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Introduction. In this paper, we study the connection between the almost sure conver-
gence of semi-martingales and the asymptotic behaviour of their local times. Our
study is motivated by the following two examples.

Example 1. Let h(t) be a non-negative decreasing function and (B,) a Brownian
motion. Let X, = h(t) B,. Integrating by parts, we get

t t

X, = Xo+ [h(s)dB, + [Bydh(s).
0 0

If X, converges as t — oo, then it must converge to zero, because {t: B, =0} is

unbounded. We expect that this property gets reflected in the behavior of the local
t

time of X at zero, which is easily seen to be equal to the process (f h(s)d! (s)), where
0

I, is the local time of B at zero. In section 1, we state necessary and sufficient condi-
t

tions so that lim h(t) B, = 0 and lim jh(s) dl{ < oo, in the case when h is a determinis-
t—o0 t—yo0 0

tic function. These results are due to Jeulin and Yor {see [6], Proposition 15) and C.
Donati-Martin (see [3], p.150) respectively.

Example 2. Let €(t) be a non-negative decreasing function, F: (aj,a;) - R, F
strictly increasing, a; < 0 < a,, F(0) = 0. The process (Y,), studied in Chan and
Williams [2], satisfies the stochastic differential equation

dY, = —F(Y)dt + e(t)dB,.

—c

(e(u)?

In [2], the authors show that Y, — O a.s. iff chp( )du < o= for all ¢ > 0.
0
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We expect that the local times at the origin play some role in the convergence of
the processes X and Y in Examples 1 and 2 respectively. A closer examination of the
processes X and Y strengthens this belief: in both cases, the effect of the drift term is
to pull the process towards the origin. We make this notion precise below in Section
2, where we study subsets of the sample space Q2 on which the drift term of a given
semi-martingale has this property. In the case of a continuous martingale, the almost
sure convergence of the martingale, its local time and its quadratic variation processes
are all equivalent. In the case of the semi-martingales which we study, the situation is
similar and yet there are some subtle differences.

1. Brownian Asymptotics.

Consider a continuous local martingale (M), My=0 as. Let (L0 R

denote a jointly continuous version of its local times and (< M > its quadratic varia-
tion process. The following lemma is well known and follows by writing M as a time
change of Brownian motion.

Lemma 1.1. For every x € R, the following sets are almost surely equal:
(i) {w: lim M, exists }  ii) {w: lim M, exists and is finite }

t—ro0 t—eo
(i) {w: <M>_<oo} iv) {w:LX < e},

Now, consider a Brownian motion (B)o starting from =zero. Let
g.=sup{s <t: B;=0} and {H,,u =0} a locally bounded previsible process; let
MtH = H&B[. It follows from the ‘Balayage formula’ (Azéma-Yor [1], Yor [8]) that

(MMH) is a continuous local martingale and it is easy to see that its local time at O is
t

(lesldl o Where (1,0 is the local time of (B at the origin. We have the follow-
0

ing consequence of lemma 1.1.
Proposition 1.2. The following are equivalent.
() lLim(HyB)=0a.s., (i) [H2ds<eoas, (i) [ [Hyldl < e as.
te 0o 0
We now specialise to the case when Hg = h(s), where h is a non-negative decreas-
t

ing deterministic function. It is easy to see that the process (J'h(s)dl d=0 is also the
0

local time at the origin of the semi-martingale X; = h(t)B,. It is well known that the
measure (induced by the increasing process (/)»o is, almost surely, singular w.r.t. the
Lebesgue measure on [0, ). The following result (first proved by Donati-Martin [3],



-3-

when h is smooth) is therefore surprising.

Theorem 1.3. The following are equivalent.

. r 1 ds
@3) gh(s)dls < o0 a.8.; (ii) t|)'h(s) Ts < oo

The proof of this theorem depends on a result of Jeulin [4] (see also Jeulin [5] and,
for some applications, Xue [7]). We state and prove it for completeness.

Lemma 1.4. Let (R),o be a positive measurable process such that
1) The law v of R, does not depend on t.

2) v({oh =0

3) E(R) < o.

Then, for any positive Radon measure | on R, j dp (t) < o= iff j R diL (t) < e a.s.
0 0

oo

Proof. The ‘if’ part is clear: If jdu (t) < oo, then in fact by condition 3),
0
E [Rdu(t) < oe.
0
Conversely, let J'thu (t) <ee as. and let n be such that P(J)) >0 where
0

Jo={o: [Rdu() < n). Then,
0

E(I,R) = [duE[I IRoy] = [duE(Ly, — IRy 1)
0 0

v

[du®@y) - v (0, ul))*.
0

Since P(J) >0 and v[0,u] — 0 as u — 0 by Condition 2), the last integral is in fact
strictly positive, say equal to a,. It follows that: ’

o >nP(J,) 2 IE(Jn Ry dp(t) = anjdu (t) and the proof is complete.
0 0

Proof of Theorem 1.3. Since E (/) = cVs where c is a constant not depending on s,

it is easy to see (since h is deterministic) that E j h(s)dl; = —g— '[h(s) d—\; Clearly,
0 0 S



(i) = ().
To go the other way, suppose that (i) holds. We will show that the two functions
t

h(t)Vt and I\E dh(s) converge to a finite limit as t — oo. It follows from the equation
0

t t
_ ds_
Vth() = £~/§dh(s)+£h(s) o

< ds
that | h(s) —= < oo.
L0k

t
We now show: lim j\fé (—dh (s)) < . We have:

l—)°°0
t t
h(® !+ [I(~dhy) = [h(s)dl,.
0 0

Since both terms in the LHS are non negative and since the RHS converges by

= l
assumption, it follows that jl s (—dhy) < e a.s. Now, Lemma 1.4 applied to R, = -
0

vt
and dyt (s) = Vs dh (s) shows that [ Vs (~dh(s)) < .
0

We then show: limh(t)Vt<ee. Since h is decreasing, h(t) Bl < h(g) |B;l,

t—oo
where g = max{s < t: B;=0}. From Proposition 1.2, it follows that h() B, — 0 a.s.

Since (h,B,) are gaussian random variables, this implies that hB, = 0 in Ll ie.
h(t) Vvt — 0 and the proof is complete.

Remark 1.5. Let H be a bounded previsible process. From Proposition 1.2, (H, By,

is a martingale which is not uniformly integrable, unless it is identically zero. Conse-

quently, if [|H|dl;<ee as. then by Propositon 1.2 [HZds<eo as. but
0 0
E( g HZ2 ds)!2 = oo,

Remark 1.6. There are situations where the conclusions of Lemma 1.4 are true, but
ER,=e. Let g,=sup{u<s:B,=0}). Consider the pair (R, l(ds)) where

S2a

R = 7 &> 1/2 and p(ds) = :—zi 1{1,00)(s). Then ju(ds) < oo and from Proposi-
0

S

-]

tion 1.2 applied to Hy = —%1—, it follows that szu(ds) < oo, But this conclusion can-
s 0
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not be obtained from Lemma 1.4 because ER; = oo, since g; is arcsine distributed.

In the next Theorem, we reproduce a result of Jeulin and Yor [6] which gives a
necessary and sufficient condition for h(t) B, to converge to zero almost surely when h
is a deterministic function. Here, we consider the particular case where h is decreas-
ing.

Theorem 1.7. Let h (t) be a non negative decreasing deterministic function. Then, the
following are equivalent
-£  dt

limh(t)B, =0 €>0, — < oo,
i) tl)rg (t) a.s.; ii) for every {exp( h2() .

Proof. Let Bl* = sup |B;|. Then, condition ii) is equivalent to

2—n/2
))<oo for every x > 0.

iy T P@®B, >
n=1

This follows from the inequalities: for € > 0,

2k+1

—2:-:2-(““)
k=0 j h2 (2k+l )

2k+l

.(E < (_.__ 2

h2< t) ka0 2] h2(2%)

I Xp (= )—

and (%)mjexp (—% uwddu < P(Bl* > €) < 2exp (—l €2). We now show that ii’)
€

holds iff i) holds. Let V, =27 -n/2 sup |B,— Byl It is easy to see that ii’) is

2Pst<2m!
equivalent to lim w2 V,h(2") =0 and that ii’) implies lim |B,| h(2") =0. Now
n—eo n—oo

ii") = i) follows from the above observations and from the inequalities

sup h(®) |B| < 22V, h(2" + |Bx|h (2"
2st<2™

Conversely, if i) holds, then lim Vth(t) = 0. Moreover, (V,) are independent and have

t—o0

the same law as Bl* = sup |B,|. Hence lim w2 V,h(2" = 0 and ii") holds.
Ost<1 n—eo

Section 2. In this section, we prove a version of Lemma 1.1 for semimartingales.

This is Theorem 2.4. Our analysis will be restricted to the class of semi-martingales

(X) with X |AX | <o, as. for all t>0. These can be written in the form
s<t

X, =X+ M, + V, where (M,) is a continuous local martingale and (V,) a process of
finite variation. For a semi-martingale X, this property will be assumed to hold for the
rest of the paper.

We recall the Tanaka formula for the semi-martingale X: for a € IR,
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t
X, -at = Xo—a)t+ g I(x, 5a) dX; + %L{‘ (1)
t
X, —a) = (Xo—a)y — g Iix, <o) X + %L:' )
where
L2 = 12 +L2
I} =2 (Et(l{xﬁ<a} Xs —a)” + Iix, cq) X — @)1)

and (L0 is the local time at a of X, which is an increasing continuous process, sup-
ported on the set {s: X;_ = X =a}. For the semi-martingales which we consider,
there is a version of the process (L?,t > 0,a € R) which is jointly right continuous in
(t,a) and has left limits (see Yor [9]). This property is important in what follows and
we will always take equations (1) and (2) to be true outside a null set, for all t > 0 and
for all a € R.

t t

Let V. (1) = [Ijx, 50y dVs and V_(1) = [Ix_.0)dV,. The finite variation part V of the
0 0

processes considered in Examples 1 and 2 have the property that V_ is decreasing and
V_ is increasing. For a semi-martingale X = X5+ M + V, we define the following
subsets of €:

vy = {w:V, is decreasing and V_ is increasing}
v} = {w: V, is increasing and V_ is decreasing})
vy = {w: V,,V_ are increasing)
v> = {o: V,,V_ are decreasing}.

Of course, these sets do not necessarily partition Q. We shall use the notation X.,

(resp. X..) for liminf X, (resp. limsupX,). We shall denote lim X, by X.. whenever it
t—roo t—o0 t—o0

exists. In this notation, {w: X, € (a,b)} means {w: lim X, exists and belongs to
t—yo0
(a,b)}. The following lemma will be used in the proof of our main result (Theorem

2.4).

Lemma 2.1. Let —~ < a< b <. Then:
1

(i) On the set {w: J'I(a'b] (X,-)dV, is decreasing }, we have, for all c € (a,b], almost
0

surely,
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{w: L2 <o} © {w: LS < oo}

and {®: L2 < =} € {0: X, 2 b} U {0: X, < a) U {0: X, € (a,b)}.
1

(ii) On the set {®: JI(a,b] (X;) dV; is increasing }, we have for all c € [a,b), almost
surely, "

{0:LP <o)} © {0:LE < oo}
and

{@0: L2 <) © {0: X, 2b} U {w:X, <a)} U {w: X, € (ab)}

t
Proof. (i) Suppose that J'I(a’b] (X,_)dV is decreasing. Then, for c € (a,b] we have,
0

from equation (1), that

Xi-a) - Xp-af - X, - o)+ Xg—-o)F 3)
t t
1 1
= [T o) (Xs) dM; + 0y L2 - o) L¢ + [T o) (X dVy.
0 0

Note that the LHS of equation (3) is bounded by 2(b-a). Now if L2 < oo, it follows
t

that the decreasing function J'I(a’c 1K) dVs - %Ltc has a finite limit, as also
0

t

II(a,c] (X-) dM; (this follows from Lemma 1.1). Thus LS < e, proving the first inclu-
0

sion in (i). Now the LHS of equation (3) has a finite limit as t — eo. In particular, it
has a finite limit when ¢ =b. But this means precisely that X,, > b or X_ < a or
X.. € (a,b).
(ii) The proof is similar to that of (i) using the equation

(X, = b)" = (Xg = b)" = (X, = )™ + (Xo = ©)°
)
1 1

t t
= — [T by Xs) dM; + ELtb - ‘2"Lt° — [Te,p1 Xs) V.
0 0

for all c € (a,b]. O

t
Corollary 2.2. {: [, ) (X;-) dV; is monotonic) N {@: [X,X]., < e}
0

a.s.
c {0:X.2blu {0: X, <a}u{w: X, e @b)).
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Proof. It follows from the results in Yoeurp [10] that
[X,X]. = [ L&dx.

Hence if [X,X].(w) <o, then LX(w) <o for all x ¢ N(w) € R, A(N(w)) =0,
where A is the Lebesgue measure. It follows from Fubini’s theorem that there exists
N R, A(N) = 0, such that:

a.s.
VxéN, {0:[X,X].<} < {o:LX<e}.

t
Choose a,, b, ¢N, a, L a, b, Tb. If [I,p(X,)dV, is monotone, then so is
0

t
J'I(ambn](Xs_) dV, for every n. It follows from Lemma 2.1 that if [X,X]. (®0) < oo,
0

then X., > b, or X, < a, or X,, € (a,,by) for all n. This means that X.. = b or X.<a
or X_. € (a,b). O

Corollary 2.3. On the set v,

a.s. _
(w:X.<X.} Nn{w:Li<e} © {0:X,.<a}fora>0,

and

_ as.
{w: X, <X.} " {w:Li<e} © {w:X,2>a}fora<O.

In particular, on the set vV,

_ a.s.
{w: X, <a<X.,.}] © {0w:L%=co}

for every a.

Theorem 2.4. Let (X,) be a semi-martingale with X, = Xy + M, + V, where (M) is a
continuous local martingale and (V,) a process of finite variation. Then, we have the
following:
a) (i) On the set v, for all x # 0,
a.s.
{ow: lim X, exists} < {w: L} < oo}
t—yoo
and

{o: lim X, exists} = N {w: LX < oo}
t—oo xeQ

x#0

a.s. a.s.
(ii) {0:1limX =X_existsand X, #0,t e} < {0:[X,X],<e} c {o:limX
t—o0 t—o0



exists } on the set V.
b) (i) Forall x e R,

a.s.
{o: tlim X, exists} © {w:LJX < o}
—>00

a.s.
{w: lim X, exists}] © N {w: Lk < o}
t—yo0 xeQ

holds on each of the sets v, v}, v_.
a.s. a.s.
(ii) {w: Iim X, = X, exists, X,, # 0} < {0:[X,X], <o} < {o: lim X, exists }
t—oo t—o0

holds on each of the sets v}, v}, v

Proof. a) (i). Suppose 0 <a < b, a,b e Q. Then, by Lemma 2.1(i),

r\Q{m: LX<} NV © {0: L2 <o} N {co:jI(a,b](Xs_)st is )
Xe 0
x#0

a.s.

c {w:X.2b}u{w: X, <a}u{w:X_ e (ab))
Lettinga 1 0, b T oo, we get
a.s. -
N{o:Li<e}nvy © {w:X,<0}u {ow: X, e (0,o]}
3
Similarly, from Lemma 2.1 (ii), it follows that
a.s.
N{o:Li<e}jnvy © {0:X,20} U {w:X,e[—0)].
It follows that on the set v
a.s.
N {0: LY <e} < {o: limX, exists}.
t—yo0

xeQ
x#0

Conversely, suppose e (limX, exists}nv,. Since {limX, exists}=
t—oo t—yoo
{Xe € (0,0)} U {X,, € (—o0,0)} N {X,, = 0,%c0}, it is sufficient to show that on each
of the sets in the RHS, L& (@) < o for w € v and a # 0.
If we {X, € (0,0} N v/, then from the decomposition

X, =Xo+ M+ V_ () + V_(1), it follows that V_, V, and hence M converge to a finite
limit and hence from equation (1) that L2 < oo,

a.s.
ie. {0:X,.€ (0,0} Nnv;y < {w:X,M,V,,V_ converge}

a.s.

C {w: L& <o},
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Similarly, from equation (2), it follows that

a.s.
{0: X, € (—=,00} nvy < {m:L2 <o},

If e {X., =0,%0} N v, then since a # 0, the process does not visit a after a finite
time and there are no jumps of X which cross a. Then, since L? = L2 + 1?2, it follows

that L2 does not increase after a finite time ie. L2 <o  Thus
a.s.

{Xeo = 0,10} N vy © {w: L2 < o} and the proof of a) (i) is complete.
+

a) (ii) To prove the first inclusion in a) (ii), note that as in the proof of a) (i),

a.s.

{w: X, ,#0,f0} < {w:M,V,V_converge to a finite limit } .
If ® € RHS above, then of course < X*>_=< M>_ < o and
TAX2 < sup |AX|Z |AX,] < sup |AX | (Z |AV.(s)| + |AV_(s) |) < oo.
S S S S S

a.s.

Thus, {0: X, # 0,10} Nnv] © {o: [X,X], < eo}.

To prove the second inclusion in a) (ii), let first 0 < a < b. From Corollary 2.2 we
get,

a.s.

(0: [X,X].<})NnVv] © {0:X,<a)u{o:X, 2b}u{o:X_ e (ab)}.

Now letting a 10,b7T =, we get

{: [X,X], <o} NV, a'cs. {0: X, <0} u{ow: X, e (0,0]}. &)

Similarly, by applying Corollary 2.2 to the case a < b < 0, we can prove,

a.s. —
{0: [XX].<ee}JnvVv] © {0:X,20}uU{ow:X_,e [—0)}. 6)
The second inclusion in a)(ii) follows from (5) and (6) and completes the proof of a).

a.s.
b)(i). The proof that bg){m: L? <} © {®: lim X, exists } on the sets v, vi, v
t—oo

is similar to the proof for the set v_, described in a)(i) using Lemma 2.1. We will
prove the reverse inclusion on the set v, the other two cases being similar. Fix
be R.

Since {w: lim X, exists } = {w: X, = 0,10} U {X_, # 0,% 0}, it suffices to show that
t—yoo

each of the sets in the RHS is contained in {w: L2 <o} on v*. For the set
{w: X, # 0,10}, the proof is similar to the proof given in a)(i). We will show the

a.s.
inclusion {®: X_, = 0,200} N v* < (@: L2 < oo} for every b € R.
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Now, if X_ = too or if X_ =0, and b # 0, then Ltb does not increase after a finite
time. In particular, L2 < oo, If X_ =0 and b =0, then since on v*, V, (1) + L? is
increasing, it follows, by letting t — e~ in equation (5) that LY < o,

b)(ii) It is easy to see, using the decomposition X, = X, + M, + V_(t) + V_(t), that if
X, # 0,te then M, V,, V_ converge to a finite limit on the set v*. If X_ =0, then
we argue as in b)(i) and conclude that M, V_, V_ converge to a finite limit on the set
vZX. Thus, on vZ,

a.s.
{w: X #t)} < {w: V',V ,M converge to a finite limit} .

Now exactly as in case a)(ii), we can show that the RHS set is contained in
a.s.
{w: [X,X]. < e}. The inclusion {o: [X,X]., <o} Nnv} < {w: limX, exists } is
t—oo

also exactly as in case a)(ii). This completes the proof of b) and the proof of the
theorem. O

Remark 2.5. The inclusions in Theorem 2.4 viz:

{w: X,#0,t0} © {0:[X,X],<e} < {o: limX, exists}
t—o0

can be strict. Consider for example the process X, = h(t) B, where (B) is a Brownian

motion and h(t) non negative decreasing, h(t) ~ as t — oo, Then, by the law

1
Vtlogt
of the iterated logarithm, X; — 0 a.s, but [X,X], =< X°>_ = Ih2 (s)ds =e. On

0

the other hand, if h(t)~-—- as t—ee, then {0:[X,X].<o)}=0,

t
{w: X_,#0}= ¢.
We now consider the local time L? on the set vi. The following lemma shows

that in this situation, Lto plays a special role.

Lemma 2.6. On the set v,

a.s.

{0:LY<e} < {0: lim X, exists and is finite} N {w: [X,X],, < eo}.
t—o0

Proof. From Lemma 2.1, it follows that for all be R,, on the set v
a.s.
{0: L2 <o} © {w:L’ < }. From Theorem 2.4 a)@i), it follows that on Vi,
a.s.
{w:LY< e} c {w:limX,exists}.
t—re0

Now, equations (1) and (2) imply that in fact on v,
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a.s.
{0: L2 <=} < {0 lim X exists and is finite} .
t—y00

But the RHS set is the union of the sets {®w: X, =0} and {w: X_ # 0,£e}. The
latter set is already contained in {w: [X,X]. < e}, by Theorem 2.4 a)(i). If
we {X. =0}, we argue as follows: firstly, it follows from equations (3) and (4) that

[ 10,0y Xs)d < M> (for a > 0) and [I,0)(X;)d< M>; (for a < 0) are both finite.
0 0

Since X_ =0, it implies in fact that < M>_ < oo and hence that the martingale part
M, converges. Now, from Tanaka’s formula, it follows that V, and V_ converge to a
finite limit and hence that TAX2 < oo, [X,X].. < e now follows.

S

Remark 2.7. We list below the mutually exclusive possibilities that can occur on the
set v; with respect to the variables LB,, [X,X]. and X.. Now with the help of
Theorems 1.3 and 1.7, we can explicitly compute functions h(t) so that these possibili-
ties are in fact realised by the semimartingale X, = h(t) B, where B, is a Brownian
motion.

a) L2 <o, [X,X]. <o and X, # 0, #eo. This case does not arise for the semi-
martingale X, = h(t) B,.
1 1

B) LY < oo, [X,X ], <eoand X_ =0 (h(t)~—;,oc>5)
t
1
) LY=o, [X,X] <ooand X_ =0 (h(t) ~ —— for =< B <1
Vit (log t)P 7 <P=D
1 1
d) L=, [X,X],=c0and X =0 (h(t) ~ ———for 0 < B < —)
Vi (logt)P P 2
e) L£=°°, [X,X ], =90 and —°°<§m<i“<°° (h(t)~—-——1=, for
Vi (loglog t)Y
1
O<y< 2).
f) LY=o, [X,X]. =0, X, =X, = o0 (o) ~ =)
= vt
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