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Fourier inference is a collection of analytic techniques and philosophic

attitudes,for the analysis of data, wherein essential use is made of

empirical Fourier transforms. This paper sets down some basic results

concerning the finite Fourier transforms of stationary process data

and then, to illustrate the approach, uses those results to develop procedures

for: i) estimating cloud and storm motion, ii) passive sonar and iii)

fitting finite parameter models to nonGaussian time series via bispectral

fitting. This last procedure is illustrated by an analysis of a stretch

of Mississippi River runoff data. Examples i),ii) refer to data having

the form Y(x.,yj,t) for j = l,.e-,J and t - O,e.e,T-1 say, and view that

data as part of a realization of a spatial-temporal process. Such data

has become common in geophysics generally and in hydrology particularly.

The goal of this paper is to present some new statistical procedures

pertinent to problems in the water sciences, equally it is to illustrate

the genesis of those procedures and how their properties may be approximated.
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INTRODUCTION AND SUMVARY

Statistical inference is concerned with making statements going beyond

the data at hand. Fourier inference is the part that proceeds in this

connection making essential use of Fourier transforms. Making use of
the

such transforms is often found to simplify/study of a scientific problem,

both philosophically and analytically. The latter results in part from

the nice mathematical, statistical and computational properties of the

Fourier transform. The Fourier transform isolates effects and often allows

a problem to be replaced by one involving independent identically distributed

observations,ite.those with which the vast majority of statistical techniques

are concerned.

Fourier inference is one concern of this paper* A second is the statistical

analysis of arrag, or network, d The data take the form

Y(x3yj.,t) (1)

for j 1 ,.,J and t = O,.--,T-1 with the index t viewed as "time" and

the points (x.,y.) viewed as the (planar) locations of an array (or network)
3 q)

of sensors. For fixed j, Y(xj,yj.t) t - O,.--,T-1l is a stretch of time

series data. For fixed t, Y(x.,y.,t) j = l,...,J is a sampling of a spatial

field. Examples to be expanded upon later in the paper include: the

contemporaneous rates at which rain is falling as recorded at a network

of gauges, the fluctuating pressure levels being measured by an array of

sonar sensors and the measured runoff rate at a station on a river. The

particular scientific problems to be considered in connection with these
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examples are respectively: estimation of direction and velocity of storm

movement from data at two time points, estimation of the direction of an

energy source from data at a few sensors,and the fitting of a finite

parameter model to the runoff e The procedure presented for this last is novel,

making use of both second- and third-order information.
are

Array data / essential to the study of phenomena moving and varying

in time and spaces. Study of such data, and corresponding processes, adds

insight to the marginal space and time casese Array data allow estimation

of parameters important to other scientific problems, such as frequency-

wavenumber spectra which appear in expressions for exceedance

probabilities , see for example Forristall et al.* (1978).* Array data have

become common in geophysics generally and in hydrology particularly.

Section 2 of the paper sets down basic notations, definitions and

statistical properties of the Fourier transforms of (large) segments of

stationary processese Section 3 illustrates how these properties may be

invoked to build analyses and to suggest techniques for making statistical

inferences. The cases of model fitting and estimation will be concentrated

upons. Section 4 is concerned with the estimation of cloud and storm motion,

Section 5 with passive sonar and Section 6 with improved fitting of a

model for river runoff by making use of both the power spectrum and bispectrume

This last case is illustrated with a preliminary analysis of monthly

observations of Mississippi River runoff. The paper concludes with Discussion*

The work edited by Brillinger and Krishnaiah (1983) contains papers

surveying a broad variety of aspects of Fourier inference.
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SOYiE BASIC CONCEPTS AND RESULTS

This section serves to introduce the notation, the assumptions and the

properties Of the Fourier transform as a tool in the analysis of random

process data.

By time series data will be meant a succession of values Y(O), Y(1)0.*.,*
Y(T-1) with T the length. The series may be vector-valued, in which case

boldface notation will be employed, Y(t) t . O,...,T-1 . The Fourier

transform of this last will be denoted by

dy(> - E Y( t) expj-iAt?it , < <co (2)

It will typically be computed for a set of discrete frequencies by some

fast algorithm. See Heideman et al. (1984) for a review and references.

In many circumstances time series data may be usefully viewed as part

of a realization Y(t,e4) t = 0,±l,+2,... of a stochastic process. (Here w is

a random variable and Y(G.,') measurable in to .) This allows parameters

to be defined through which analysis and discussion may be carried out.

Parameters that are of particular importance for this paper arise when

the process Y(.) is stationary (that is joint probability distributions are

unchanged by time translation) and include the (matrix-valued) covariance

function

,yy(u) - cov Y(t+u),Y(t) (3)

ttu a 0,±1,... and the spectral density matrix

f:( * (2x) yy(u) expp-iAuj (4)

for --oC)< oo . In the case that the process Y(.) has mean 0, this last
A-0 1%1.0~~~~,4
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may be connected to the statistic (2.1) via

fyy(>) - lim (2nT)F1 E dy(,t)T T(d ) ) (5)

" denoting matrix transpose, "--" complex conjugates When the process is

real-valued, one has the power spectrum. Letting fjk() denote the entry

in row j , column k of f () , one can define the coherence of the j-th

and k-th components of Y(.) at frequency A as

IRjk()Ijk(-N / (6)

It is a useful descriptive parameter and also appears in many expressions

for sampling variability.

There are corresponding definitions in the case of a spatial process,

Y(x,y,OA) x,y - O,±1,..- . Here x,y are the coordinates of location and

for example in the stationary case one has the covariance function

c y(U'V) = cov Y(x+u,y+v),Y(u,v) (7)

u,v,x,y = O,+l,..o and the power spectrum

fyy(a,p) = (2n)f2 £ z c y(u,v) exp i(au+3v) (8)
u v

_"a < a, < Oa

with (a,9) referred to as the wavenumber.

A spatial-temporal process has coordinates of both space and times

Its Fourier transform has coordinates of both wavenumber and frequency.

In a variety of applications, a spatial-temporal process will be observed

only at irregularly spaced positions r. - (xj,yj) , jI l,--,J
"'3
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The development of the techniques/analyses presented in this paper

will make substantial use of central limit theorems for empirical Fourier

transforms. The distribution of a statistic like (2) will be approximated

by a (complex) normal distribution. In the case that the process ,(O) is

Gaussian, the distribution is exactly Gaussian* In the general case the

result holds for processes that are stationary and mixing. Mixing here

means that values of the process that are far apart in time (or space) are statistic-

independent or nearly so* Precise formulations of mixing conditions

leading to the desired central limit theorems may be found in Hannan (1970),

Brillinger (1983) for example.

Quoting from the last reference, the sort of results one has,include:
T(i) For 0<(\(ii d() is asymptotically normal with mean 0 and covariance

matrix 2srT fyy(O) , as T-oo,

(ii) For 0<\< *- < <nKdTIn)... d\t(d ) are asymptotically
independent,

(iii) For,Tk - 2nsT/T , with 0 < )T n and the sT distinct integers, kl 0...,EK

dT(T)),..., dT( T) are asymptotically independent complex normals with

mean 0 and covariance matrix 2nT f C)* Usually one takes T as T oo.

These results suggest many procedures pertinent to the analysis of time

series data. One great simplification that they suggest follows from (iii),
T T werenamely, to treat the dY(GA) as if they / a sample from a

normal distribution. As a preliminary example, one is led to estimate f

by

f \
T

- K1 £ (2nT)FldT T T T(9
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and to approximate the distribution of this statistic by a complex Wishart

with parameters K and fyyCX -

From the standpoint of developing empirical procedures and understanding

their properties, the Skorokhod representation is an exceedingly valuable

tool. It allows one to write the result (iii) above as

ATk ._- + 0a.s (Tl/2); k ..1,K (10)

where the t are independent complex normals with mean 0 and covariance

matrix 2nT fyy(/\ . It allows one to obtain approximating distributions

of functions of Fourier transforms by elementary manipulations. The abstract

theorem is in Skorokhod (1956). (Here Tl/20°ao (Tl/2) tends to 0 with probability 1.

The above are first- and second-order results- In the bispectral estimation

procedure to be presented, third-order results are employed. Suppose the

real-valued series Y(t) has mean c and third-order moment function

cyy(u,v) - ELY(t +u) - cy1[Y(t+v) - cyl[Y(t) - cyl? (11)

t,u,v - 0,+1,... . Then the bispectrum of the process Y( .) at bifrequency

(dJ,) is given by

fYyy(//u) - (2r)'2 E Z c y(u,v) exp{-iC(u+.pv)7 (12)
u v

oo , coX

In the case that Y(*) has mean 0, analaKgously to expression (5),

fYyy( - lim (22)T1 E tdy(A) dy(G) d( ) (13)

Fourier transforms at frequencies A,u, such that p+'+v = 0 are seen to

be statistically dependent in a special way. The quantity
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TTyy(Xjj) . (2)'2T-1 d(T dT( ) d (14)

is the third-order periodogram. Some of its statistical properties are

developed in Brillinger and Rosenblatt (1967), in particular one has

E ITyyy( \d) fyyy(td) (15)

var IT T\(A)T2) f Y(W)GOfQY+4) (16)
that

provided/O< e4A <C\+24 < x * Further the asymptotic covariance of third-

order periodograms at distinct bifrequencies is negligeable and the

periodogram may be smoothed to estimate the bispectrum, with the estimate

asymptotically normal. Details may be found in Brillinger and Rosenblatt

(1967). Bispectral analysis is useful in dealing with nonGaussian processes

and with nonlinear systems.

The specific procedures discussed later in this paper are concerned

with the estimation of a finite dimensional parameter. The estimate is

generally normal and an expression may be set down for the covariance matrix

of its asymptotic distribution. The rigorous development of such results

generally proceeds in the following two step fashion:(i) an empirical loss function

QT(Q) is recognized. The estimate 0 is the value of Q minimizing QT(Q) .

As T-*00, QT(Q) tends in probability to the function Q(Q) having a unique

minimum at @ - .00 Then, under some regularity conditions, Q tends in0 ~~~~~~it
probability to the "true" value e ;(ii)/follows that one can act as if Q0

is near Q0 and set down the following Taylor series expansion

QT) ' Q?(O) + (' ) .Q"(f (17)T To o T
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A
for Q*between e and 0 . So one can write

0

° i'- ( ) TQ(6*) (18)

Often it is the case that QT(o is asymptotically normal with mean O

and covariance matrix A and the case that Q '(Q B * One can then
- ~~~TA

conclude that JT( - 0 ) is asymptotically normal with mean 0 and covariance

matrix B AB

The loss function may be a sum of squares, it may be a negative log

likelihood function, it may be a negative log likelihood function corresponding

to a multivariate normal with parametrized mean and covariance functions. In

a broad variety of situations the computation of Q,for given QT I may be

carried out by iteratively reweighted least squares - a technique that has

much to be said in its favour, see Green (1984).

The above two-step procedure, of first showing consistency then making

a Taylor expansion, is what was employed to formally develop the approximate

distributions suggested for the examples presented in sections 4, 5, 6

of this paper.

To end this section of technical results,it may be mentioned that the

Fourier transforms basic property of converting convolution into multiplication

holds in an approximate sense in the finite case. In particular if Y(t) =

Z a(u)X(t-u), then dy(? A(\)cd1(>) with A(\') = Z a(u) expi-iAuf * (This

approximation is made explicit in Brillinger (197¶a) Lemma 3.4.1, Theorems

4.5.2, 4-5*3 for example.)



- 10 -

SOME PARTI CULAR TECNI UtTES

This section presents details concerning the implementation of regression
and

analyses, Gaussian fitting/ bispectral fitting by Fourier meanse There is

also brief mention of some variants in the computations.

Regression* To begin consider the case of a linear time invariant model

such as

Y(t) - pi + £ a(u) X(t-u) + c(t) (19)
u

with X(t), Y(t) t - Ot.,-T-T1 data available and with e(t) a stationary

mixing noise process. Taking the (finite) Fourier transform of each side

of this relationship yields

dT; A( dT(A(/) ) + dT (20)

for 0CA(< x, where the approximate conversion of convolution to multiplication

and the negligeability of the Fourier transform of a constant when 0-4\>e<

have been used. Consider now K frequencies, of the form 2irs/T, near A
For many filters a(.), A(.) is smooth so A(2ns/T) - A(,\) and one has

dY( TS AA(>) dX(2T) + d( T ) (21)

= A(\) dX( T +

with the a sample of size K from a complex normal of mean 0 and variance

2nT f (% . The Skorokhod representation is used at the last step

here. In other words

expression (21 ) has the essential form of a traditional regression

relationship (with the minimal difference that the quantities appearing

are complex-valued*) One is led directly to the estimate

AT( ~ Tz T 2iT2
2ir II1 (2

5F Y dX( T )][ dX( T) dX(T')28 s~~~~~~
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and to approximate the distribution of this last by a complex normal with

mean A(o) and variance

fee()) d(X( T ) dX T )(23)
a

An estimate of fe(A), test statistics, residual plots and the like all

suggest themselves. Many details may be found in Brillinger (1975a)for the

time series case. Results follow in a similar manner for spatial and

spatial-temporal cases, the essence is to recognize the appearance of an

additive noise that one is willing to assume stationary and mixing.

Nonlinear Regression. Consider a model of the form

Y(t) - S(ttl) + e(t) (24)

where 4 is a finite dimensional parameter and e(@) a stationary mixing

noise process. For example one might have,

S(tlQ) . Z ak expl-f3kt? cos(ykt + Sk) (25)
k

where Q iak, k,kk) k = l . -,Ki . Taking the Fourier transform

gives

dT dTIs ) + dT(2ics (26)
for2it/T ea 2 an Sh T 27rT

for 2ns/T near A and the dT(-) approximately complex normals having

mean mean 0 and variance 2tT f ( T). Ihe functional form of d T |@)

being known up to the finite dimensional parameter X, the problem is now

one of nonlinear regression.

The particular case of the model ( 25 ) is studied in some detail in

Bolt and Brillinger (1979) and Hasan (1982). The large sample distributions
two step

of the estimates are there obtained by th1 procedure described in section 2.
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Gaussian Fitting. This is a procedure, essentially introduced in Whittle

(1953), for the estimation of a finite dimensional parameter of a stationary

process by maximizing a corresponding Gaussian likelihood- It may be

motivated and described as follows: let Y(.) be a stationary mixing series

with power spectrum, fy(XlIG), containing the finite dimensional parameter e.

For s an integer write

IT , (2nT)FIdT(2ns)i2 fi f T 14 (27)

IT is the second-order periodogram at frequency 2ns/T Treating the dj(2T)
as exactly independent complex normals with mean 0 and variance 2nTf

5

leads to, up to a constant, a negative log likelihood of

QT(0)- £(log f8 + Is/f) (28)
5

The Gaussian estimate minimizes this QT . (It is important to point

out that while the specific form of the criterion ( 28 ) was motivated

by Gaussian considerations, the resulting estimate may be investigated

in its own right.) Properties of this estimate are developed in Hannan

(1969), Brillinger (1975b)and Dzhaparidze and Yaglom (1983), for example.

The estimating equations obtained by differentiation of expression ( 28 )

are

T Zf 2(29)(I fr5~ f~= 029

Ebcamination of these equations indicates that the estimate may be computed

by iteratively reweighted least squares as follows: given the estimate at

the previous iteration (nonlinear),regress I T on f5 employing weight .2ea

evaluated at the estimate of the previous iteration. Iterate til convergence.
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Standard error estimates are a by product of this iterative procedure.

They are appropriate in the case that fourth-order spectra of the series

are negligeable; otherwise formulas like those of Section VII of Brillinger

(1974) need to be employed.

An example of Gaussian fitting of runoff data is given in section 6

of this paper.

Bispectral Fitting. Gaussian fitting makes use of second-order information

and statistics. When a process is nonGaussian, such a fitting procedure

cannot be expected to be efficient. The procedure about to be described

seeks to obtain improved estimates by incorporating third-order information.

Suppose the series Y(.) has bispectrum f yy (>,±I) also depending on Q.

Write

IT (2n) If-1 dT )dT2s)dT(2i(r+ (30(
r,s Y(T)T y ( T (30)

f =f (27r 27L Q)(1
r,s Yy~?T1)(1

Bispectral estimates formed by smoothing the third-order periodograms

(30 ) are asymptotically normal and independent of corresponding second-

order quantities (see Brillinger and Rosenblatt (1967).) This suggests

setting down Q that is the sum of the second-order term (30 ) and

a term resulting from acting as if the third-order spectral estimates

Gaussian. When this QT(Q) is differentiated, with respect to i, the following

system of estimating equations is obtained,

£ (I8 fs v - )8

+ 2T £r,s) -Ifrfs r+s - (32)
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The first term on the left here is the second-order one, (29 ) * The

weights occurring in the second term correspond to the variance of the

third-order periodogram as given by ( 16 ).

Examination of these equations indicates that, once again, the estimates

may be computed by iteratively reweighted least squares. The regression

T T Tformulation involves both the I8 and the I * Handle the I as before.
s ~~r,s

Now, at the same time regress the IT s fr employing weight r?sfr+
evaluated at the estimate of the previous iteration. (Preparing a computer

program to do this for the example presented in section 6 below did not

prove enormously difficult*)

It is important to validate models and fits. In the present case the

third-order fit may be examined by the standardizedquantities

T r s fr 9 frfsfr+s (33)

where fr = f .(-2t Q) and fr,s = Qi4) * An example is presented

in section 6e

The asymptotic distribution of the estimates of bispectral fitting,

may be worked out by the technique described in section 2. Their asymptotic

variance is found to involve spectra of order up to 6. Hence the standard

error estimates coming from iteratively reweighted least squares will not

be appropriate generally. They will be appropriate when the higher-order

spectra are negligeable relative to those of order 2. The standard errors

presented in section 6 are those from iteratively reweighted least squares.



- 15 -

Some Elementary Modifications. It would be remiss not to point out that

practical application of Fourier techniques often requires elementary

preprocessing of the data. In the case that the spectrum of a process

contains neighboring peaks or has a substantial dynamic fall-off,

it can be crucial to taper the data prior to evaluating its Fourier transform.

All that this involves is multiplying the (mean-corrected) data by a

function that tapers smoothly to 0 at the boundaries of the region for which
are

data! available and is near 1 elsewhere.

A second potent modification is prewhitening Here there is preliminary
model fitting or data processing in order to make the spectral functions

more nearly constant in . This can lead to estimates that are substantially

less biased. In the case of a bivariate process,rephasing (also known as

alignment) can be crucial and it is an entirely elementary prewhitening

operation. One simply shifts the time argument of one series to make the two

series more nearly coherent.

In the next sections specific examples of the uses of the above tools

to build analyses are presented. As part of the construction of these

analyses,one seeks out stationary mixing noise processes in the situation

to drive the stochastic analysis of the data.
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THE ESTIMATION OF CLOUD AND STORM MOTION

Leese et ale (1970, 1971) were concerned with the determination of

cloud motion from sequential pictures obtained via a geosynchronous satellite.

Estimates of speeds and directions of movement were obtained by cross-

correlating a picture,at various translations, with a picture taken 24

minutes earlier. If Y(x,y,t) denotes the grey level of the picture element

at location (x,y) at time t , then the average correlation of Y(x+u,y+v,s)

with Y(x,y,O) across the picture, (really part of the picture), is estimated

and the translation (A ,v) at which this is maximized is determined. The

speed of motion is then estimated by ( u2 + v2)l/2/, and the direction

estimated by tan (u$v) . The spatial array is a lattice, so the fast

Fourier transform was employed in the computations. The results obtained

were compared with estimates derived by manual methods and good agreement was

found. Some other methods for tracking motion via pictures are described

in Aggarwal et al. (1981) . Examples of carrying out the computations

optically are presented in Bohm et al. (1981) o

Various researchers have concerned themselves with the problem of

determining storm motion from rain-gauge data. We mention, initially, the
of

papers/Felgate and Read (1975) and Shaw (1983). These workers proceed by

cross-correlating the individual gauge time series in triples of gauges.

Then (temporal) lags at which maximal correlation occurs are read off and

used with the coordinates of the gauges to estimate parameters of interest.
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consecutive
Marshall (1980,1983) investigated/2-min rainfall amounts for two English

storms* The networks had 19 and 36 gauges respectively (with not all

operating continuously) and were arrayed irregularly. Marshall spatially

interpolated the data to obtain values on a regular grid (lattice) and

then looked for translations giving the maximum correlation, in the general

manner of Leese et alo (1971)- In this section a method is proposed that

simultaneously makes use of all gauges (not just in triples), that does

not require spatial interpolation (with its accompanying loss of information)

and that is sufficiently formal that uncertainty measures may be provided

along with the estimates evaluated. First the lattice case is discussed

however.

To begin ,here is a motivation for the use of the correlation

made by Leese et al- . (This will later provide motivation for the procedure

in the irregular array case*) To simplify the notation for the moment,

let Yt(x,y) - Y(x,y,t) and suppose that data are available at t - 0,1

and x = 1,.**m ; y 1,*l..,n . Then the nearness of a translation of the

second picture to the first may be measured by

E FYl(x+U,Y+v) _ y(x,y)2 (34)

x y

with the summation over l(x,x+uc m, 1 y,y+v n . The translation may

be estimated by minimising this quantity. Supposing "stationarity" and that

Y1and Y0 have the same mean, one sees that minimizing (34 ) comes down

essentially to finding the (u,V) that maximizes the sample correlation

of Y1(.+u,*+v) and Y0(.,.) . The estimate obtained in this fashion may

not be expected to be efficient generally because expression ( 34) is a
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0n
simple sum of squares. It ignor/correlations between terms appearing.

In order to develop an"efficient" estimate, turn to Fourier inference

employing the results of Sections 2 and 3.

Consider the following formal structure: let S(x,y) denote a stationary

spatial process-, corresponding to the signal at t - O Let

Y(x,y,t) - S(x+4t,y+/t) + c(x,y,t) (35)

with (;(,)) corresponding to the rate of translation of S(.) . Suppose

further that {c0(x,y),c1(x,y)) is a stationary spatial process, the two

components having coherence 0 * Then, from (35) and the discussion in

Section 3 on Fourier transforms of convolutions, with a. - 2nj/m and tk - 2nk/n
T (m,n)

dy(aj9k:t) : exp,i(a'A+ P))ttd (aj3 ) + d (ajcPk;t) (36)

for (aj,0) near (a,P) and with the dkT(aj9Pk;t) approximately independent

complex normal with mean 0 and variance (2n) 2mnf (a,3;t) * Set dT(a,) -
cc ~~~~~t

dT(atP;t)o Then the variates

dT(a ,3k) - expji(aK + 31)d(T(ac,3k) (3)

will be approximately independent complex normals having mean 0 and

variance (2 R)2mn[f (a,3;1) + f (a,3;O)J * Restricting, for the moment,

consideration to Fourier values in the neighborhood of (a,:) om is led

to estimate ,) by minimizing

Z Idi (aj ) - expAi(aX + P)}d0(a

0or 'f1l(a,p) - 2 Re(exp)i(aX+ -Af)3f01(a')) + f 0((a'3) (38)
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where the fT(a9,) denote spectral estimates at wavenumber (a,j) * Turning

to the construction of an estimate involving all Fourier frequencies, let

JT(a,o) . arglo(ata1)j . Noting expression ( 38) and the dependence

of the complex normal variances on (a,3) one is led to consider estimating

(9,~) by maximizing, for large P,

P Co( X F p -T(- f p ))w( tp)(39)

for some weight function w(.) * Now the variance of the asymptotic

distribution of iT(a,P) is proportional to [IR10(a,3)I|2 -_ iJ , with

|RJ,0()|2 the coherence of the processes Y1(.) and Yo(e) . This suggests

taking w(.) in ( 39') to be

wT(aC,) C[ JRT(a,3)V12 1] 1 (40)

based on estimated coherences. Note that with w( .) . 1f%(.)I ,

expression (39 ) is essentially the sample cross-correlation function

and one has the Leese et al, estimation procedure.

An expression for the variance of the estimate constructed from (39 )

may be set down directly. One has #T(a,3) _ A + P with an asymptotic

variance [1RO(a,p)112 - l/I2K, K being the number of periodogram values

averaged in forming the spectral estimates. This gives the asymptotic

covariance matrix of (t) , by generalized least squares, as nA BA-1 kp
where

A . ff [a [La 0] w(a,j) da do
(41)

B [if [a 1 La ]1 w(a,o)2[ JR10(a,P)I 2 - 1] da do
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from which results for the Leese et al. procedure and the "efficient"

procedure may be obtained by choice of w( .)

The development,just provided,is a direct extension to the spatial case

of results developed by Hannan and Thomson (1973) and Hamon and Hannan

(1974) using results developed for spatial series in Brillinger (1970,1974).

Related work by Hannan for the time series case may be found in: Hannan

(1975), Cameron and Hannan (1978,1979), Hannan (1983). A point that has

been emphasized by Hannan in the time series case is that, in the Fourier

approach it can be essential to rephase the series, that is realign them

to put them approximately in phase, before commencing spectral computations.

Such a"prewhitening" operation is called for in the present case as well.

One means of estimating the realignment translation is via the values

maximizing the cross-correlation of the two pictures.

In connection with the processes for which the above estimation procedure

may prove useful, note that expression (36 ) was basic. It involved

replacement of the Fourier transform of the translated signal, S(.), by a

simple multiple of the untranslated signal's Fourier transformation. This

replacement may be expected to be reasonable for a broad class of processes,

including transients, and was noted in Section 2.

Turn now to the case of an irregular arrayt and proceed by setting

down an analog of expression (34.) . Let the coordinates of the array

sensors be denoted r. - (xj,y.) . Let translations be denoted by p - (u,v)

and let a be small. Now the nearness of a translation, p, of the second
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image to the first may be measured by

Ir IY1(&) o(A#k)I / I 1-rkl< (42)

with the summation over the available data* The unknown translation may

be estimated by minimizing (42 ) with respect to P, for a given .

Expression (42 ) might be generalized to the form

E wTk j k7P) IY1(rj) Yo(rk) 2 / z wT(rjrk-e) (43)
j,k

with wT(.) a weight function concentrated near 0 . (Masry (1983) considers

a related time series covariance function estimate.)

The estimates obtained in this fashion are ordinary least squares,

and hence may not be expected to be efficient generally* In the estimation

of the covariance function, at lag u, of an ordinary time series one issue

that arises is whether to divide the sum of lagged sample products by T¶-u|

or by T . It seems to be the case that the latter choice is better in a

variety of situations, particularly when the population covariance function

is tending to 0 as luI-.*oo . In the present situation, this leads to

consideration of expressions (42 ), (43 ) multiplied by say (1 - IpI/T)

with T measuring the extent of the array. For larger p, the sum (42 ) has

fewer terms and hence greater variability. The multiplier reduces the

variability.

It is to be noted that this last procedure has not made use of a Fourier

transform. There has been some study of the Fourier transforms of irregularly

distributed observations, see Brillinger (1972) and Dunsmuir and Robinson

(1981), but setting down a Fourier procedure here would be premature.

Two further hydrology references are Johnson and Bras (1979) and Amorooho (1981)4
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PASSIVE SONAR

Turn now to a class of situations exemplified by passive sonar.

Let the data available be Y(xj,yj,t), j-l,*.-,J and t * OT J.**T1O In

contrast with the assumptions of the previous section, in the present

case J will be assumed moderate and T large. Suppose that a "wave " is

moving across the array from the far field and that it is desired to

estimate the velocity of the wave and the direction from which it is

coming. If the wave may be viewed as plane, then a model for the situation

might be

Y(x,y,t) - p cos(ax+03y+^t+) + C(x,y,t) (44)

with the direction of travel specified by a - Ijcos i, 1 - Iljsin f
where $4 - (a,P) is the wavenumber , and with the (phase) velocity given

by e/[1<* In what follows f will be thought of as known. This comes

about either from the collected data having been narrow-band temporally

filtered at frequency , or from y having been precisely estimated,T being

large. The principal unknowns are (a,ja)

A traditional means of estimating (ac,) is beamforming. Here one determines

(a,3) to maximize

I z Z Y(xj.yjtt) expl-i(ax,+0y. t)j 2 (45),j t 33 , t1 2
we

(see for example Knight et ale (1981) . Now,/ investigate this problem
we

by the method of Fourier inference, in particular/determine the large

sample distribution of the beamformed (or least squares) estimate and the

maximum likelihood estimate.
results

The details of the / may be found in Brillinger (1985). The point of

presenting it here is to: i) set down some results of practical importance

and ii) to show how those results follow directly via Fourier inference.
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Let Y(t), e(t) denote the J vectors [Y(xj,yj,t)] , [e(xj,yj.t)]
respectively. Let

Yk T-1 £ Y(t) expd-i2nkt/T? (46)!k t-wo

with a similar definition for 6k * k being an integer. Suppose that the
.1%

temporal frequency K has the form 2nk'/T, k' an integer / 0 . From ( 44)

one sees that

yj k - .' ei$ exp i(ax+PY3)1 + 6j,k (47)

while for k # kt, Yk * Supposing one takes K frequencies ofjtk 6j,k

the form 2ik/T near , from the discussion in Section 2, the corresponding

k are approximately independent complex normal variates with mean 0 and~k

covariance matrix 2nf() * Now ordinary least squares estimates of a, l

are seen to correspond to minimizing

Z IY.k - e expii(ax +3y )I j2 (48)

with respect to a, ,t , p or , asymptotically, to maximizing

Y%k' exp -i(ax +PY3)} 12 (49)jtk
with respect to a, j . Let B denote the J vector [expAi(ax.+Py.)j] and

3- Y Y(50)
^6 k~k .0 k,-k

(This last is proportional to an estimate of 2% Then the generalized

least squares estimate corresponds to minimizing

(Yk 32eiS )e (Y P e ) (51)



- 24 -

After some algebra, (see Brillinger (1985)), this last is seen to

-correspond to chosing (a,) to maximize

I(~s'-y )I2/(iS'A1 (52)

and bears a direct relationship to the Capon (1969) high resolution spectral

estimate. In practice it is convenient to prepare contour plots of the

quantity (52 ) as a function of (a,) .

The large sample distributions of the ordinary and generalized least

squares estimates may be derived directly from expression (47 ) and the

asymptotic normality of the tk * Let V. denote the principal value of

log Yj,k * Then (47 ) leads to

V3 - log e + is + iax3 + ipy3 + (p3)

where C - [tjl is asymptotically complex normal with mean O , covariance
2vmatrix - * asymptotically independent of the Ek * k / k' . Let

V - [V3] and let X denote the J; 3 matrix [1 x. yJ . Then the ordinary

least squares and the maximum likelihood estimates of (log 2 + is ia,i)
in the model obtained from the above by replacing the ek and tby normal

variates (as is possible through the Skorokhod representation) are given

by (X'X) XTV and (X S 1X) 1X S 1V respectively. Their covariance matrices

may be estimated by X X) Xsx(xX) adasn X) K-

respectively. For this last to be reasonable, one needs K ),J+l
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BISPECTRAL FITTING OF MISSISSIPPI RIVER RUNOFF 1861-1880

The bispectral fitting procedure introduced in Section 3 was employed

in a preliminary study of river runoff, such data being often described

as nonGaussian (eg. Lawrance and Kottegoda (1977)*) The data available

was monthly runoff at Eads Bridge, Ste Louis fom January 1861 to Sept. 1961. In the

present study only the first twenty years of data were used. Figure 1

presents the data in the form of Chernoff faces, Chernoff (1973). In this

display the respective monthly values correspond to different features of

the faces,eg. July corresponds to separation of the eyes (see the figure

caption for the other correspondences.) Displays such as this are proving

useful in throwing up suprising aspects of data- In the present case

one notes that large year to year variation is present. Figure 2

is the traditional plot of the data. Examination of this figure suggests that

the series is neither time reversible, (that is Y(-t) has the same distribu-

tion as Y(t) ) nor symmetrically distributed, These

are both necessary properties of Gaussian processes.

Seasonal variation is a pronounced feature of runoff data* Its nature

is reasonably well understood. In the present study seasonal variation

was"removed'"by subtracting from individual monthly values, the average

level for that month across the whole data set. Figure 3 presents an estimate

of the density function of the first twenty years data, monthly means

removed. (The estimate was computed via the procedure "density" of

Becker and Chambers (1984).) Figure 4 is a normal probability

plot for the same data* There

are substantial indications of nonGaussianity. Figure 5 is a plot of a

month's value versus the previous month's. Again nonGaussianity is suggested.

In summary, this data seems a plausible candidate for bispectral fitting.
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Let Y(t) denote the seasonally adjusted value at time t, where t indexes

the monthly values from 1861 through 1880. An autoregressive of order 2

was fit to this data by the method of Gaussian estimation, as described

in Secttion 3. This process is described by

Y(t) + acY(t-l) + ac2Y(t-2) - c(t) (54)

2where E(@) is a white noise series with mean 0 and variance a, The power

spectrum of this process is given by

212fYY()= 2x11 + a expJ-iN{ a2expI-i2J 2 (55)

The estimates of the parameters, and corresponding standard error estimates,

are given in Table 1. The value of a2 appears negligeable, but it will be

retained for the analyses,as doing so causes no difficulty. Figure 6 is
(27)

a plot of the second-order periodogram/and the corresponding fitted power

spectrum as determined from expression (55.). In order to assess the

goodness-of-fit more formally an exponential probability plot of the
T A

I8/fa values was prepared. This is given as Figure7 * There is no

suggestion of substantial departure from fit.

In expression (28) s ran from 1 to T/2 . The autoregressive of order 2

was taken to begin* As indicated it fit reasonably well so no higher orders

were studied. The exponential distribution of the periodogram follows from

the complex normality of the Fourier values, see Theorem 5.2.6, Brillinger (1975a).

Next bispectral fitting of the model (54 ), with the additional assumption

that E e(t)3 - 1go3, was carried out. The bispectrum of the process

is given by

fyyytM,,) . _ _ _(56)(2x)2A% A(p) A(A+,g)
where A() - 1 + a expj-iXj + a2expj-i2AI a The estimates of the parameters,
and corresponding standard error estimates, are given in Table 2. It is
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to be noted that the standard errors have become smaller with the addition

of the third-order information in the cases of a1 and a2 * That the estimate

of d and its see are essentially the same for both fits Drobably results from the

fact that a is a second-order parameter, the new third-order information

appears in * It is noteworthy too that the estimate of t'is 6.9 times its

standard error, confirming evidence of nonGaussianity- Figure 8 is a

contour plot of the modulus of the estimated bispectrum (estimate formed

by averaging 15 periodograms.) Figure 9 is the corresponding fitted form,

evaluated from (56 ). FigureslO and 11 are corresponding perspective plots.

There is real agreement between the estimate and fit. In order to examine

the goodness-of-fit in a more sensitive manner, standardized residuals

were computedo Figures 12 and 13 are contour and perspective plots of the log

quantities (33) . If the model is reasonable, then the distribution of

these will be approximately exponential with mean 1 . There is no strong

evidence of departures.

In summary, one can say that the bispectral fitting procedure has proved
parameters

itself feasible, but that the estimates of second-order/were not dramatically

improved, although a further parameter has been able to be estimated. The

validations of the model provided by the contour and perspective plots do

seem important.
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DI SCUSSION

The intent of this paper has been to set out some fundamental properties

of the empirical Fourier transform and to illustrate how those properties

could be used to build statistical analyses of some specific data sets. The

processes involvd may concern time functions, space functions or spatial-

temporal functions (or even point processes.) The statistics computed may

be linear, quadratic, cubic or more complicated. The analyses may be linear

or nonlinear* The situation may be modeled tia a finite dimensional parameter

or not. Use of the Fourier transform transcends these issues. It converts

convolution (filtering) into multiplication and it converts serial and

spatial dependence into approximate independence and it does this latter

in a fashion that traditional statistical procedures can often then be

invoked. It is useful for both fitting and validation problems.

There are a host of other problems that can be approached via Fourier

inference. These include: kriging, detection of change, analysis of extremes,

fitting state space models and extrapolation/forecasting. There are many

statistical procedures that have useful Fourier implementations. These

include: discriminant analysis, principal components, empirical Bayes,

Stein estimation and penalized likelihood fitting. The properties of Fourier

procedures may be studied when there is long range dependence present in

the process and when the model is false. There is insufficient space to

do these things here, but hopefully the way forward to doing them is

clear. Shumway (1984) is one reference that may be mentioned.
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Second-order fit
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Second- and third-order fit
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Figure Captions

Figure ls Jan. - area of face, Febe - shape of face, Maro - length of nose,

Apr. - location of mouth, May- curve of smile, June - width of mouth,

July - separation of eyes, Aug. - angle of eyes, Sept. - shape of eyes,

Oct. - width of eyes, Nov. - location of eyes, Dec. - location of pupil

(See Becker and Chambers (1984).)

Figure 2: Mississippi River runoff, 1861-1880, monthly means removed.

Figure 3: Density estimate, Mississippi River runoff, 1861-1880, monthly means

removed.

Figure 4: Normal probability plot, data of Figure 2.

Figure 5: Scatter diagram of successive monthly values, data of Figure 2.

Figure 6: Log periodogram and fitted autoregressive of order 2, data of Figure 2.

Figure 7: Exponential probability plot of standardized periodogram values,

data of Figure 2.

Figure 8: Log modulus of estimated bispectrum, data of Figure 2.

Figure 9: Log modulus of fitted bispectruam.

Figure 10: Perspective plot corresponding to Figure 8 .

Figure 11: Perspective plot corresponding to Figure 9.

Figure 12: Contour plot of log modulus-squared of standardized residual.

Figure 13: Perspective plot corresponding to Figure 12.
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