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ABSTRACT:
A process is defined that consists of drawing balls from an urn and replacing them along
with extra balls. The process generalizes the well-known Pélya urn process. It is shown
that the proportion of red balls in the urn converges to a random limit that may have a

nonzero probability of being 0 or 1, but is nonatomic elsewhere.



The Pélya urn process was introduced in Eggenberger and Pélya (1923). To run this
process, let an urn contain R red balls and B black balls at time n = 1. A ball is drawn
at random from the urn and replaced in the urn along with another ball of the same
color, so that at time n = 2 there are three balls, with red ounumbering black by two to
one half the time and black outnumbering red by two to one the rest of the time. The
draw and replacement are repeated ad infinitum, with the probability of drawing a red
ball always equal to the proportion of balls in the urn that are red at that time. It is a
well-known fact that the proportions of red balls converge almost surely to a limit that
is random and has beta distribution with parameters R and B; see Feller (1957) for a

discussion of this.

This paper considers a Pélya urn with the single change that the number of extra
balls added of the color drawn is a function of time. For some other generalizations of
the Pélya urn process see Friedman (1949) and Hill, Lane and Sudderth (1980). Let
F :Z2° — (0,00) be any function. Let {v1,vq,...} be the successive proportions of red
balls in an urn that begins with one red ball and one black ball and evolves as follows:
at discrete times n = 1,2,..., a ball is drawn and replaced in the urn along with F(n)
balls of the same color (F(n) need not be an integer). The usual Pélya urn scheme is the
case where F'(n) = 1 for all n. We show that v, must converge for any F' and that the
limit has no atoms except possibly at 0 and 1. Necessary and sufficient conditions for the
limit to concentrate entirely on the two point set {0,1} are given. The proofs are based

on variance calculations for a discrete-time martingale and are completely elementary.

The following formal definition of the process is completely routine and may be
skipped. Let © be [0,1]Z%° with the product uniform measure. All probabilities will
be with respect to this space and all functions will be functions of w where w is a generic
point in 2, but the notation will supress the role of w when no ambiguity arises. Let z,
be the nt* coordinate of w so that {z,:n =0,1,2,...} is a set of independent uniformly

distributed variables on [0,1], and let F,, be the o-algebra generated by {z; : ¢ < n}. Let



51(0) = S3(0) =1 and recursively define

S1(n +1) = Si(n) + F(n)1(z, < Si(n)/(S1(n) + S2(n)))

1
Sz(n +1) = S3(n) + F(n)1(zn > 51(n)/(51(n) + S2(n))) .

where 1 denotes the indicator function of a set. So S;(n) and S;(n) represent the numbers

of red and black balls in the urn after n draws. For convenience we let
n—1
ba=F(n)/(2+ ) F(i))
1=0

denote the fractional additions. Let v, = S1(n)/(S1(n) + S2(n)) denote the proportion
of red balls at time n. The following results will be proved.

Theorem 1 For any function F' as above, the random variables v, converge

almost surely to some random variable v.

Theorem 2 The limit v satisfies prob(v = 0) = prob(v = 1) = 1/2 if and only if

o0

2
=1 6'-. = 00.

This theorem applies, for example, when F(n) = 2". Roughly, the hypothesis means
that F grows faster than polynomially, but one needs to look more closely if the growth

is irregular since the function

F(n) n if n is a power of 2;
n)=
2~" otherwise ;

satisfies the hypothesis.

Theorem 3 The distribution of v has no atoms on (0,1).



Remark: It is possible for the distribution of v to have atoms at 0 and 1 of weight less than
1/2 each; then the remainder of the time v is in (0,1) and this part of the distribution
is nonatomic. An example where this occurs is if F(n) = n. In this case the probability
that all draws are of the same color is 2 x £ x I3 % +++ >0, but according to Theorem 2
the distribution is not entirely concentrated on {0,1}. I do not know of a counterpart to

Theorem 2 giving a necessary condition for the probability that v € {0,1} to be nonzero.

Proof of Theorem 1: {v,:n =1,2,...} is a martingale. To see this, calculate

E(ni1|Fa) = va(S1(n) + F(n))/(S1(n) + F(n) + S2(n))
+ (1 -va)51(n)/(S1(n) + S2(n) + F(n))
= [$1(n) + vaF(n))/(S1(r) + S2(n) + F(n))

Now since {v,} is bounded, it converges almost surely to some v. m]

Proof of Theorem 2: We calculate the expected value of v2. By symmetry this is at
most 1/2 with equality if and only if prob(v = 0) = prob(v = 1) = 1/2. Necessary and
sufficient conditions for this will follow from the simple recurrence relation (2) below for
the values of 1/2 — E(v,?), which are denoted W,,.

Since v, converges almost surely to v and the variables are bounded by 1, we know
that E(v2) converges to E(v?). Let V, denote E(v,?). For a fixed F, v, takes on only
finitely many values and V,, can be recursively calculated as follows. If v, 1(w) = z =
S1(n —1)/(S1(n — 1) + Sz(n — 1)) then

vn(w) = Si(n—1)/(S1(n —1) + Sz(n — 1) + F(n))
= z/(1+6n)
with probability 1 — z, and

vn(w) = (Si(n —1) + F(n))/(Si(n — 1) + So(n — 1) + F(n))
= (z+6.)/(1+ 6,)



with probability z. So
V. = Ev,?
= E[(1 — vaz1)vn-12/(1 + 62)% + va1(vn-1 + )2 /(1 + 6,)?]
= 1/(1 4 62)*E[(1 = va-1)¥n-1" + Va_1(vn_1 + 6n)’]
= 1/(1 + 6.)*E[vp-1? + 26,0512 + v-162]
= (62/2 + Vaor(1 +26,))/(1 + 6a)%.

To see better how the value of V,, relates to the value of V;,_;, we let W denote 1/2 — V;.
Then

W, = 1/2=[(63/2) + Va-1(1 +264)]/(1 + 6a)?
= (1/2+4 6n — Va1 — 26,Vao1)/(1 + 6,)?
= Wn1(1426,)/(1+6,)?
= Waa(1-63/(1+60)%). (2)

Thus the value V,, converges to 1/2 if and only if W,, converges to 0, which happens when-
ever the product of the values (1 — 62/(1 + 6,)?) converges to 0. This happens whenever
> ,68%/(1 + 6,)? diverges, which in turn happens exactly when 372, 62 diverges, and

Theorem 2 is proved. m]

Proof of Theorem 3: Fix p € (0,1). If prob(v, — p) > 0 then there is some n and some
event A € F, such that prob(v, — p|.A) is arbitrarily close to 1. In fact, n can be taken
to be as large as desired. Define

Ap = Z 5,‘2.

i=n
The quantity o, can be thought of as the “remaining variance”, since the expected square
increments of the martingale {v;} are bounded between constant multiples of §;> when
v; is near p. According to Theorem 2 there is no loss of generality in assuming a,, to
be finite. Also assume without loss of generality that p < 1/2 since the case p > 1/2 is
identical but with red balls and black balls interchanged.
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Since a, — 0 there is an N for which n > N implies a,, < p/10. Choose ¢ > 0 small
enough so that 7
9¢* < 81p*/800. (3)

The essence of the proof is in the following two claims, holding for any n > N.

Claim 1: prob(sup |vkx — p| > cv/a, | Fn) = 9p/10 (4)
k>n
Claim 2: prob(licgf |vk — p| = e\/an /2| Fa, B) > c%/16 (5)

where B is the event |v, — p| > ¢\/an.

Putting these two claims together, we see that for any value of n > N, the probability
geven F, is at least 9p/10 - /16 that some v,4i Will be at least ¢,/a, away from p and
that no subsequent vy, x4 Will ever return to the interval [p — c\/an/2, p + c\/aa/2].

This contradicts the existence of the event A above, and the theorem follows.

Proof of Claim 1: Let 7 = inf{k > n : |vx — p| > c¢\/a,}. We need to show that
prob(t < oo | F,) = 9p/10. We will calculate the variance of virr. On the one hand, this
is limited by the fact that v;s, is never very far from p. (If the increment on which the
stopping time is reached may be very large, then a different argument is used; see Case
1 below.) On the other hand, the variance always grows by at least a constant multiple
of 6;? until 7 is reached, and c is chosen to be much smaller than this constant. These
two facts together will imply that the stopping time is reached often enough for Claim 1

to be true.

Case 1: 6; > 2¢y/a,/(1 — p— ¢\/a,) for some ¢ > n. Basically what happens in this case

is that there is a good enough chance of stopping on the i + 1** draw:

7 > ¢ and draw ¢ is red



= ©v; 2 p— c\/a, and draw 7 is red
= v =0+ (1 —-v)6/1+8&)>p+cv/anm
= r=1+1.

The probability of a red draw is always at least p — c,/a; until 7 is reached,which is at
least > 9p/10 by choice of ¢ and N. This easily implies that prob(r < co|F,) > 9p/10.

Case 2: No §; is that big. Then the increment on which 7 is reached cannot be bigger
than 2¢,/a,, and so
|viar — p| < 3ev/ay, for all i > n. (6)

Pick any ¢ > n and use the fact that v;n, — p is a martingale to get

E((vi+nyar — p)?1Fn) = E((viar — P)?|Fn) + E(Lrsi(vigr — v0)?|Fy). (7

v;%(6:/(1 + &;))? with probability 1 — v;,
(1 = v;)%(6:/(1 + 6))* with probability v;.
Now since 14+6; < 2 by the assumption that o, < p/10 and since T > i = min{v;,1—v;} >
p — ¢y/a, > 9p/10, it follows that

(Vigr —v3)* = { (8)

(vig1 — v5)? > 81p%6,°1,5:/400.
So the right hand side of equation (7) is at least
E((vinr — p)*|Fn) + 816;%prob(t = ool|F,)/400.

Now summing over : and dropping the positive term (v, — p)? gives

n+M-1

B((oarnnr = V170) 2 (815275 62/400) problr = ol ),

=n



But equation (6) implies that

E((v(ntM)ar — p)?|Fn) < 9%, = 9¢? Z 632,

so letting M — oo gives
prob(tT = oo | F,) < 9¢%/(81p%/400) < 1/2

by the choice of ¢ in (3) above. So Claim 1 is proved. O.

Proof of Claim 2: The idea this time is that the remaining variance is not enough to
give a high probability of getting back to within c\/a;/2 of p. The inequality we use is a
one-sided Tschebysheff inequality saying that if v, has a probability greater than 1 — ¢ of
reentering the interval, then since it is a martingale, the other € of the time its average
is on the order of €~! in the other direction, and this gives a contribution to the variance

that gets impossibly large as € goes to 0.

Let B be the event |v,, — p| > ¢ /a, as in (5) above. Define a new stopping time by
r=inf{k > n; |vr — p| < cy/a,/2}. From (7) again, calculate

n+M-1 00
Var(vemar Fo) = 2. E(lrsi(vipr — v:)?|Fn) < DY 62 (9)

according to the values for (vi;; — v;)? given in (8). So {v(ntiar} is an L2-bounded
martingale with variance E((v, — vn)? | F,) at most 32, 6 = as. On the other hand,

E((vy — v4)?|Fa, B)

2 prob(t = oo | Fn, B)
Eay, prob(r < oo | Fp, B)?
4 prob(t = oo |Fy, B)

> prob(t < oo|Fn, B) (ev/@n/2)’ + prob(t = 00| Fo, B)E((ves — v5)? | F, B, ™ = 00)
> prob(t = oo | Fp, B)E(veo — vn | .7-',,, B,7 = 00)?

2
> prob(t = oo | F,, B) (c" an prob(r < °°|-7:mB))

(10)



where the penultimate term is calculated from the fact that
|E(veo — ¥n|Fn, B,7 < )| > ¢y/an/2 while E(v — v,) must be zero. Combining
the two inequalities (9) and (10) gives

prob(t < oo | F,, B)?

> (c? .
an 2 (¢/4)an prob(r = oo | Fy, B)

It follows easily from this that prob(r = oo | F,, B) > min{1/2,c?/16} = ¢?/16 and Claim
2 is proved, along with thoerem 3. m]

Knowing that the distribution of v is nonatomic on (0,1), it is logical to ask when
the distribution is absolutely continuous with respect to Lebesgue measure. Nothing is
known about this except when F' is constant and the distribution of v is known to be a

beta, or when F'(n) goes to zero faster than 2~" and v is supported on a Cantor set.
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