object is to
predict '? from ., using the 3 estimated from (1). The explanatory variables f are related to the
dependent variable and should therefore help in predicting T7. This is like a standard problem in
econometrics.

Our setup is a statistical cartoon, but it has elements of realism. And in some respects, it
provides a favorable environment for conventional methodology. After all, (1) is the textbook
regression model: ordinarily, variables will not be normal nor regressions linear. In the simula-
tions, we usually set u2=1, n=100 and p=75. The number of columns in X may seem large,
but in practice an indefinitely large number of covariates present themselves to empirical work-
ers. For example, in typical econometric macro-models, there will be several hundred equations
to explain several hundred endogeneous variables, but only several dozen data points. The
''constraints," including the decision as to which explanatory variables to put in each equation,
are largely data-driven. Also see (Freedman, 1981a) or (Freedman-Rothenberg-Sutch, 1983).

We consider ,'s of the form ,j for j=l,...,pl and Oj O otherwise. The -y's of interest are
those near the resolving power of the system, ie, of order a/V4ni-. Indeed, let V- be the (j,j)-
element of (XTX)-l. On our assumptions, V. is distributed as 1/X 2 + and so is of order 1/n-p.

Denote the columns of X by Xj, for-j=1,...,p. The screening procedure selects a subset S of
these columns to enter the equation, as follows:

Fit Y to X by OLS (ordinary least squares), so /8=(XTX)lXTY, while e=Y - X/ is the resi-
dual vector, and 02= 2 /(n_p) is the usual unbiased estimate of a2. (3i)

Enter XI into the equation automatically. For j=2,...,p, enter Xj if J(jl/&V7/ exceeds the
25%7o-point of the t-distribution with n-p degrees of freedom: recall that Vj is the (j,j)-
element of (XTX)-1. Write j E S if column j was entered. Then S is a random subset of
{1,..,p} and 1 E S. (3ii)

Let Xs be the matrix consisting of the columns of X which were entered in step (ii). Let ps
be the number of such columns. Refit Y on Xs by OLS, so , (NTXS)-IXTy. Define
E=Y -Xs,, and 6a2=II1II2/(n - ps). For j 0 S, we set /jO. (3iii)

Now I is an estimate of I1. And (d predicts the Ti of (2) from its (.

The main performance measures of interest are MSE=E{(MI - I1L)2} and MSPE=
E{(qi- (,3)2}, the mean square error of estimate and the mean square prediction error, respec-
tively; These may be taken conditionally on X, or unconditionally (averaged over X).

We also consider a version of R2. For any subset T of columns, let

- (E 3j2)/(a2 + E 42))PT jET j-1

the true R2 for a model based on columns in T. Let
-2 E{p2}. (5)

The expectation is over S, the random set of selected columns in (3).



Empirical workers often neglect the randomness in S, treating d and a2 as OLS estimators.
In other "vords, they take the model to be

where the ci's are iid N(0,a2) variables - but S is the result of the search procedure. Then they
use the conventional OLS formulas for MSE, MSPE, and R2. That is, they estimate the MSE of
/1 by

naive MSE = a2 the (1,1)-element of (XTXs)1. (6)

Likewise,

naive MSPE = a2* {1 + trace (Xs Xs)}. (7)

And ps is estimated by R2, where

1 - R2 = n (1 - R2) - a"2/(IIYII2/n). (8)
a-Ps

As will be seen, these estimators tend to be much too optimistic: in effect, they ignore the com-
ponent of variance due to model selection.

Only the notation in (6-7-8) is unfamiliar. In the OLS context, E{31 X}=i31. And
var{/ IXI=of2 (XTX)1i is estimated by putting a2 in place of 02, giving (6). With respect to
(7), if d is any estimator for /3 based on X and Y,

E{(j? - (/)21X} = 0.2 + E{ - 1121X}. (9)
In the OLS case,

E{I|/| - /31121X} = * trace (XTX)-1
and a" is estimated by a2. Formula (8) is close to standard, as in (Theil, 1971, p178): by (4), if

1-PT = ca2/(a2+ E 32).
i-1

Numerator and denominator are estimated separately as &2 and 11Y112/n.
Coming now to the jackknife and cross validation, for each i let Y(i) and X(i) denote the

result of deleting row i from the matrix. Let d(i) denote the estimator of /3 obtained by the
screening process (3) applied to the ith reduced data set. Then

jackknife MSE = n9la E [(i) - j(-)j2 (10)

where
n

n i=j

(In principle, the jackknife is only considered to pick up the variance component of MSE.) For
cross validation,

cross validation MSPE = - E (Yii Yj)2 (11)ni=1
where

Yi= (row i of X) -(')
and - stands for inner product. (Despite the notation, Y 3 X#.) In particular, the screening pro-
cess is applied separately to each of the reduced data sets.



Psychologists often use the "cross-validated R2 " in the present context, this may be taken as

(Y V /11y112 j1112 (12)

and viewed as an estimate of p2 in (4> Here, Y is defined as for (11).
Consider next the bootstrap. The idea is to estimate performance characteristics in a simula-

tion model estimated from the data, and two choices present themselves for the parameters: using
d to generate the starred data, or 3. We elected to use 13, and found the bootstrap did not per-
form well: d would make things even worse; indeed, /3 can become in effect a self-fulfilling pro-
phecy. Other choices present themselves for the explanatory variables: the bootstrap can be run
conditionally by keeping X fixed and resampling the disturbances; or unconditionally, resampling
X as well from its distribution, which is known in the present case. The conditional bootstrap
seems more interesting, and turns out to perform better, so we report that. In principle, we view
the conditional version of the bootstrap as estimating the conditional MSE or MSPE given X. Of
course, eg, E{E[(i31l 1)2 X)} - E{(1 -_ i)2}. So, if all went well, the conditional bootstrap
would also give nearly unbiased estimates of the unconditional MSE or MSPE. A third option -

resampling rows - is not available in this problem: there is a high probability of getting fewer than
75 distinct rows in the resampling, so the rebuilt cross-product matrix will usually not be inverti-
ble. In any case, the empirical distribution of 100 data points in R75 is not a good estimate of the
theoretical distribution.

To spell out the bootstrap procedure in more detail, given X and e let d be the OLS estimate
of1 in (1). Let

= X!3A+E* (13)
where c* is an n X 1 vector of iid N(0,&2) variables. In principle, we also consider

'1* = (*16+6* (14)

where i* is another 1 X p row vector of iid N(0,1) variables, and 6* is N(0,42). Pretend for a
moment that d in the model (13) is an unknown parameter vector to be estimated by the selec-
tion procedure (3): run Y* on X to get OLS estimates d*; let S* be the set of significant
columns, with 1 E S* by fiat; let d*-(Xs*TXs*)-lXs*TY*.

The bootstrap estimates of the performance measures are as follows:

bootstrap MSE = E.{(131* - 1)2} (15)

bootstrap MSPE = E*{(tl* - (*13*)2} = + E*{1ll * -(11 j2} (16)

bootstrap R2 - E*{( SF di32)/(o'2 + Ej a 2)} (17)
jES

In these formulas, X and e are held fixed. As will be seen, the bootstrap estimates of MSE and
MSPE are too high. Paradoxically, so is the bootstrap R2. References are given on the
bootstrap, especially (Efron, 1979, 1982). For asymptotic theory, see (Beran, 1982), (Bickel and
Freedman, 1981), (Freedman, 1981b); for applications, (Freedman and Peters, 1984abc).

2. Empirical results.

This section reports simulation results for the screening procedure 1 defined by (3). The
naive, bootstrap, and jackknife estimates of squared error will be compared, for estimation
(MSE) and prediction (MSPE). The basic model is (1), with 100 rows and 75 columns, so



n=100 and p=7.;5 And a2=1. Take j~=.2 for 1<j <25 and 3j=0 for 26<j< 75,so =. and
Pi=95. 7r Table 1, we generated 100 basic data sets following (1): making the number of
replicates equal to the number of rows was a matter of taste rather than necessity. The "true
value" for E{(01 - 31)2} is the empirical average

100

100 r=1
where /i(r) is the computed value of/31 for the rth data set. As shown in the table, this average
is .031. The SD of the 100 values {131(r): r=1,...,100} is quite large, .039. Still, the SE for the
average is .0039. So the instability in the Monte Carlo is small. For the naive MSE, we report
the average and SD of the 100 values a2(r) - (1,1)-element of [X(r)s()TX(r)s(r)]1, with 1< r <100.
As before, &2(r) is the value of `2 for the rth data set, X(r) is the rt matrix of explanatory vari-
ables, and S(r) is the set of columns selected by procedure (3) applied to the rth data set. At
.012, the naive MSE averages less than half what it should be. For the jackknife MSE, we
report the average and SD of the 100 values

jackknife MSE(r) = I2L2 [13(')(r) - /3-)(r)l2 (18)

for r=1,...,100, which result from applying formula (10) to the rth data set. On average, the
jackknife is too high by a factor of about 8. Whether viewed as estimating the conditional or
unconditional MSE, the jackknife is not estimating it well.

Finally, for the bootstrap MSE, we report the average and SD of the 100 numbers generated
by applying formula (15) to the rth data, for r=1,...,100. On average, the bootstrap is about
15% too high. And there is quite a lot of variability (from one data set to another) in the
bootstrap estimate, as will be discussed later.

To approximate E.{f[/3*(r) - /1(r)J2 X(r)} we generate 100 starred data sets according to
(13), with X(r) and /3(r) in place of X and /. (The equality of the number of replications in the
various processes is still a matter of choice.) Specifically, for each r we generate 100 vectors of
errors, each having 100 iid N(0,&(r)2) components. Corresponding to the sth vector E(r,s) we
make Y(r,s) X(r),(r) + c(r,s), run Y(r,s) on X(r) according to the screening procedure (3), and
come up with )1(r,s): the vector Y(r,s) is 10OX1 and the matrix X(r) is 100X75. Then the
bootstrap estimate for the MSE of /1 given X(r) is

100 A

E*{[3i*$(r) - 01(r)l2 X(r)} E {[g (r,s) - 3il(r)12} (19)
100 s= I

The MSPE calculations are similar, and will not be recited in detail. On average, cross-
validation does quite well, but the bootstrap is nearly 30% too high. Both show a lot of variabil-
ity. In the R2-column, the "true value" is an approximation to 42-E{p2 }, obtained by averaging
the values for the 100 data sets. As can be seen, the naive estimate is on average more than dou-
ble the true value, and the bootstrap is worse. Cross validation is low, also by a factor of nearly 2.

Some benchmarks are shown at the bottom of the table. An old-fashioned statistician might
elect to estimate /31 by regressing Y on the first column of X, ie, neglecting the covariates: this
procedure, /no adjust, does quite well, with a variance of .021. Another statistician might put in
all the covariates: var (/3OLS)=.042. This is not so good.

The calculation for the variance of ,1:
var (,31 X) = a



Table 1. Simulation results for the jackknife and bootstrap applied to
the screening estimator ,3. The model specification: r2 =1, n=-100,
P-75, Pi-25, -1=.2

Estimates Estimates Estimates
of MSE of MSPE of R2

ave SD ave SD ave SD
true .031 .039 2.79 .63 .243 .064
naive .012 .003 1.18 .25 .561 .128
j ackknife .233 .113 * * * *
cross validation * * 2.70 .57 .152 .107
bootstrap .036 .015 3.56 .84 .677 .088

var (Ono adjust) *.021 MSPE (Y) - 2.01

var(11)= .042 MSPE ((3) = 4.12

where V1 is the (l,l)-element of (XTX)-1 and is distributed as 1/X 2 with expectation
1/n-p-i. The computation for var (/Pno adjust) is similar, except that a2 must be revised upward
to 1 + 24 X (.2)2 1.96 to account for the omitted covariates, and p=1 not 75.

Why is OLS so bad? In principle, covariate adjustment should improve precision. But there
is a tradeoff, since adding variables degrades the quality of the coefficient estimates: roughly
speaking, adding an unnecessary variable is like throwing away a data point. See (Breiman and
Freedman, 1983) or (Eaton and Freedman, 1982). By comparison, the screening procedure
shrinks the estimated coefficients towards 0, and this improves the accuracy relative to OLS. In
Table 1, however, the best strategy is still not to adjust at all.

Similar benchmarks are shown for the prediction problem: predicting q =o + 6 by Y, ie,
ignoring the covariates, has an MSPE of 2.01. In the circumstances, this is the best of the pro-
cedures we consider. Predicting q by (d, the conventional OLS strategy using all the covariates,
has an MSPE of 4.12. This is the worst.

How sensitive are these results to the selected value for /? To address this question we set
the common value of d; for 1<i<25 to a=.1, .5 and 1.0 as well as to .2. The results are not
qualitatively different, except that for large values of -y the R2's are all close to 1, and the bal-
ance tilts toward covariate adjustment. Of course, the independence assumption matters too.

The difficulties in Table 1 are mainly due to the fact that p/n is near 1. To illustrate the
point, consider Table 2, where n-100 but p is reduced to 10; the first five O3's are set at .2, the
others at 0. When p is much smaller than n, the impact of the screening process (3) is small,
since at most p/(n-p) of the degrees of freedom for error are being juggled. The naive,
bootstrap and cross-validation procedures all give similar results for MSE and MSPE, although
R2 is still hard to estimate.

The jackknife estimate is still too big, by about 50%. We have no explanation to offer; on
the other hand, we never understood why the jackknife was supposed to work, except as an
approximation to the bootstrap (Efron, 1982, Chapter 6; and see Chapter 4 on bias in the jack-
knife). We also tried the jackknife on OLS, ie, to estimate var (I11)* Somewhat to our surprise,
the jackknife was still about 20% too high; on the other hand, as theory predicts, the bootstrap
came in right on the money.



Table 2. Simulation results for the jackknife and bootstrap applied to
4he screening estimator d3. The model specificationa. 21rl, uz--100,
P10, Pi=5, a =.2

Estimates
of MSPE

ave SD

Estimates
of R2

ave SD

true
naive

jackknife
cross validation
bootstrap

.0097

.0108

.0156

.0116

.0125

.0021

.0068

.0029

1.11 .062
1.05 .153

* *

1.14 .184
1.15 .170

.139

.185
*

.103

.211

.024

.066
*

.071

.068

var (0/no adjust) .012 MSPE (Y) = 1.21

var (/1) - .011 MSPE ((d) 1.11

3. Reasons for bootstrap failure.

Although ,3 is an unbiased estimator of 3, there is bias in llll2, conditionally or uncondition-
ally:

E{'13112lX} 11/3112 + a2 - trace (XTX)-i
E{111112} 1112 + pa2/(n-p-l).

In other words, the bootstrap model (13) starts from a parameter vector with a much inflated
length. In Table 1, for example, II3112 1 and pa2/(n-p-1) t 3. This explanation for bootstrap
failure suggested deflating by the appropriate factor (namely, 11 + 2 * trace (XTX)4/1113I1211/2)
to get its length about right, before resampling. For the model in Table 1, length adjustment
does bring the bootstrap into better line: see Table 3.

NVe also tried a model with Oj=.2 for j=1,...,75 so Pl-75. See Table 4. In this case, adjust-
ment makes things worse on MSE and MSPE: indeed, the raw bootstrap is already biased down-
ward. For R2, the adjustment helps. We do not recommend length adjustment without further
analysis.

Table 3. Simulation results for the raw and length-adjusted bootstrap on

the screening estimator /: the model specification is as in Table 1.

Estimates
of MSE

ave SD

true
raw bootstrap
adj usted bootstrap

.031

.036

.025

.039

.015

.011

Estimates
of MSPE

ave SD

2.79

3.56

2.48

Estimates
of R2

ave SD

.63

.84

.50

.243

.677

.167

.064

.088

.157

Estimates
of MSE

ave SD



Table 4. Simulation results for the raw and length-adjusted bootstrap on
,the screening estimator 1 Model specification: 021l, ni100, p=75,
PF75, 1 .2

Estimates Estimates Estimates
of MSE of MSPE of R2

ave SD ave SD ave SD

true .057 .087 4.63 .81 .353 .065
raw bootstrap .045 .022 4.21 .85 .800 .057
adjusted bootstrap .037 .019 3.48 .56 .352 .154

With respect to the model in Table 1, denote the MSE given X by

4j13,o~,X) = E{(13l - 13l)2 X}. (20)

The bootstrap approximates 1(3,u,X) by 1(13,&,X), and in effect our tables on MSE compare
E{4(1,o',X)} to E{4'(1,,a,X)}. In principle, '1 depends on all the coordinates of 13, and in this
respect screening differs from OLS, where E{(1,1 I1)2} does not depend on 1.

One explanation for bootstrap failure is strong nonlinear dependence of 4 on 1. About the
strongest we found was on j13112. To represent the data more conveniently, let

I.(13,o) = E{)(13,a,X)} = E{(013 - 013)2} (21)
This is the unconditional MSE. Figure 1 shows a plot of 4>(13,a) against 111112 or a2. (The values
of 1 and a were drawn as a sample from the OLS distribution of d and a; computationally, we
estimated 1(1,3) by running the unconditional bootstrap.) By regression,

=&)= .0035 x IIdII2 + .026 x &a + residual, R2 - 70 (22)

Since 111I,2 tends to be too big, this does inflate the bootstrap estimate of MSE, as indicated at
the beginning of the section - for the model in Table 1.

Switching now from estimation to prediction, a heuristic explanation for the bias in the
bootstrap R2 and MSPE runs as follows. Keeping or2 fixed, R2 measures how big the ,3's are, and
the MSPE measures how well they are estimated. The 1's tend to be too big, inflating R2. On
the other hand, when a big p% is estimated as 0 by the corresponding bootstrap 1i*, that is a big
error.

To quantify the effect, for any subset H of columns let H'=H while Ho is the complement of
H. Let J be the set of columns j with 1 < j < 25, so Oj a is positive for j E Jl J while 0-0

for j E Jo. Recall the set S of selected columns from (3) and S* from the discussion before (15).
For a,b=0 or 1 let

Eab = E{t2EJafl Sb (1j - 13)2} and Eab = E*{EjEJa n s.b(1j* -_j)21 X (23)

Starting from equation (9),

MSPE = a2 + El, + Eol + Elo + Eoo
Likewise from (16),

bootstrap MSPE = &2 + E j + E * + E*o + E *
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Figure 1. Plot of unconditional MSE against 1113112 and C2, for a sample of 1's and cr's.

The average values for these 5 components of MSPE are shown in Table 5. As will be seen,
most of the bias in the bootstrap can be accounted for by the last row in the table correspond-
ing to j's which have gj=O in the true model and are screened out of the bootstrap model:
26<j<75 and j 0 S*. Of course, such j's have OjI3 0, and that is the problem in Table 1.
Indeed, Eoo is necessarily 0 while Eoo is quite positive. By contrast, Eoo = E = 0 in Table 4,
where the bootstrap is biased downward.

Table 5. Simulation results for the components of MSPE and bootstrap
MSPE: the model specification is as in Table 1.

True Boo

variance 1.00 0.96
1 j< 25 and j selected 0.40 0.53
26.j<75 and j selected 0.88 0.92
1 <i .25 and j not selected 0.51 0.43
26 < j . 75 and j not selected 0.00 0.79

total 2.79 3.56

4. Other findings.

a) The conditional MSE. Table 1 shows the unconditional average and SD of (/3k -01)2 as
.031 ± .039. For each of the 100 data sets r1,...,100 in the simulation, consider the conditional
mean square error E{(/31 -,1))21X(r)}. To estimate this conditional expectation, we generated for
each r a set of 100 vectors of errors, each vector having 100 iid N(0,1) components. Corresponding

O . 107-



to the sth vector c(r,s), we made Y(r,s)=X(r), + c(r,s) and applied the screening process (3) to
Y(r,s) anvd X(r), winding up with 1(r,s). The conditional MSE of 01 given X(r) can now be
estimate 1 -as

100
MSE(r) = ~ E [/31(r,s) - .21 (24)

100 S=i

These 100 conditional MSE's averaged out to .028, with an SD of .0084. The difference between
.028 and .031 t E{(131 - ,3)2} is sampling error, and the .028 is more reliable. Indeed, the
difference between .0084 and .039 t SD of (i, - j1)2 shows how conditioning on X dramatically
reduces the variability in ( I3 - 01)2.

For each data set r, we previously computed in (19) the bootstrap estimate for the MSE of
/1 given X(r), starting from , and a rather than d and a. A scatter plot of the bootstrap esti-
mate against the conditional MSE across data sets is shown in the left hand panel of Figure 2; a
similar plot for the jackknife is shown at the right. As will be clear, the bootstrap is con-
sistently too high, by a little. The jackknife is an order of magnitude too big. Furthermore, the
R2 for the bootstrap is only 0.36; for the jackknife, 0.19. In addition to other troubles, these
methods cannot discriminate very well between informative and uninformative data sets.
(There is no real attenuation due to imprecision in the Monte Carlo.)

b) Outliers. As will be clear from Figure 2, the jackknife estimate has quite a long right
hand tail. On the log scale in the right hand panel of Figure 3, the bias is still plain to see.
The left hand panel gives a scatter plot for the log bootstrap; this looks quite normal, but R2 is
only 0.25. By regression,

bootstrap estimate = .43 x (true MSE given X).71 x residual factor (25)

The small bias in the bootstrap can still be discerned; a majority of the points are above the
43-degree line.
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Figure 2. The left hand panel plots for each of 100 data sets the
bootstrap estimate of mean square error against its true value (condi-
tional on X). The right hand panel does the same for the jackknife. The
scales differ. The 45-degree line is plotted for reference.



Table 6. Root mean square error for various estimates of MSE and
MSPE: the model specification is as in Table 4.

naive
jackknife
cross validation
bootstrap

c) RMS error. As another measure for the accuracy of the naive, jackknife and bootstrap
MSE, we took the root mean square difference between each of these estimates and the true
MSE conditional on X, over the 100 data sets in the simulation discussed in paragraph a). The
results are shown in Table 6. The bootstrap is only a little better than the naive estimate:
increased variability trades off against decreased bias. Table 6 also shows the results for MSPE.
Here, the cross validation estimator is superior. The bootstrap estimates are not bad, on aver-
age (Table 1). But they are quite noisy: that is the message of this paragraph.

d) Bias in the screening estimator. When averaged over X, the screening estimator j1 is
unbiased by symmetry. Indeed, the first column of X is entered automatically; now project into
its orthocomplement and use rotational invariance. However, 31 is conditionally biased given X.
For the simulation discussed in paragraph a), E(1I3X) averaged .20 with an SD of .038; the SD
measures the conditional bias for a typical X as about 20%o of the true value.
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logarithms are to base 10.
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For columns 2 through 25, the screening estimator is biased toward 0, conditionally or
uncondiU;> Tially. For example, a hundred values Of 32 averaged .14 with an SD of 025 and an
SE of .Oun; again, the true value is .20.

e) The effect of refitting. Any two columns of X are nearly orthogonal, so the effect of
refitting in (3) should be minimal: ie, ,; t ,j for j E S. To test this idea, we jompared YjES i32
with EjJES j2. In the simulation for Table 1, the first sum averages 2.2 and the second, 3.3.
Refitting matters; there are a lot of pairs of columns and the non-orthogonality mounts up.

f) F-tests for omitted variables. It has been suggested that our results are due to model
mis-specification, which could be detected by a routine F-test. We disagree. The explanation
for our results is chance capitalization: data-snooping distorts conventional measures of
goodness-of-fit. Indeed, the F-test cannot detect the miss-specification. To illustrate the point,
consider the simulation for Table 1. This involved generating 100 data sets following the model
(1); and for each, performing the screening operation (3), leading to a set S of selected columns.
For each data set, we ran a naive F-test for adding en bloc the columns outside S. On the aver-
age, the F-statistic was .9, with 49.4 degrees of freedom in the numerator and 25 in the denomi-
nator. (Also see Table 7 below.) This would only confirm the value of the screening procedure.
Of course, it is misleading to make F-tests this way, treating S as given rather than the result of
data-snooping.

g) How many variables get into the second pass? In the simulation for Table 1, the
coefficients of the first 25 columns were set to a common positive value; these will be called 1-
columns. The remaining 50 columns had coefficients set to 0, and will be referred to as 0-
columns. Let N1 be the number of 1-columns which got into the second-pass regression. Like-
wise, let No be, the number of 0-columns which entered the second-pass regression. The
bootstrap analogs will be denoted by stars: thus, No* is the number of columns with 25 < j < 75
which entered the second-pass bootstrap regression. (Of course, /j -L 0 even for the 0-columns.)

Means for these N's are shown in Table 7, for a simulation involving 100 data sets. For
example, we expect .25X50=12.5 of the 0-columns to get in, and on the average 13.4 did: the
difference is sampling error. (Since X is not exactly orthogonal, the O's are dependent, and the
variability in No is appreciably greater than binomial.)

On the average, 12.2 of the 1-columns got into the second-pass regression. This is only 49'%
of the 1-columns, which may seem disappointing, but in the present context even a test of size
25%o does not have much power. The bootstrap estimates this quite well: E(Ni*)=13.8. How-
ever, the bootstrap badly over-estimates the number of 0-columns: 21.4 versus 13.4. This is
because the d3's tend to be too large, so the B*7's are more likely to be significant.

Table 7. Simulation results for the number of variables entering the
second pass: the model specification is as in Table 1.

1-columns 0-columns total

true 12.2 13.4 25.6
bootstrap 13.8 21.4 35.2



Dijkstra (as reported in these proceedings) had a sharper result for a smaller model. To repli-
cate his vork, we repeated our simulation for a model with five 1-columns and five 0-columns.
The resui'W are shown in Table 8: the bootstrap is over 50V% too high on the 0-columns.

A small theoretical calculation might clarify matters. Consider the very simple regression
model

y= 3xi + Ei (26)
where the Ei are iid N(0,1) for i=l,...,n. Here, d is just a number. The x's are deterministic,
and normalized so EIn x,2 n. Fix a critical value c and let

(D) -= Pr{Ji31 > c/4V'}. (27)

Of course, this 4) can be computed exactly from the normal distribution, since a2 1 is given:

4>(p)= Pr{3v i+ ZI> c} (28)

where Z is N(0,1). Indeed, ,3 is distributed as d +. (Z/VH).
Now we try to estimate 4) by the bootstrap:

(Do) = Pr{I!3v¶+ Z'I > c} (29)

where Z' is an independent N(0,1) variable, and Z is held fast. Finally,

E{4(/)} ~=Pr{l1v ±+ Z + Z'lI> c} (30)

where Z and Z' both vary. If d is of order 1/v4H or smaller, the bootstrap will fail: Z + Z' has
fatter tails than Z, by a lot. If O3v/n -. oo, then ¢(d3) and E{4(/3)} will both approach 1, but at
different rates.

Table 8. Simulation results for the number of variables entering the
second pass. The model specification: a2-1, n=100, p-10, Pl=5, -1'.2

1-columns 0-columns total

true 4.2 1.3 5.5
bootstrap 3.9 2.1 6.0

5. Computational details.

The program was written in FORTRAN, using LINPAK for the matrix algebra. The com-
putations were done on a CRAY. Those for the model in Table 1, for example, took 10 minutes
of CPU time. Among other things, there were a hundred 75X75 matrices to invert, and
upwards of 50,000 regressions to run. (Cross-validation was done by updating XTX: see Efron,
1982, p18). Some of calculations were replicated on a SUN workstation, in FORTRAN and in
S. A few of them were replicated in True BASIC on a PC-XT. We therefore have some degree
of confidence in the code. Too, exact distributions for many of the intermediate results can be
computed and checked against observations. On the whole, this worked out quite well; there
were a few small but highly significant anomalies. Of course, we are pushing the random
number generator quite hard: Table 1 involves over a million calls.



6. Summary and conclusions.

In ourtimulations, when the number of variables is relatively large the boctstrap and partic-
ularly the jackknife have some trouble in deaiing with uncertainty created by variable selection.
It may not be possible on the basis of such techniques to develop a model and calculate its per-
formance characteristics on the same data set. This would have gloomy implications for many
kinds of modeling. Of course, an investigator can always develop the model on one data set and
test it on another: replication is always a good idea.

In the classical setup, given some type of relationship among variables expressed in a well-
specified statistical model, it is possible to estimate parameters or make predictions from a data
set and put margins of error on the results. If you know what to look for, there is a way to find
it. On the other hand, given any statistical procedure there will always be some kinds of rela-
tionships which will not be detected by that procedure. And someone who uses a variety of sta-
tistical procedures, taking many cuts at the data, is almost bound to find structure even when
none exists. That is the trouble with data-snooping.

To illustrate the point that given some style of analysis there will be structure which escapes
it, take linear regression analysis. Consider the time series xt plotted against time t=1, * * - 50
at the left in Figure 4. This looks like pure noise, and fitting xt=a + bt + et isolates no trend.
On the other hand, plotting xt against xt_l at the right shows this series to be perfectly deter-
ministic: xt=f(xt-1), where

f(x) = 2x for 0 < x < 1/2

2 - 2x for 1/2 < x < 1.

A major part of the problem in applications is the curse of dimensionality: there is a lot of
room in high-dimensional space. That is why investigators need model specifications tightly deri-
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Figure 4. At the left, a Lime series with no linear regression structure.
At the right, plotting xt against xt-l reveals the structure.



ved from good theory. We cannot expect statistical modeling to perform at all well in an
environrn-nt consisting of large, complicated data sets and weak theory. Unfortunately, at
present t't describes many applications. References are given on modeling issues, eg, (Achen,
1982), (Baumrind, 1983), (Daggett and Freedman, 1985), (de Leeuw, 1985), (Freedman, 1985,
1986), (Freedman-Rothenberg-Sutch, 1983), (Hendry, 1980), (Leamer, 1983), (Ling, 1983),
(McNees, 1986), (Zarnowitz, 1979).

Disclosures

Rudy Beran remarks that chance capitalization is a problem, even for bootstrap studies of
chance capitalization. In principle, this is certainly right. However, in this paper we took our
own advice about replication. We spent several months on free-style data snooping. Then we
wrote a draft of the paper, with blank spaces for all the empirical numbers. Then we made a
fresh set of computer runs and filled in those blanks. Finally, we ate all the words that had to
be eaten.
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