Go to main content

PDF

Description

Motivated by questions related to a fragmentation process which has been studied by Aldous, Pitman, and Bertoin, we use the continuous-time ballot theorem to establish some results regarding the lengths of the excursions of Brownian motion and related processes. We show that the distribution of the lengths of the excursions below the maximum for Brownian motion conditioned to first hit $\lambda > 0$ at time $t$ is not affected by conditioning the Brownian motion to stay below a line segment from $(0,c)$ to $(t, \lambda)$. We extend a result of Bertoin by showing that the length of the first excursion below the maximum for a negative Brownian excursion plus drift is a size-biased pick from all of the excursion lengths, and we describe the law of a negative Brownian excursion plus drift after this first excursion. We then use the same methods to prove similar results for the excursions of more general Markov processes.

Details

Files

Statistics

from
to
Export
Download Full History
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS