Go to main content

PDF

Description

A classifier is said to have good generalization ability if it performs on test data almost as well as it does on the training data. The main result of this paper provides a sufficient condition for a learning algorithm to have good finite sample generalization ability. This criterion applies in some cases where the set of all possible classifiers has infinite VC dimension. We apply the result to prove the good generalization ability of support vector machines.

Details

Files

Statistics

from
to
Export
Download Full History
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS