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1. Introduction

The advantages of location adaptive density estimation, where the band-
width depends on the local behavior of the density, are often outweighed by
additional computational requirements and unmanageable asymptotic the-
ory. The nearest-neighbor distance provides an attractive adaptive density
estimator because of its natural determination of high and low density regions
that does not rely on estimates of derivatives of the density. An unfortunate
drawback, however, is the fast growth of the nearest neighbor distance in the
tails of the density. The roughness of the estimate can also be a drawback.

In this paper, we propose two simple adhoc techniques to rid nearest
neighbor estimation of these problems. The first technique truncates the
nearest neighbor distance at an arbitrary level; the second smooths the near-
est neighbor distance via an arbitrary smoothing procedure. These simple
changes greatly improve the nearest-neighbor density estimate. We mea-
sure improvement according to integrated square error and improved visual
appearance.

This first change also facilitates asymptotic theory for nearest-neighbor
estimators. As reported by Devroye and Gyorfi (1985), the asymptotic prop-
erties of nearest-neighbor based estimators have ’eluded most researchers.’
Here a fresh approach uses rates of uniform convergence for annuli to get
good error bounds on the approximation of nearest-neighbor distance by a
deterministic function. This approximation enables us to obtain asymptotic
optimality of a cross-validatory choice of the number of nearest neighbors
used to create the estimate, as well as rates of convergence.

The nearest-neighbor density estimate (Loftsgaarden and Quesenberry
1965, Mack and Rosenblatt 1979) is defined as follows. Let Xj,..., X, be
a sample from some distribution P with density p. Let ri(z) denote the
distance from the point z to its k*» nearest-neighbor among the observations.
That is, if Bi(z) stands for the sphere centered at = with radius ri(z) then
By(z) is the smallest closed sphere about r to contain at least & observations.
The k** nearest-neighbor estimate of p is:

. 1 ki I—X,'
pr(z) = me(

=1 rk(z)

),

where V stands for volume and w is a symmetric density function. The hybrid
of the nearest-neighbor and fixed-bandwidth estimators that is proposed here
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substitutes min(7i(z), tk/n) for ri(z) in the definition of px. The bar over r;
denotes a smoothed version of the nearest-neighbor distance.

Breiman, Meisel, and Purcell (1977) were the first to suggest a simple
change to the nearest-neighbor estimate for the purpose of reducing the bias
in low density regions. Their estimator uses kth-nearest-neighbor spheres
centered at the observations.

ZV(Bk(X)) Ty

Unfortunately, r«(X;) can also be quite large for extreme values of the sample.
Truncation and smoothing of 7, can improve this estimator as well.

Abramson (1982) employs a preliminary local quadratic fit to the density
in constructing an adaptive bandwidth. The purpose of the estimator is to
reduce bias. Abramson also truncates the adaptive bandwidth if it becomes
too large, but the truncation is employed more as a matter of convenience.
Hall and Marron (1989) show that mean integrated square error (MISE) of
Abramson’s estimator achieves a very fast rate of convergence when restricted
to a compact interval. The rate is typical of estimates of densities with 4
rather than 2 derivatives, where the estimate employs a kernel which is not
a probability density function.

Abramson (1984) also proposes a location-adaptive estimator based on
nearest-neighbor distance. It uses a two pass method. The data is split in
two parts; the first part provides a preliminary estimate of the density; the
second part estimates the nearest-neighbor distance. These two functions
are then combined to produce a location-adaptive bandwidth.

Apart from uniform consistency (Devroye and Wagner (1977), Devroye
and Penrod (1982), Nolan and Marron (1989)), few theoretical results have
been proved for the nearest-neighbor estimator or for other estimators based
on nearest-neighbor distance. In particular, Mack and Bhattacharya (1987)
find the limit distribution of the nearest-neighbor density estimate at a point.
They treat the estimator pi(z) as a stochastic process indexed by the band-
width. Muller and Stadtmuller (1987) explore the adaptive bandwidth for
nonparametric regression in the fixed design case. They obtain rates of con-
vergence for the MSE and MISE as well as pointwise convergence for the
regression function. Mack and Muller (1987) estimate the mean function in

nonparametric regression, and obtain pointwise results similar to those of
Muller and Stadtmuller.



The asymptotic results presented here include asymptotic optimality of
the cross-validated nearest-neighbor density estimate as well as rates of con-
vergence for ISE and uniform consistency. Empirical process methodology is
used to obtain these results.

Empirical process techniques were first employed by Devroye and Wag-
ner (1977) to obtain the uniform consistency of the nearest-neighbor esti-
mate. Their argument is based on the treatment of {Bi(z)} as a Vapnik-
Cervonenkis class of sets, which leads to the uniform convergence of k/n,
the empirical probability content of B(z), to its expected probability con-
tent [, () P(y)dy. From there, it can be shown that ri(z) is uniformly close
to the deterministic function k/(2np(z)) for z in high density regions. The
error in the approximation is o(k/n). We continue in this same vein, employ-
ing rates of uniform convergence for another Vapnik-Cervonenkis collection
of sets, the annuli formed by the symmetric difference Bi(z)ASi(z) where
Sk(z) is the ball centered at z such that [g, ) p(y)dy = k/n. This rate of
convergence yields a much smaller, more manageable error when ri(z) is ap-
proximated by the radius of Si(z), rather than k/(2np(z)). If P, represents
the empirical distribution based on the sample, the error can be expressed
as:

d(P.— P O(logn(E 4 B2
Sy 0y 0Pn = P)(®) + Ollog (= + =—)).

We also employ rates of convergence for the empirical process of U-statistic
structure (Nolan and Pollard, 1987) to obtain the above mentioned asymp-
totics. _

The rest of this paper is organized as follows. First a heuristic justification
for truncating ri(z) is given in Section 2. Then simulations compare the
MISE of our hybrid estimator with the optimal kernel and nearest-neighbor
estimators (Section 3). Theoretical results are presented in Section 4 with
proofs in Section 5 and the Appendix.

2. Truncation

For the heuristics only, we assume the density p has two derivatives. Also
assume the dimension is one, and the kernel function w is a symmetric density
function with mean 0 and finite variance v. Write h(z) for the truncated
bandwidth min(ri(z),tk/n) and write p, for the density estimate constructed
from h. The mean integrated square error can then be approximated as
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follows:
MISE(k) = E / (pa(z) — p(z))?dz
= (/ wz/")/P(z)h(-‘E)"ld.’c+v2/4/h(a:)‘p"(z)z dz.

The random bandwidth min(ri(z), tk/n) is approximately: k/n min(1p(z)!,1),

because A .
/ p(z)dz = p(z)2ri(z)
By(zx) |

and
" k
/B:.( P p(z)dr = —Z{A eBi(z)} = —.

z—l
Break up the range of integration according to the region {z : p(z) >

(2t)~'} and its complement. Call these two regions H and L, respectively.
Then

; ~ l ‘2 _ 1 2 tk 4 " 2
MISE(R) ~ = [« [1 + [ (2tp(2) l)p(:c)d:c] + ) [ # (@)
[1+(f 5" wyay) / {p"(z)%ztp(x))-‘* - §'(2)?)da
_ 1 2 L TRLAY 2 _
- “/ [1+c,]+ v? ) /p (z)%dz [1 — Cy)

The constants C; and C; depend on the density and the truncation level.
Take the & that minimizes the approximation above and plug it back into
the MISE to find

MISE(k) =~ n~4%( / W?) /3215 / p"(a:)zd.r)llsz [14C)3[1— Cy)/

If the truncation level is such that [1 + C,]*[1 — C;] <1 then this estimator

can improve upon the fixed bandwidth kernel estimator, in addition to greatly
improving the nearest-neighbor estimator.



3. Simulations

In general, the authors found that when the truncation level is chosen in an
adhoc manner, both the ISE and the visual appearance are improved. The
adaptive estimator is at least as good as the optimal kernel estimator, and
often times better.

Figure 1 shows the effect of smoothing and truncation on the nearest
neighbor distance. The data are lengths in days of psychiatric treatment of 86
patients in a suicide study (reported by Copas and Fryer (1980), as appeared
in Silverman (1986)). Figure 2a displays the resulting density estimate, Fig-
ure 2b shows a fixed bandwidth estimate, and 2c a nearest-neighbor estimate,
each uses the Epanechnikov kernel. The kernel estimate over smooths the
high density area, combining the two peaks; whereas, the nearest-neighbor
estimate is a very rough curve with a large right tail. The smoothed trun-
cated nearest-neighbor estimate appears a good balance between the two.

From the previous section, the best truncation level depends on both
the excess probability mass in the high density region: [;(2tp — 1) and a
function of the second derivative: [ p'%[(2tp)~* — 1]. To estimate these
quantities would defeat the purpose of the hybrid estimator. Instead, as-a
rule of thumb, truncation levels near the standard deviation have in practice
produced good estimates. In the multimodal case, the radius of the largest
mode, as measured by the distance between quantiles or the radius of the
smallest k** nearest neighbor ball, works well.

Simulations show that truncation is very effective over a wide range of
values. Figures 3a-h compare the ISE of the optimal fixed bandwidth esti-
mate against the hybrid, over a range of truncation levels. The comparison
with the nearest-neighbor estimator is even more striking, for in our exam-
ples its ISE is much larger than that of the kernel estimator. Extremely
small truncation levels result in far-from-optimal fixed bandwidth estimates;
alternatively, extremely large truncation levels produce nearest-neighbor es-
timates. It is evident from the figures that these extreme cases are easily
avoided. In the case of the double exponential distribution and the mixture
of double exponentials. the improvement on ISE is very satisfactory. The
authors note, however, that the ISE, a popular measure of a density estima-
“tor’s performance, is not necessarily a good measure. Even though truncation
brings the nearest-neighbor estimator within the range of the kernel estima-
tor in terms of ISE, it does not satisfactorily emphasize the good job it is



doing in estimating the high density regions, as evident from figures 2a,b,c.

All simulations are based on 100 repeats. For each repeat, a sample of
100 observations is drawn and the ISE is minimized for the hybrid estimator
at a fixed truncation level and for the kernel estimator. Figures 3a-h show
the median, quartiles, and extremes of the 100 differences: ISE(best hybrid
estimator) - ISE(best kernel estimator). The distributions included in the
simulation are the N(0,1), the mixture .5 N(-1,1) + .5 N(2,1), the DE(0,1),
and the mixture .3 DE(-1.5,.5) + .7 DE(1.5,.5), where DE(0,1) indicates the
double exponential distribution with mean 0 and variance 1.

4. Asymptotics

In this section, we present asymptotic theory for the location adaptive density
estimator. In particular, uniform consistency, rates of convergence of inte-
grated square error, and the cross-validatory choice of k are treated. These
results depend on the uniform approximation of ri(z) by a deterministic
function where the density is bounded below by a positive constant. Trunca-
tion allows a uniform approximation to hold over the entire range of z, and
this approximation continues to hold when r; is replaced by its smoothed
version.

All results presented are for univariate densities; the analogous multidi-
mensional results hold as well. Define the following location-adaptive trun-
cated bandwidths:

hu(2) = min(ra(2), 2),

Also define the smoothed counterpart to hy:
- . k
hi(z) = min(F(z), =),

where 7i, a smoothed version of ri, may be smoothed according to a non-
parametric kernel regression technique. That is, for kernel function v, scale
parameter o, and grid y1,....yN:

Fo(z)= 23\.'-.1 rk(yj)V(z_;yj')
2211 v(5#)
The density estimate constructed from hi(z) is defined as follows:

)= S h (e,
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where w is a symmetric density function. The estimate py, is defined similarly.
Also, define the truncated version of Breiman, Meisel and Purcell’s estimator,
called BMP from now on, as follows:

z - X, H

pu(z) = %zj: i (Xi)w( m),

and the ‘expected value’ of py:

= — -1 r=y
p(z)= [ h; (@)l g Py},
The estimates 5y, p, are defined accordingly.

The results presented below are for one dimension, but their multi- di-
mensional analogs are similarly obtained. For the results that follow, assume
w is a density function that is symmetric, twice differentiable, bounded by
1, decreasing in |z| and with support on [—1,1]. Also assume w and its
two derivatives are of bounded variation. We place the constraint on k that
n® < k < n'-% for some arbitrary, small, positive §. As for notation, P,
stands for the empirical distribution based on a sample of size n from the
distribution P; the indicator function for a set is denoted by the set itself; and
linear functional notation is used. So, the probability conient, with respect
to the distribution P, of the ball centered at z with radius r is expressed as

PB(z,r) = /B )

When there may be confusion over the argument of integration, write P
to indicate that y is the argument of integration; for example, P¥{y €
B(z,r)} = PB(z,r).

Two approximations to h; are needed to obtain the theoretical results
for pn and p,. The first approximation originates from the Taylor series
expansion: _

PB(z,ri(z)) = 2ri(z)p(z).

This approximation provides uniform consistency and rate results for the
integrated square error. However a second, finer approximation is required of
the more difficult asymptotic optimality. There, we make use of the function
sk(+) that is defined such that

PB(z,si(z)) = %—
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That is, sg(z) is the radius of the ball centered at z with P-measure k/n.
Here, 7 is approximated by s; as follows:

2p(z)(se(z) — re(z)) =~ PB(z,sk(z)) — PB(z,ri(z))

(Pn — P)B(z,ri(z))
(P — Pn)B(z,si(z)).

Q

The key to the approximation is that the error (P — P,)B(z, si(z)) is a linear
functional of a nonrandom indicator function B(z, si(z)). The details of this
approximation appear in the proof of the following lemma.

1LEMMA: Let H = {z: p(z) > (12t)7'} and let p be bounded and uniformly
continuous. Then

(@ supy, |hi(z) — £min((2p(z))"1,¢)| = o(%) eventually, a.s.

supye |he(z) — £t| =0 eventually, a.s.

If, in addition, p has a continuous first derivative then

(%) EKl/2 p1/4
sup |2p(z)(sk(z)—ri(z))— (Pn—P)B(z, 5k(z))| = O(log n(—5+—)) a.s.0
H n n

The error terms in Lemma 1 are uniform in k, for n® < k < n'~¢. From
Lemma 1.a follows the uniform continuity of the density estimates.

2 LEMMA: If p is bounded and uniformly continuous then

sup|pn —p| — Oa.s.
X

sup|pn —p| — Oas.
x

sup|pr—p| — Oas. O
I

The result of Lemma 1.a can also be employed to bound the integrated
square error:

ISEn) = [(5n =2 = Op(3 + (Ey).



The k~! term bounds the ‘variance’: [(pn — pn)?, while the second term
bounds the ‘bias squared’: [(pr — p)’. Lemma 3 below states these results.
They also hold for the smoothed estimator g.

3 LEMMA: If p is bounded, and Lipschitz then
1
Dy — D 2 —3 -—

(a) /(Ph Pr)" = Oy(3).

.= 1
/ (B = Bn)” = Op(3)-
If, in addition, p is twice differentiable then

) [ =27 = 0,5y
[Bi-pr=0r+h) o

The following lemma gives conditions under which the cross-validatory choice
of k for pr the BMP estimator is asymptotically optimal. It requires the
finer approximation of ri found in Lemma 1.b. The two main conditions
are that p has a continuous first derivative and that the set of z such that
p(z) = (2t)~! has Lebesgue measure 0. The differentiability condition can be
weakened to a Lipschitz condition on p without invalidating the conclusion of
the lemma. For ease of proof the authors use the stricter requirement. The
second condition avoids flat spots in the density that occur exactly at the
truncation level. It could be removed if a smooth function were to replace
the truncation operation. That is,

kt
nri(z)

)

hi(z) = ri(z)o(
where

#(y)=y 0<y<1
1 y2 1

The function ¢ could be replaced by a smoother, differentiable function to
avoid the second requirement. Again, for simplicity of argument this more
general case is not considered here.
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4 LEMMA: Suppose p is bounded and continuous with a continuous first
derivative. Also suppose {z : p(z) = (2t)~1} has Lebesgue measure 0. If kcy
18 chosen to minimize:

1 X X;
VISE(k) = [ 3 )
CVISE(k) /Ph n(n— 1) g hi( X) hk(X) )
then ISE(kev)
(kev 3 ili
}_m — 1 in probability,

where kisg minimizes ISE(k) = [(pn — p)%. O

A similar result holds for our estimators p, and p; provided either p has
a second derivative, or a positive constant v can be found such that

.“[1(%)7 < /(ﬁh - p)2 < J!"12(5)‘7

for M;, M, > 0. We do not present its proof here.
The proofs of these four lemmas appear in the next section.

5. Proofs

The proofs of all four lemmas employ rates of convergence for empirical
processes. We find the following adaptation of Theorem 2.4 of Pollard (1986)
most useful.

LEMMA 3: Let P be a probability distribution on R?. Let {F,} be a sequence
of permissible collections of uniformly bounded, real-valued functions on IR?
such that given € > 0 there ezists a subclass F; of F, with

cardinality (F) < Ae™V

and for each f € F, there exists f* € F such that Q|f — f*| < ¢, for all
probability measures Q on IR4. (Note the constants A,V and the uniform
bound on the functions do not depend on n.) Then, for0 < a <1,

k°|Pnf — Pf|
su ‘ ——>7 = O(y/logn) a.s.0
wtskenint. 7, Palf| + PIf| + e ( )
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The term ’permissible’ refers to measurability conditions. See Pollard (Ap-
pendix C, 1984) for a discussion of the concept. This lemma will be applied
to a variety of collections F,,. The condition on the metric entropy of F, is
called the Euclidean property (Nolan and Pollard 1987). Section 5 of Pollard
(1989) presents many examples and ways to confirm the Euclidean property.
In particular, the collection of indicator functions for sets has this property
if the collection of sets themselves form a Vapnik- Cervonenkis class of sets.
The collection of balls in R? is a Vapnik-Cervenenkis class, and so its indi-
cators meet the conditions of Lemma 5. So does the collection of indicators
for annuli A, because the annulus is formed by the intersection of one ball
with the complement of another ball. Four other collections of functions will
be used in the proofs of the lemmas, and therefore must meet the Euclidean
property. In the definitions below take gi(z) = min(sk(z), —t)

(1) Wn = {wiz s wia(y) = w(iZh)}
(2)(2) Va = {vis : vea(y) = w' () (24)}
(b) Un = {urs : wialy) = w' (5 E5)%)
(3) Tn = {m : (z,9) = P*{ly — 2| < gi(2)} £ (2)[wr.=(2) + vk(2)]}

For the present, we take it for granted that these collections of functions are
Euclidean, and so meet the conditions required of Lemma 3. The Euclidean
property is established in the Appendix along with the proof of Lemma 5.

PROOF OF LEMMA l.a. Apply Lemma 5 for a = 1/2 to the collection B

of all balls. VEIPA(B) |
k|P.(B) - P(B)| _
sk1'1£ P.B+PExkn O(y/logn) a.s.

This implies that PB(z,ri(z)) < 2k/n for all z and k, eventually, almost
surely. Use this upper bound to show

sup k™'/2|P,B(z,ri(z)) = PB(z,ri(z))| = O(y/logn/n) a.s. (4)
x.k

Equation (4) is the basis of Lemma 1a. First it is used to establish

k
sup |hr(z) — —=t| =0 eventually, a.s.
He n
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where H = {z : p(z) > (12t)~'}. On H°, the facts that

min((2p(z)) ™", 1) = ¢

and that p is uniformly continuous imply either

sup p(y) < -
vEB(z.ru(2)) 4
or, for some C; > 0,
re(z) > C, .

The latter possibility implies hi(z) = tk/n for n large. The first possibility
also implies hx(z) = tk/n almost surely, eventually, because

-21—trk(:c) 2> PB(z,ri(z)) > % all £ and z, eventually, a.s.
The second inequality follows from 4.

Now turn to the region H. We use (4) again, this time with a Taylor
series expansion of PB(r,ri(z)), to show that ri(z) is uniformly close to
k/n2p(z). Truncation at ¢ only decreases the distance between ri(z) and its
approximation. Consider z in H.

ri(z)

._l_l(P,,—P)B(z,rk(x))l = | 2p(z)

2p(z)

— ri(z)+

k
—) Sy (P =Rl

Apply (4) again to get
k
supri(z) = O(=) a.s.,
€M n

which gives the desired rate of convergence. O

PROOF OF LEMMA 1.b. The difference of the indicators B(z,r) — B(z, s)
is the signed indicator for an annulus. Call it A(z,r,s). Note A(z,r,s) =
—A(z,s,r). Then, because £ = PB(z,si(z)) = PaB(z,rk(z)):

PA(z,si(z),ri(z)) = (Pn — P)A(z,ri(2), sk(z)) + (Pn — P)B(z,si(2)).

13



Alternatively, use the differentiability condition on p and the fact that p(z) >
(12¢)~! on H to express the expected value on the left above as:

k
PA(z,sk(z),re(z)) = (sk(z) — ri(z))(2p(z) + O(;)) almost surely.
Combine these two equalities.
sup |2p(z)(sk(2) = re(z)) = (P = P)B(z,54(z))| <
sup |(Pn — P)A(z,ri(z),sk(z)| + O(\/klogn/n'*?) a.s.
H
The order term on the right hand side of the inequality follows from the

bound
sup k~'/?|(P, — P)B(z,sk(z))| = O(y/logn/n) a.s
z,k

To complete the proof apply Lemma 5 to the collection of annuli A for

a=1/4.
k/4|P,(A) — P(A)| | —
su = O(y/logn) a.s.
4 P,A+PA+ L (Viogn)

Now for A(z,r(z),sk(z)) we have, uniformly in &:

PplA(z,ri(2), s1(2))| = |(Pn — P)B(z,s(x))| = O(y/klogn/n)

PlA(z,m(z), 5x(z))| = |(Pa = P)B(z,ra(2))| = O(/k log n/n)
Then
s:x,lc) k~Y4|(P, — P)A(z,ri(z), s1(z))| = O(logn/n) a.s.

This establishes part b of Lemma 1. O

PROOF OF LEMMA 2: The first of the three conclusions is proved here;
the other two follow by similar arguments. Break the difference p, — p into
two parts: p, — pn and pp — p. Treat the two parts separately. The typical
change of variables yields

(%) Pa(2) = pla) = [w(z)lp(z + 2hi()) - pl2)]dz .

14



Lemma 1.a implies sup, hx(z) — 0 almost surely. This fact and the uniform
continuity of p imply the difference inside the square brackets tends to 0,

almost surely. As for the variance term, let nx(z) = £min((2p(z))"1,1).
Then

|Pa(z) = Ba(z)] = he(z)7|(Pa — P)rw (24|
= (z)7|(Pa — P)Yw(Zzh)| + ex(z)

On L the error ex(z) committed in substituting ni(z) for hi(z) is almost
surely 0; on H the error can be bounded by using a corollary of Lemma 1.a:

sup I’?k(I) — hi(z)
H nk(z)

(6)

| =0(1) a.s.

The compact support of w and differentiability of w imply

sup ex(z) = o(1) a.s.
M

To complete the proof apply Lemma 3 to the class of functions

{wra(y) : wea(y) =w (:;L?;;)}

to show the first term in the right hand side of (6) is negligible. O

PROOF OF LEMMA 3: A refinement of (5) and (6) from the proof of Lemma
2 leads to the proof of this lemma. For the integrated squared bias, twice
differentiability of p and symmetry of w updates (5) for some constant C > 0
and 0 < t(r) < t to:

k 11 k
5),(x) — < —"//-222" —zt(x))dz)%dzx .
J@n(e) = p@)? <€) [ ([ 55200 (@ + zt(2))d=)de
For the variance, look more closely at the error ex(z) in (6). The additional
requirement that p is Lipschitz and the upper bound: k/n < n~¢, mean that

for some positive a,

sup |(mi(x) = hi(x))/mi(z)| = o(n™%) a.s.
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Apply Lemma 5 to the collections W, and V, with g; replaced by nk. Then
the following equalities hold almost surely.

sup Vker(z) =  o(n”®) sup [VE(Pa = P)Vni(z)  wio(y)]
+  o(n™®)sup [VE(Pa — P)'n¢’ (2)vr(y)]
= o) sup|Z=(Pa = PYurs(y)] + O(n“')I%(Pn — P)ui..(y)|
= o(n"*)O(logn)

The bound on e, implies

[ et = /H ke? + /L ke2 = 0,(1) .

Then for [(p, — P,)?, an upper bound on its expected value is, for po =
sup, p(z),

L @i Camap)

< I [(E)1(z)dzaply)

n

With Markov’s inequality, the conclusion of Lemma 3 for p is established.
We now state how this proof can be modified for p. For the bias, the typical
change of variables (5) yields a ratio of h(z)/h(z + zh(z)), which can then be
crudely bounded using Lemma 1. As for the variance term, replace ry by s,
rather than k/n2p(z), in (6). Care must be taken with the error term. We

refer the reader to the proof of Lemma 4, which uses very similar techniques.
m}

PROOF OF LEMMA 4: Define:
La(h) = [(pn —p)2
X=X,
_ ~2 1 2
M) = [~ )Zh(x A (X)) )+/p

L) = & Z/hX h(X) d”/(p"

=1
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Similarly define L,(g), Ma(g9) and L.(g), where gi(z) = min(sk(z), £¢).
Stone (1984), Burman (1985), Marron (1985), Nolan and Pollard (1987) and
others all show that in the fixed bandwidth case, the scale parameter oy
that minimizes M,(-) does almost as well as the oy that minimizes Ln(-), in
the sense that

L.(om)/La(cL) — 1 in prob.

Most proofs of the asymptotic optimality are obtained by comparing L, and
M, with the expected value of L,. Typically the result follows from:

(7) sup |Zn(h) _iﬁ;z()h) + 2l . 0p(1)

|Ln(h) — I’n(h)l

(8) Tn(h) = OP(]‘),

k

where Z, is a random variable that does not depend on h or k. Rather than
_establish (7) and (8) directly, we establish their counterparts:

sup 1Ln(9) = Ma(g) + Zu| _

(9) k fm(g) 0p(1)
|La(g) — Lalg)]
(10) | sup =292l = 00,

Then (7) and (8) follow from:
sup (1) = Ma(k) = Lu(9) + Mn(g)

b : I e =o(1)
|La(R) = L(h) = Lo(g) + La(g)] _
(12 W £+ 15— 7l =)

I
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To prove (9) and (10) the methods of proof in Nolan and Pollard (1987) carry
over completely, because (1)is a Euclidean class of functions (see Appendix).
The proofs of (12) and (13) closely follow that of (11); we present only the
proof of (11) here.

First note that Lemma 1b implies

(14) iu£ |ik\/—z_gk| = O(y/logn/n) eventually, a.s.

sup |hx — gx| =0 eventually, a.s.
kL

The proof uses repeated applications of Lemma 5 to the collections W,, V,,
and U, with a = 1/2. For W,,, Lemma 5 implies

(15) .sup\/—l(P gf;))wkzl O(y/logn) a.s.

Similar rates apply to V, and U,.
To prove (11) reexpress the numerator as

(16) 2(P — P.)* ® PYvi(z,y,y)

2
n2(n —

2 uvi(Xi, X, Xj)
'¢J

2
= =Prw(0)[hx(z)™" — gu(2)™"]
where v (z,y,2) = hk(z)‘lw(hh(z)) gk(z) lw w( ). Use (14) to show the
third term is 0,(k=%2). It converges to 0 in probability when normalized by

the denominator in (11). The assumption of derivatives for w allow a Taylor
series expansion of v(z,y,y):

9e(y) " [wrz(y) + vez(y)] -

From (14) and the expectation of the Taylor series expansion, the second
term in (16) is op(n~!). Rewrite the first term in (16) as:

(17) (P P): ® Py[ (ygk(y) Wk, z(yg)k':;/;)k r(y)] + OP(%)
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The 0,(1/k) is uniform in k; it bounds the second term in the Taylor series
expansion of wy uniformly in y. To see this apply (14), (15) and the versions
of (15) for U, and V, to

hi(y) = gx(y)
9x(y)

2wiy(T) + Svk,y(z) + Uk y(z) I

( gx(y)

)*|(Pn — P)*
This leaves only the first term in (17).

To bound this term requires the full strength of Lemma 1.b. If hx(y) =
a(y) = -t then the contribution from (17) is exa,ctly 0. This is the case,

almost surely, on
1

1
=2t (logn)“}'
(Note that £, does not approximate £ but {z : p(z) > 1/2t}.) The equality
above follows from the differentiability of p and an argument similar to the
proof that hi(y) = —t on £ in Lemma 1.a. Also, on the ’complementary’ set
= {z:p(z) > lt ' +log™*n} the functions Ay and g; can be replaced by

Tk and Sk respectnely On the intermediate region M ,, use (15) to bound
(17), normalized by V%, by

={y:p(y) <

VElogn P2y € Mo} |(P, — Pyr kel F ves¥) _ g
9x(y)

Here is where the condition [{z: p(z) = }t~!}dz = 0 is employed.
Now we need only concern ourselves with the region H,. On H, bound
(17) by,

|(Pa=P)*®@ PY[(Pa=P)*Ha{z € By, sc(y)) Hp(y)sx(y)) " *(wr2(y) +ve=(v))]l

1 1
+OP(—\/7;n_6 + ;57;) log n sup |(Pn = P)™(wio(y) + vi(y))se(y) ™} -

Here, the indicator function of the set H, is identified as H,, as well. Again,
by (15) the second term when normalized by k converges to 0 uniformly in
k. Finally it remains to show:

(P = P)*® (Pa = PYIP(= € By sulo)) it ettt
1/n+k/n - pP e

sup
k
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The error incurred by replacing the expectation P¥ by P¥ can be ignored.
Here we have a degenerate U-statistic process indexed by the collection of
functions I',,. As in the proofs of (9) and (10) in Nolan and Pollard (1987),
Theorem 9 provides the desired rate of convergence if sup, , |v(z,2)| < 0;
sup, P*|vk(z, z)| + P*|v(z,z)| < ck/n; and the functions in T',, meet the
Euclidean property. The first two conditions are easily met. The last is
justified in the appendix. This completes the proof of Lemma 4. O

Acknowledgement: The authors thank E. Chow for programming the sim-
ulations.
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Appendix:

In the appendix we establish the Euclidean properties of the classes W,,
Up, YV, T'n. To do so, we need a few properties of Euclidean classes of
functions. Throughout this section we assume the collections of functions
are uniformly bounded by the constant 1. The following properties are taken
from Nolan and Pollard (1987).

(1) If {F} and {G} are Euclidean then F + G is Euclidean, where
F+G={f+g:f€F and geG}.
(2) If 7 and G are Euclidean then F - G is Euclidean, where
F-G={fg:fe€eF and geg}.

(3) If G is a finite-dimensional vector space of real functions then the collec-
tion of sets of the form {g > 0} is a Vapnik Cervonenkis class.
(4) If the collection sets on JR4+! defined by the graph (f) = {(z,s) € R4+
0<s< f(z)or 0> s> f(z)} for f € F, is a Vapnik Cervonenkis class of
sets, then F is a Euclidean class of functions.
" First we show that W, in 5.1 is Euclidean. As in Nolan and Pollard
(1987), (1), (3) and (4) and the fact that w is of bounded variation imply W,
is Euclidean with Euclidean constants that do not depend on n. Briefly, the
property of bounded variation implies w can be expressed as the sum of two
monotone functions G and H. By (1), if {Gi.:} and {H\ .} are Euclidean
then so is W,. Consider the graphs of the functions Gy ,:

From (3) and (4) we find that {Gy .} is a Euclidean class of functions and
the Euclidean constants do not depend on n. A similar argument implies
{Hy.} is Euclidean. As for V, and U, with property (2) plus the fact that

-y 5 1-§
L Y e — oyl < an nf<k<
{gk(z){lx y| < gi(z)} sz € RN <k <n!"°}

is Euclidean, they are handled by an argument similar to that for W,.
For I',,, consider the simpler functions

k- 2p(z) (z—2)2p(z) 1
p(z)} k/n w(—g In {p(z) > 5t}

‘7k(zoy) = Pz{y € B(Z, n?2

Then
k
ls=pl = p for lz—y|>;t
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and by differentiability of w and p

lve —pl < C sup |p(z —u)—p(z)| < cn”® otherwise.

lulgn=¢¢

Therefore for € < n=%/2 no approximation is needed and for ¢ > n=%/2
approximate I', by the single function p. This argument can be adapted to
hold when si(z) replaces k/(2np(z)).

PROOF OF LEMMA 5: This proof closely follows the proof of Theorem
2.1, Pollard (1986). To begin, assume the f in F, are nonnegative and the
envelope F is bounded by 1. The result for general f follows by considering
f{f >0} and f{f < 0} separately. Let P, represent the distribution based
on a second sample X|, ..., X|, from P, independent of the first sample. Define
for each k € [n%,n!~%] and each f € F,,

An(ky f) = {IPaf = PFl> eai(Paf + PF + i)}
Bu(k.f) = {IPif = P| < zens(Pf + i)}

where

€nk = My/logn/k®

Ink = k2a/n

Our goal is to show

2 P(UJAn(k, f)) < oo
k.f

n

For each n, bound the individual summand:

(1) P(J An(k, £)) < 2P(|J An(k, f) N Ba(k, £))
k.f kg

This inequality follows from the independence of {4,} and {B,} and the
fact that there exists an n, such that for n > n,, PB,(k, f) > % The
lower bound of ; for PB,(k, f) follows from Chebychev’s inequality applied
to B,(k, f)¢. The inequality (1) is a classical result for countable F, (Loeve
1977, 18.1.A). Pollard (1986. section 6) extends this result to uncountable

Fn that are permissible (Pollard 1984, Appendix C).
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On the event A,(k, f) N Ba(k, f)
.2 2
|Paf — Pofl 2 eni[Puf+ §Pf + §7n.k]

1 /
2 gen.k[Pnf + In,k + Pnf + 7n,k]

This inequality implies

(2)

P(U Anlk, £)) S 2P(3S € Furk € [0, s [Puf—PLf| 2 genalPaf+Pif+27mil)

k.f

Introduce a third sample, a sample of sign variables {¢;} where o; = £1 with
probability 1, independent of the first two samples. Then the right hand side
of (2) equals:

2P{3f, k1= T i(f(X) = XD > genslPaf + Pof +27mil)

(3)  <APIP(S,k: |= S oef (X0)| > 126nk(Paf + k)| Xs, s X))

Next approximate F, within ';'46,,'"67"’"6 by F:. According to the main
condition of the lemma, for some constant C,

cardinality(Fz) < C(n*~%)V .

This approximation provides an upper bound on the right hand side of (3):

SC(ni=) 1P ,’?};pu%zm FX)| > %—4en,k(P,. F 4 i)l Xay oo Xa)

IA

256
< 8C(n'~%)V*'exp—-M?logn/576)

—1 1
8C(n'~")"*'P maxexp =€, i(Puf + )’/ =Puf’]

The first inequality is due to a conditional application of Hoeffding’s inequal-
ity to the centered, bounded random variables {o;f(X;)}. If M is sufficiently
large, the final upper bound has a finite sum in n. This concludes the proof
of Lemma 5.
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