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1. Introduction

This paper is about the consistency of Bayes estimates.
The usual statement is that for almost all sample sequences,
as the sample size goes to infinity the posterior distribution
piles up near the true value of the parameter. The objective
is to reformulate this idea as a finite-sample result, without
exceptional null sets or "true values" of parameters.

We begin with coin tossing, and develop an explicit inequality
which shows that the posterior must concentrate near the observed
fr-action of heads. The inequality replaces the asymptotics and
eliminates the null set; the observed fraction stands in for the
true parameter.

To be a little more specific, suppose there are j heads in
n tosses of a coin. Consider the posterior odds ratio for
a parameter interval of fixed length centered at j/n. The
posterior odds are bounded below by abn, where a>O and b>1
are computable constants. So the odds go to infinity at an
exponential rate.

If the prior assigns measure 0 to an interv al, so will the
posterior. Even if the prior assigns small positive mass to
the interval, it may take a long time for the data to swamp
the prior. The inequality must therefore take into account
the degree to which the prior covers the parameter space.

The notion of "4-positivity" is introduced, to measure coverage;
Xb is a positive function on (0,1). A prior p is said to be 4-
positive if p assigns mass 4(h) or more to every closed interval
of length h in [0,1]. For example., if c(bh)= .lh, then Ip is 4-
positive if and only if p is bounded belowq by .1 x Lebesgue
measure, setwise. Priors with densities which have zeros--
like betas-- can be handled using more complicated 4i's;
so can singular priors.

The inequality on the posterior odds ratio holds uniformly in
4-positive priors p, and uniformly in the fraction j/n of heads.
For any parameter interval (j /n-h,j/n+h), the posterior odds
ratio is bounded below by

(1.1))en( I-E )g(h)( 1 . 1 )
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Here, E>O is a nuisance of rigor; tj(h,E)>O is computed from
f and does not otherwise depend on the prior; g(h)>0 does not
depend on the data or the prior.

The rest of this paper is organized as follows: section 2
gives a careful statement of the result for coin tossing;
section 3 has a heuristic proof and section 4 the rigor.
The extension to the multinomial is in sections 5-6, and
the last section discusses the idea of 4-positivity.

History. In effect, we will estimate the posterior using
the method of LaPlace (1774); he showed that the posterior piles
up near the MLE, but only for the uniform prior. (An easy modern
proof uses Chebychev's inequality, but that was not available
to LaPlace.) Some modern references on the consistency of
Bayes estimates include LeCam (1953), LeCam and Schwartz (1960),
Schwartz (1965), Freedman (1963), Diaconis and Freedman (1986).
Edwards-Lindman-Savage (1963) must be cited too; their idea
was that the data eventually swamps a non-dogmatic prior--
the principle of stable estimation (pp201-8).

A closely related development is the asymptotic normality of
the posterior, which is often called the Bernstein-von Mises
theorem-- although LaPlace got there first; references include
Johnson (1967, 1970), Ghosh-Sinha-Joshi (1982), LeCam (1986,
secs 12.3, 12.4, 17.7).
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2. The theorem for coin tossing

Let i6 be a positive function on (0,1). A prior probability p on
[0,1] is "'4)-positive" if p[p,p+h].4)(h) for all p and h with
O<p<p+h<1.

Let H be the relative entropy function:

(2.1) H(p,0) = -p log 9 - (l-p) log (1-0)

Here, p=j/n is the relative frequency of heads, and 0 is the
parameter-- the probability of heads. (The prior is a
distribution over 0.) As is well known,

(2.2) H(p,-) is strictly convex, with a strict minimum at p.

For O<h<l/2, let

(2.3) g(h) = inf (H(p,0)-H(p,p): 19-pI.hI

We will show later that g(h)>O, and the inf is attained.
Clearly, g is monotone increasing. Its graphi is shown in Figure
1; for details, see (5.12-19) below. Although g is defined on
(0,1/2), most of our results are proved only for (0,1/4).

Figure 1. A graph of g(h), which is convex and
increasing; g(h) > 2h2, which is plotted
for reference as a dashed line.
The two curves are rather close.
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To state the main result, suppose a coin is tossed n times, and
p=j/n is the fraction of heads. Let O<h<1/2* Let R(n,p,h) be
the posterior odds ratio for the inside of the parameter interval
(p-h,p+h) versus the outside, with respect to a 4)-positive prior:
the outside of the parameter interval is nonempty, because h<1/2X
Let O<E<1. There is a W(h,E)>0, which depends on X), h, and E but
not on n or p, such that the following inequality holds.

(2.4) Theorem. R(n,p,h) > @(h,E) en(l-E)g(h) for O<h<'/4

The first factor on the right does not depend on the data. It
depends on the prior only through 4); it depends on h and e. The
second factor depends on h and e too; but it depends on the data
only through the sample size n. In particular, p is not involved
on the right. The bound grows exponentially fast as n-+m. As it
turns out, t(h,c) is the minimal prior mass in an interval of length
about Eh2: more rigorously, tD(h,E)=4)(hm), where h=min{'/2Eg(h),h).

The unattainable ideal version of the theorem has tD(h,E) replaced
by 4)(h), and c=0 in the exponent. On the loDg scale, these
blemishes vanish, as the corollary shows.

(2.5) Corollary. lim inf inf - log R(n,p,h) > g(h)
n-+oo p,i n

In (2.5), the prior p is restricted to be 4)-positive; O<h<1/4;

and g(h) is best possible.

As will be seen, g(h)>2h2; so (2.5) implies that for suitable

i(h)>O, depending only on 4,

(2.6) Corollary. R(n,p,h).Lj(h)e2nh for all n, all pE[0,1],

all hE(0,1/4), and all 4)-positive priors p.
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3. Heuristics

Entropy comes into the argument when you compute the

posterior odds ratio:

JI Qpn(1-0)(l-P)n p(dO)

R(n,p,h) (p-h,p+h)
I apn(1.0)(1-P)n P(d)

[O,p-hIu[p+h,1]

The integrand is e-nH(p,O),

The numerator must be bounded from below, and the denominator from

above. The signs may cause a little confusion: for example, the

numerator is large when H(p,*) is small, that is, close to its

minimum H(p,p).

To bound the numerator, let hO be small and positive.

For 0 within h3 of p, an argument by uniform continuity will show

that H(p,0) is within Eg(h) of the minimal value H(p,p). And the

p-measure of these 0's is at least t(h,E). So the numerator is

at least e-n[H(p,p)+Ea(h) I(h)
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For the denominator: H(p,O) is at its minimum in 0 when 0=p.

so the worst 0 in the denominator is 0=p+h or 0=p-h. That

suggests trying to minimize H(p,p+h)-H(p,p) and H(p,p-h)-H(p,p),

leading to the study of g(h). In the end, convexity arguments

show that the denominator is at most e n[H(p,p)+g(h)].

Now

-n[H(p,p)+Eg(h)H
R(n,p,hl) > -n[H(p,p)+g(h)]

= (h,)Eenn( 1-E )g(h)

That is Theorem (2.4).

The entropy function H(p,0) is naturally defined on the closed

unit square, except for the corners p=0=O and p=0=l. We set it

to 0 there, but lim H(p,0) is undefined as (p,0) converges to

either of those corners; although H(p,p) tends to 0 as p tends

to 0 or 1. (The discontinuity is a tedious point of difficulty

in the background.) By comparison, it is safe to set H(p,0)=w

if p<1 and 0=1, or p>O and 0=0, since w is the limiting value

on those edges of the unit square. A fishnet plot of H(p,0)

is shown in Figure 2.
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Figure 2.
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4. Proofs for the coin.

Let O<h<1/4. Recall g(h) from (2.3). Confirm that

(4.1) g(h) = minp fH(p,p+h)-H(p,p): O<p<l-h)

= minp (H(p,p-h)-H(p,p): h<p<l} > 0

For example, p-H(p,p+h)-H(p,p) is continuous on (0,1-h);

positive by (2.2); tends to log 1/1h >O as p-+O+; tends to

as p-(1-h)-. And H(1-p,1-0)=H(p,0). For details, see the

next section.

The *j-function and the proof of Theorem (2.4)

Assume without real loss of generality that O<P<1 /2.

Keep hE(0,1/4). Clearly,

(4.2) a H(p,0) = - + KR
0 1-0

If p<0<p+h, the first term on the right in (4.2) is
trapped in (-1,0). The second term is positive, and at
most (1-p)/(1-p-h); this bound increases with p, to a
maximum of (1/2)/('/2-h): the latter is at most 2.
This is where we use the condition that h<l/4. Thus

(4.3) '-i H(p,0)j < 2, provided p<0<p+h, O!p..1/2, O<h<Q/4

Fix E>0. Let hO=min{l/2Eg(h),h}. Let tI(h,E)=$(hw), a positive
lower bound on the prior p-mass in (p,p+ho). By (4.3), p<O<p+hl
entails H(p,0)<H(p,p)+Eg(h). The odds ratio for the inside of
(p-h,p+h) vs the outside can now be estimated, as follows.

f efl-nH(p,i)p

R(n,p,h) = (p-h,p+h)

{ e-nH(p,O)p(dO
[O,p-hJufp+h,1]
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Since hl<"h, the numerator is bounded below by

f enH(Po)p(dO) > en[H(P,p)+E9(h)Jp(p1p+h)
(p,p+h )

-nnH(p,p)+pg(h) ] g(h.

The denominator is bounded above by en[H(PsP)+g(h)I]

For example, suppose p+h<Oil. Then H(p,O)>H(p,p+h) by (2.2);

and H(p,p+h)>H(p,p)+g(h) because g(h) is the worst-case entropy

differential. (Since p<1, H(p,1)=o=; and the inequalities

are trivial if p+h<1 but 0=1; or if p+h=0=1.) In

consequence, and this completes the proof of the theorem,

R(n,p,h) > tj(h,E) e ( CZ
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Proof of (2.5). The inequality is immediate from (2.4).

To see that g(h) is best possible, fix h. For now, fix j and n

too. Abbreviate p=j/n. We must bound R(n,p,h) from above.

As (2.2) shows, the numerator is bounded above by enH(P,P)

let 6>0. The denominator is bounded below by the integral

over [p+h,p+h+6]. For 0 in that interval, H(p,0) is at most

H(p+h+6), by (2.2). So the denominator is at least

p(p+h,p+h+6).efl[H(PbP+h+6)]

If p+h+6<1, then,

- log R(n,p,h) < O(-) + H(p,p+h+6) - H(p,p)
n n

To complete the argument, let n-o; let p=j/n tend to a

point where H(p,p+h)-H(p,p) takes its minimum value g(h);

and let 6-0. (Eventually p+h<l, because H(p,1-)=o; for

details on the minimization, see the next section.) f
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5. The function g(h).

The outline of this section is as follows. The entropy differential
D+b(p)=H(p,p+h)-H(p,p) is introduced, and its derivative computed
in terms of the auxiliary "left hand" and "right hand" functions
Lb and Rb. The point pb where D+b achieves its minimum is
computed by solving Lh(p)=Rh(p). The g(h) of (2.3) is
the worst-case entropy differential, D+b (ph); some properties
of g(h) are developed.

Entropy differentials

Let h(0,/2), so h<1-h. For O<p<1-h, let

D h (p)=H(p,p+h)-H(p,p)

For h<p<1, let

D-h (p)=H(p,p-h)-H(p,p)

These are the "entropy differentials," which are to be bounded
below. They are plotted in Figure 3.

Figure 3. The entropy differentials are
convex functions of p, and D+h<D-h on (h,1/2).
The figure shows h=1/4 . The heavier curve is
D+h; the ligher one, D-b. Vertical lines are
shown at h and 1-h.

t .o
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0.4

0.2

0.2 0.4 0.6 0.8. 1.0
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The main object of this section is to give some description

of g and the entropy differentials, using convexity arguments;

and the next lemma is basic to the development.

(5.1) Lemma. Let p>O and let 6 be real, with p+6>O and 6.0.

Let 0(p)=plog[p/(p+6)3. Then 0 is strictly convex.

Proof. First, suppose 6<0. Then p>i61 and

4(p) = -p log(1 - JA) = 7 1 1

J=1p
Each term is convex.

Next, suppose 6>0. Let u=p+6>6. Now

C(p) = (u-6)1og(1 6
U

-(u-6) 6163 ±
j=1 u

00 1 1 ' 6+1 1
= -6 + Z {6f- + 1

j=1 e ter ui

Again, each term is convex. i
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(5.2) Lemma.

a) D- h (p)=D, i ( 1-p).

b) D-h ( 1/2 )=D b ( ' /2 ).

c) Dh, (O+)<oo, but D*h (1-h-)=oo.

d) Dbh(1-)<oo, but D-b(h+)=o*.

e) The entropy differentials are strictly convex functions of p.

f) D-h(p)-D+h(p) is strictly decreasing as p increases
from h to 1-h.

g) D-h(p)>D.h(p) for h<p<l/2.

Proof. Claims a)-d) are clear.

Claim e) follows from (5.1).

Claim f). Clearly,

D-h(p)-D+h(p) = H(p,p-h)-H(p,p+h)

= plog p-e'h 1 1-p+h

p-h - 1plg1-p-h

= plog p- (1-()l-p)+ t

= 2 I- h {2 1 h-j

This is legitimate because O<h/p<1 and O<h/(1-p)<1. Finally,

P ot -j -J}p2 (1-p)j
is monotone decreasing as p increases, at least for j>O.

Claim g) is immediate from b) and f). D
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Next, we have to differentiate the entropy differentials, and

it is enough to consider D+b(*). For O<p<1-h let

(5.3) Lh(p) = log(p+h) - log p + log(1-p) - log(1-p-h)

(5.4) Rh(p) = 1-p-h p+h (p+h)(1-p-h)

As is easily seen,

(5.5) a D.h(p) = -Lh(p) + Rh(p)

To minimize D.h, we have to solve Lh(p) = Rh(p); hence the "L"

and "R", for "left" and "right" hand sides of the equation.
Some facts about D, L and R are developed as lemmas: see

Figure 4.

Figure 4. The functions Lb(*) and Rh(*)
are convex. Their graphs cross at ph.
The figure shows h=1/4 and pb=.3345.
The heavier curve is Lb; the lighter one, Rb.
A vertical line is shown at 1-h.
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(5.6) Lemma. Fix a with O.a<1. Abbreviate 0=1-a.

a ) Lb ( ' /2-oxh) =
a22j+1+ 02j+1

4h + 2ZE2
j= j= 1

b) Rh (1/2 -ah) = 4h + 2 z7 (2h)
j=1

Proof. As is easily verified,

Lh ('/2-ah) = log(1+20h) - log(1-20h) + log(1+2ah) - log(1-2ah)

Rh ( ' /2 -ch) =
4h

1 - 42 h

( 5. 7 ) Lemma.

a) Rh(O+)<oo=Lh (O+).

b) Rk(1/2 )>Lh('/2 ).

c) -) D+h(p ) > 0

d) 4a D-h(p) < 0

e) D+h (*) is decreasing near 0.

f) D-h(*) is increasing near 1.

Proof. Claim a) is easy.

Claim b) follows from (5.6), with x=O.

Claim c) is immediate from b), and d) is symmetric.

Claim e) follows from a), and f) is symmetric.

Lii
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Let ph be the unique point where D+h(*) attains its minimum.

(5.8) Lemma.

a) Lb(*) and Rh(*) are strictly convex.

b) Rh ( 1-h-6) /Lb ( 1-h-6))-o as 640O .

c) Lh(p)-Rh(p) is strictly decreasing as p increases
from 0 to 1-h.

d) Ph is the unique solution to Lh(p)=Rh(p).
e) Lh is minimum at 1/2-1/2h; and Rh, at 1/2-h.

f ) '/2 -h < ph < 1/2 -' /2 h.

Proof. Claim a). As is easily seen,

Rh(p) = h(p h + 1-p-hi

Each term is convex. Another easy calculation shows

2 1 1 + 1 1 >
ap2 Lb p) p2 (p+h)2 (1-p-h)2 (i-p)2

Claim b) is easy.

Claim c). RDp(p)-Lh (p)= Dih(p), which increases because

D+h is convex.

Claim d) follows.

Claim e) is easy.

Claim f). This is equivalent to the pair of inequalities

Lh (/2 -h ) > Rh (1/2 -h)

Lh( '/2 -' /2 h ) < Rh (' /2 -1 /2 h)

which follow from (5.6 ).
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Recall that D+ h takes its minimum at ph. We now make
some remarks about the function h-+ph. Abbreviate

P = h ph.0

(5.9) Remark. p'<O for O<h<'/2

Proof. The implicit function theorem and (5.8d) imply
that ph is a smooth function of h. Take P=Pb in (5.3-4) and
differentiate with respect to h; equate the results to see

p'I+ 1 P-)+ p'+I
p+h p i-p 1-p-h

- (p+h)(1-p-h) - h(p'+l)(1-2p-2h)
[(p+h)(1-p-h) ]2

This simplifies to

p+h p i-p + -p-h -
h(p'+l)(2p-1+2h)
[(p+h)(1-p-h) ]2

and then

(5.10) p )2plh ( ' 1) 2p-1+2h= (p'+l)(p+h) (1-p-h)

Now 2p-l+h<O because ph<1'/2-_/2h while 2p-1+2h>0 because
ph>'/2-h; see (5.8f). If p'+1>0 then p'<O by (5.10);
on the other hand, if p'+1<0 then p'<O. m

IJ
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A graph of pb is shown in Figure 5. Numerical calculations
suggest that pb is a convex function of h, but practically linear
on(0, /2):

1/2 - 2 /3h < pb < 1/2 - .64h

Some of this can be proved; also see (5.8f).

(5.11) Remarks.

a) Ph > 1/2 - 2 /3h for O<h<'/2, by (5.6).

b) pb < 1/2 - (2 /3 -E )h for O<h<6, again by (5.6).

c) The derivative of ph at 0 is 2/3.

d) p'1-2/3 as h-0 , by (5.10) and c).

Figure 5.
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A graph of h-ph; this function is
virtually a straight line on (0,1/2).
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The construction of g(h) and its properties

Let g(h) be the worst-case entropy differential:

g(h) = D+n(ph)

= H(ph,ph +h) - H(ph, ph)

= H(1-ph,1-ph-h) - H(1-ph,l-ph)

Numerical calculations suggest that g(h) is convex, that
g(h)/(2h2) is convex, and the latter is practically constant,
increasing from 1 at h=O to 1.07 at h=1/2. Some of this can be
proved, and will be discussed now.

(5.12) Remarks.

a) g(h) = 2h2 as h-OO. Indeed,

H(p,p+h) - H(p,p) 2 (1) + O(h3)

as h-O0, uniformly in p bounded away from 0 and 1;

recall from (5.11) that pb-.1/2 as h-O+.

b) g(h) is monotone. Indeed,

(5.13) ahD (P) = (p+h) > 0-Dh(p) (p+h)(1-p-h)

Since the whole curve D+h(*) shifts up when h increases, so does
its minimum value, which is g(h).
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(5.14) Proposition. Let O<p<l and O<h<1-p. Then D+h(p)>2h2.
Indeed, there is equality at h=0; the difference is strictly
increasing (but not convex).

Proof. Equation (5.13) shows

(5.15) ah D+h(P) = (p+h)(h-p-h) > 4h

because (p+h)(1-p-h)<1/4, with equality only at p+h=1/2.
This proves strict monotonicity. m-1

-I

(5.16) Corollary. Let O<h<'/2. Then g(h)>2h2.

Proof. g(h) = inf {D+h(p): O<p<1/2}. If O<h<1/2 and
O<P<1/2 then O<h<1-p, and (5.14) applies. m-1

IW

(5.17) Corollary.
increasing in h.

Let O<h<1/2. Then g(h)-2h2 is strictly

Proof. Use (5.15).

(5.18) Remark. h-.D+h(p)/2h2 is not increasing in h. For
example, with p=.3, the min occurs near h=.27; the function
decreases from 0 to .27, then increases.
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(5.19) Proposition. L

Proof. Choose p=1/2-h.

,et O<h<1/2. Then g(h)<3h2.

Then g(h)<D+h(p), SO

g(h) < ('/2-h)log(1-2h) + (1/2+h)log(1+2h)

= z [2.41 - 2j

2 2[ { [ j 1 1
-](2 2 ( ij-1 )= 2h + 4h f : [24 ](2h)2~'

ij=2 2jl j

But 2h<1, so g(h)/2h2 is bounded above by

1 + 2f 1 [2j-1 2-±]1 1+ 2t 2[2ji -+i2] }+9 < 1.5 0

If O<h<1/4, a similar argument starting from p=1/2
gives a much tighter upper bound, g(h)<2.lh2.
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6. The theorem for the multinomial.

Let Sk be the simplex of all k-vectors 0 with non-negative
coordinates Oi adding to 1. Consider a die with k sides,
labelled 1,...,k. In n tosses, the relative frequencies with
which these Sides land form a vector p=(pl,... ,pk) in Sk.

(6.1) For O<h<'/k, let Nk(h,p) be the polyhedral neighborhood
of p consisting of the 0£Sk with j0i-pij<h for all i.

Plainly, Nk(h,p) is the sphere around p of radius h-- in the
sup norm.

(6.2) Let Hk(p,0) be the relative entrop,y:

k
Hk(p,o) = - L Pilog 0i

i=l

This can be defined everywhere by the convention Ox==O, but
the limit of Hk(p,0) is not well defined if eg pi and Oi both
tend to zero.

The first main result in this section, to be proved later, shows
that the minimum entropy differentials do not depend on the
dimension k. Recall g from (2.3).

(6.3) Proposition.

P£Sk, ONk(h,p) [Hk(p,O) - Hk(p,p)] g(h)
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A prior p on the simplex Sk is "4)-positive" if it is uniformly
positive on a certain class of sub-simplexes. More specifically,
let v be a vector of length k, whose entries are either +1 or -1.

(6.4) Definition. Let Tk(v) be the set of k-vectors
X=(Xl,...,Xk) satisfying:

k
Z xi 0 and O<vixi<1 for i=l,...,k
i=1

For pESk and O<h<'/k let

Tk (p,h,v) = p+hTk(v) = {p+hx: x£Tk(v))

Say p is ¢)-positive iff p{Tk(p,h,v)}>4)(h) whenever Tk(p,h,v)
C Sk.

To state the next result, suppose the k-sided die is tossed
n times, and p is the vector of empirical frequencies. Let
0<h<l/k. Let R(n,p,h) be the posterior odds ratio for the inside
of Nk(h,p) versus the outside, with-respect to a 4)-positive
prior: the outside is nonempty, because h<1/k. Let E>0. There
is a tj(h,E)>O, which depends on 4), h, and E but not on n or p,
such that the following inequality holds.

(6.5) Theorem. R(n,p,h) > t(h,E) en(l E)g(h) for O<h<1/2k.

(6.6) Corollary. lim inf inf - log R(n,p,h) > g(h)
n-ow p,j n

In (6.6), the prior p is restricted to be 4)-positive, O<h<'/2k,
and g(h) is best possible.
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7. Proofs for the multinomial.

The proof of (6.3)

Suppose k.3. Since the entropy function (6.2) is convex in 0
with its minimum at p, the infimum outside the convex polyhedron
Nk(h,p) is attained on the boundary. Consider eg the intersection
of the boundary with

F (0: OESk and Ok=pk+hI

Assume for the sake of argument that this face is nonempty, so
pk+h<1. Consider

(7.1) infOEF Hk(p,O) - Hk(p,p)

Now

Hk(pqO) =
k

- E p.log 0.
ii1 1i= 1

k-1
= -ZI Pilog 0i - PklOg(pk+h)i=1

k-i
E- Pilog(oi/i-Pk-h)

i=i
- Pklog(pk+h) - (1pklg'P h

The last sum in the display can be written as (1-pk)Hk-_(p,O)

where pi=pi/l-pk and 6i=0i/1-0k for i=l,...,k-l. So p, 0 E Sk-1.

Now (1-pk)Hk-l(p,6) is minimized in 5 at O=p, and the value of

the minimum is

k-i
- L. Pilog(Pi/-Pk) = - z

i=1
pilog P. + (i-Pk)log(i-Pk)

i=i11
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We pause to confirm that our minimum is on the boundary of
Nk(h,p): by construction, it is only on the hyperplane Ok=pk+h.
Switching back to the original coordinate system, the minimum
is at 0 with

Oi =(1-p pi for i=1,...,k-1 and Ok=pk+h

Clearly, the 0, are non-negative and sum to 1. For i<k,
0i falls below pi by the amount

1Pk h < h.

Coming back to the main line of argument, the infimum in (7.1) is
obtained by subtracting Hk(p,p), and equals

-pklog(pk+h) - (1-pk)log(1-pk-h) + pklog Pk + (1-pk)log(1-pk)

which can be recognized as D+b(pk). The latter is minimized when
Pk=ph, and the minimum value is g(h). This completes the
proof of (6.3).

(7.2) Remark. If h is near 0, then Pb is near 1/2. So the pESk
with the worst entropy differentials have one or two coordinates
near 1/2. By renumbering, suppose pl<...<pk. There are two
possibilities for the worst-case p's:

i) pk=l-ph>1/2 and PI,...,pk-, are free;

ii) Pk=ph<1/2 and pl,...,Pk-1 are free.

Case i) includes eg the possibility that pkl=-pb and Pk-l=ph
and pI=...=pk-2=O.

Recall the definition (6.4) of the simplex Tk(V). The proof
of the next lemma is omitted as standard.

(7.3) Lemma. The extreme points of Tk(V) consist of all
k-vectors x which sum to zero, with xj=vj or xj=O for all i.
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The proof of (6.5)

Suppose by renumbering the sides that pI<....<pk. Let
vl=...=vk-l=l and vk=-l. We work on the simplex Tk(p,h,v),
which is wholly in the interior of Sk, because pk>'/k>h. Indeed,
the simplex has k extreme points by (7.3):

Pi P2 P3 * * . . Pk- I Pk

pl+h P2 P3 Pk-I pk-h

Pi p2 +h P3 pk- 1 pk-h

pi P2 p3+h . pk-I pk-h

p1 P2 P3 pk- I +h pk-h

And each extreme point is in Sk.

The rest of the argument is as for the coin. Indeed, as a
function of OETk(p,h,v), Hk(p,O) still has Lipschitz constant 2.
For the proof, set pk=l-pl-...-pk-I and ok=l-O1-...-Ok- ; then
differentiate with respect to 0i for i<k:

aaH(p,0) = + Pk

The first term is trapped in [-1,01, because Oi >pi for
0ETk(p,h,v). The second term is at most 2; indeed, Ok.pk-h,
so the second term is bounded above by pk/(pk-h): but pk>1/k
and h<1/2k. This completes the Lipschitz estimate.

To estimate the odds ratio, bound the numerator below by
integrating over Tk(p,h,v), using the Lipschitz estimate.
Bound the denominator above using (6.3).

m



27

8. Some facts about *-positivity

This section has some remarks and examples on the idea of

4-positivity; we hope to explore the theory more systematically

in the future. Recall that b is a positive function on (0,1);

and the prior p is ¢-positive iff it assigns mass ¢1(h) or more

to every closed interval of length h in [.0,1].

(8.1) Remark. If 1(h)>ah for all h, and p is 4-positive, then

p is bounded setwise below by a times Lebesgue measure.

It is natural to conjecture that a 4-positive class of measures

is bounded below (setwise) by a positive measure, but that turns

out to be wrong; j--positivity is a more general idea.

(8.2) Example. There is a ¢-positive class of probability

measures M = [pI on [0,1] such that if a is a measure and

.x<p setwise for all p£M, then m=0.

Construction. The class M will be countable. Let A

be Lebesgue measure on (0,1]. Let An assign mass 1/n+1

to each of 0/n, 1/n, 2/n, ..., n/n. Let
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n+1 1
Pn n+2 In + n+2

Let R=(r} be the rationals in [0,1], and Q the irrationals.

If C<Pn then {r3<1/n+2 and o(Q).l/n+2, so in the end

f{r}=O, a(R)=O, and m(Q)=O.

We claim that {(p is ¢-positive, with b(h)=h2/4. To verifyn

this, consider the interval [x,x+h]. Suppose an an

and b < x+h < b+1 Clearly, b-a > h h n ; so b-a . nh-2.

So, there are at least b-a+1 rationals of order n in [x,x+h], and

A [x,x+hl > nh-1
n n+1

Now

p [x,x+h] > nh+2

> -h-- 2 n+2

> - h if n+2 > 4
4 -h

> 1 h24

4 1~~~~~~~~~~~~~~~2If n+2 < - 4 a lower bound on p [x,x+h] is still - hh n4

from the A-term only. In fact, N(h) is of order h2

as one sees by taking n of order 1/h.
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There is a connection with monotone rearrangements (Hardy-

Littlewood-Polya, 1934).

(8.3) Remark. Let X be convex, with derivative f, and 4(1)=1.

So f is monotone nondecreasing, and its integral is 1. All

rearrangements of f are ¢-positive. Some rearrangements have

bigger (and nonconvex) ¢'s; for such a X, all rearrangements of

its density will no longer be ¢-positive. If 4(h)=ah2, the

rearrangements can be bounded below only be a trivial measure.

We endow the space of probabilities on [0,1] with the weak-

star topology, which is compact and metrizable.

(8.4) Remark Let M be a b-positive class. Then the closed

convex hull of M is ¢-positive too.

If M consists of one prior, or finitely many priors,

then M is ¢i-positive; the next result is a small generalization.
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(8.5) Remark Let M be a closed, convex class of probabilities

on [0,11. Suppose that each element of M assigns positive

mass to every open interval. Then M is 4)-positive.

Proof. Fix h with 0<h<1. Let 0<x<1-h. Let

the continuous function f on [0,1] vanish to the left of x

and to the right of x+h; let fx=1 at x+Ih; complete fx by

linear interpolation. Now p(f ) is a continuous positive

function of pEM and x; so it has a positive minimum: 4)(h) can

be defined as this minimum, over p and x. F-

Let MX be the class of ¢)-positive p. When is MX nonempty?

When is 4) the exact inf, that is, 4)(h) = inf{p[x,x+h]: pEM and

0<x<x+h<1)? What are the extreme points of M ? At this point,

we only have some scattered remarks as partial answers.

(8.6) Example. Let 4(h)=h/10, for 0<h<1. One compact convex

class M of 4)-positive p is the set of p of the form

.1*Lebesgue + .9*v,

where v is any probability. The extreme points have v=6x
This class is maximal, by a standard extension argument off

intervals. There seem to be two other compact convex 4)-positive

classes M, which are minimal: take v=6o or 6i. To get intermediate

classes, mix over any compact set of 6x's containing x = 0 or 1.
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(8.7) Example. Let 4(h)=1/2h for h<2/3 and 4(h)=2h for 2/3<h<l.

The extreme points of the class of ¢-positive p seem to be as

follows:

1/2 Lebesgue + 1/2 6a with 1/3 <a<2/3

1/2 Lebesgue + 1/2(3a 6 + density 3 on (2/3+a,1)} for a<1/3
a

(8.8) Remark. Let M={p} be ¢-positive. Then 4(l/n).l/n,

otherwise p has mass greater than 1. Likewise, if 4 is the exact

inf of M, then b(h/n)iit(h)/n.
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(8.9) Example. a = 2n b(1/2n) can decrease arbitrarily
n

rapidly.

Construction. Let a1<1/2, and an+1 <an. Let pn have

n ndensity equal to a on [0,1/2 1 and equal to b on (1/2 ,1j].n n

So bn can be computed from an, and b >1. Let M=(pn. We claim

that M is b-positive for suitable 4; and if 4 is the exact inf,

db(1/2n)=an/2 . Indeed, if m<n, then

n n
PM[0,1/2 1 = am/2

On the other hand, if m>n,

p [0,1/2 3 > a /2n

Indeed,

n n
p [0,1/2 ] > bm (1/2 - 1/2m)

> b /2n 1
m

> 1/2n+1

> an/2n
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