Go to main content

PDF

Description

We use Dirichlet form methods to construct and analyze a reversible Markov process, the stationary distribution of which is the Brownian continuum random tree. This process is inspired by the subtree prune and re-graft (SPR) Markov chains that appear in phylogenetic analysis. A key technical ingredient in this work is the use of a novel Gromov--Hausdorff type distance to metrize the space whose elements are compact real trees equipped with a probability measure. Also, the investigation of the Dirichlet form hinges on a new path decomposition of the Brownian excursion.

Details

Files

Statistics

from
to
Export
Download Full History
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS