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Fourier inference is a collection of analytic techniques and philosophic
attitudes,for the analysis of data, wherein essential use is made of
empirical Fourier transformse. This paper sets down some basic results
concerning the finite Fourier transforms of stationary process data
and then, to illustrate the approach, uses those results to develop procedures
for: i) estimating cloud and storm motion, ii) passive sonar and iii)
fitting finite parameter models to nonGaussian time series via bispectral
fittings This last procedure is illustrated by an analysis of a stretch
of Mississippi River runoff datae. Examples i),ii) refer to data having
the form Y(xj,yj,t) for j = 1,¢¢e,J and t = O,e++,T-1 say, and view that
data as part of a realization of a spatial-temporal processe Such data
has become common in geophysics generally and in hydrology particularly.
The goal of this paper is to present some new statistical procedures
pertinent to problems in the water sciences, equally it is to illustrate

the gen®sis of those procedures and how their properties may be approximatede.



-2 =

INTRODUCTION AND SUMMARY

Statisti inference is concerned with making statements going beyond
the data at hande Fourier inference is the part that proceeds in this
connection making essential use of Fourier transformse. Making use of
such transforms is often found to simplify/ggzdy of a scientific problen,
both philosophically and analyticallye The latter resulfs in part from
the nice mathematical, statistical and computational properties of the
Fourier transforme The Fourier transform isolates effects and often allows
a problem to be replaced by one involving independent identically distributed
observations,isesthose with which the vast majority of statistical techniques
are concernede

Fourier inference is one concern of this papere A second is the statistical

analysis of array, or network, data. The data take the form
Y(xJ'yJ’t) : (1)

for j = 1,e¢¢,J and t = O,ee+,T~1 with the index t viewed as "time" and
the points (xj,yj) viewed as the (planar) locations of an array (or network)
4t) t = 0,e¢s,~1 is a stretch of time

J
series datae For fixed t, Y(xj,y

of sensorse. For fixed j, Y(xj,y
J.,t) j=1,ee+,J is a sampling of a spatial
fielde Examples to be expanded upon later in the paper include: the

contemporaneous rates at which rain is falling as recorded at a network
of gauges, the fluctuating pressure levels being measured by an array of

sonar sensors and the measured runoff rate at a station on a rivere. The

particular scientific problems to be considered in connection with these
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examples are respectively: estimation of direction and velocity of storm
movement from data at two time points, estimation of the direction of an
energy source from data at a few sensors,and the fitting of a finite
parameter model to the runoff « The procedure presented for this last is novel,
making use of both second- and third-order informatione

Array data /ar:ssential to the study of phenomena moving and varying
in time and spaces Study of such data, and corresponding processes, adds
insight to the marginal space and time cases. Array data allow estimation
of parameters important to other scientific problems, such as frequency-

wavenumber spectra which appear in expressions for exceedance
probabilities , see for example Forristall et ale. (1978) « Array data have
become common in geophysics generally and in hydrology particulariyo

Section 2 of the paper sets down basic notations, definitions and
statistical properties of the Fourier transforms of (large) segments of
stationary processes. Section 3 illustrateé how these properties may be
invoked to build analyses and to suggest techniques for making statistical
inferences+ The cases of model fitting and estimation will be concentrated
upone Section 4 is concerned with the estimation of cloud and storm motion,
Section 5 with passive sonar and Section 6 with improved fitting of a
model for river runoff by making use of both the power spectrum and bispectrume
This last case is illustrated with a preliminary analysis of monthly
observations of Mississippi River runoffe. The paper concludes with Discussione

The work edited by Brillinger and Krishnaiah (1983) contains papers

surveying a broad variety of aspects of Fourier inferencee
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SOME BASIC CONCEPTS AND RESULTS

This section serves to introduce the notation, the assumptions and the
properties of the Fourier transform as a tool in the analysis of random
process datae

By time series data will be meant a succession of values Y(0), Y(1),ee.,
Y(T-1) with T the lengthe The series may be vector-valued, in which case
boldface notation will be employed,.xﬂt) t = Oyeee,T~1 o« The Fourier
transform of this last will be denoted by

iy =1 .
;) = Z, X(t) expf-iAt] , —eo<A¢ oo (2)

It will typically be computed for a set of discrete frequencies by some
fast algorithme See Heideman et al. (1984) for a review and references.

In many circumstances time series data may be usefully viewed as part
of a realizationaz(t,«» t =0,+1,+2,+-¢ of a stochastic processe (Here w is
a random variable and Y(.,w) measurable in ( +) This allows parameters
to be defined through which analysis and discussion may be carried euts
Parameters that are of particular importance for this paper arise when
the process Y(.) is stationary (that is joint probability distributions are
unchanged by time translation) and include the (matrix-valued) covariance

function
S ————

Sry() = cov}¥(t+u),¥(1)} (3)

tyu = Oy4l, 00 #nd the spectral density matrix

SN = @07 5 ol (u) expbthad (a)

u="=co

for -«:()( oo » In the case that the process Y(.) has mean O, this last
Ar L]
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may be connected to the statistic (2¢1) via

. - Tiay Timy 3
£ = 1im (2em)7 Efal() 430D 7 (5)
aMlY T . ) ¢ ~
>0
(v v deqoting matrix transpose, "=—" complex conjugate. When the process is

real-valued, one has the power spectrume Letting fjk(?o denote the entry

in row j, column k of SYY()O , one can define the coherence of the j-th

and k-th components of E(-) at frequency A as
Ry W12 = 12 (NP7, (N8, (N (6)

It is a useful descriptive parameter and also appears in many expressions
for sampling variabiiity.

There are corresponding definitions in the case of a spatial process,
EXx,yyuﬂ X,y = O,41,¢¢¢ o Here x,y are the coordinates of location and

for example in the stationary case one has the covariance function

ory(wv) = cov¥(xtu,y4v),T(u,v)} )

u,v,x,y = O,+l,e¢¢¢ and the power spectrum

,SYY(a’B) = (21t)-2 Tz EYY(u'v) exp{:i(au+6v)} (8)
uv

o0 { Ay £ oo
with (a,B) referred to as the wavenumbere.

A spatial-temporal process has coordinates of both space and time.
Its Fourier transform has coordinates of both wavenumber and frequencye
In a variety of applications, a spatial-temporal process will be observed

only at irregularly spaced positions 5@ = (xj,yj) g J = lyece,d o
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The development of the techniques/analyses presented in this paper
will make substantial use of central limit theorems for empirical Fourier
transforms+ The distribution of a statistic like (2) will be approximated
by a (complex) normal distributione In the case that the process };(-) is
Gaussian, the distribution is exactly Gaussiane In the general case the
result holds for processes that are stationary and mixinge Mixing here
means that values of the process that are far apart in time (or space) are statistic-
independent or nearly soe Precise formulations of mixing conditions
leading to the desired central limit theorems may be found in Hannan (1970),
Brillinger (1983) for example.

Quoting from the last reference, the sort of results one has,include:

(i) For 0<\ <*, g(}\) is asymptotically normal with mean Q and covariance
matrix 2nT £..(N , as T e,

(ii) For O<'1\1< cee ¢ "\K ar 33(}\1)"°" _33(?\1() are asymptotically
independent, ’

(1i1) For \[ = 2nsl/T , with 0 ¢ N < © and the sl distinct integers, kel, .,k
Eg()‘%‘),..., 93(}\%) are asymptotically independent complex normals with
mean O and covariance matrix 2nT «t:YY(”\) e Usually one takes : as T oo e

These results suggest many procedures pertinent to the analysis of time
series datas One great simplification that they suggest follows from (iii),
namely , to treat the 95(}\:) as if they /werae sample from a

normal distributione. As a preliminary example, one is led to estimate .SYY(%)

by

fy®) = K7z 2T GO0 (9)
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and to approximate the distribution of this statistic by a complex Wishart

with parameters K and EYY()O .
From the standpoint of developing empirical procedures and understanding

their properties, the Skorokhod representation is an exceedingly valuable

toole It allows one to write the result (iii) above as

g$(/\;£) = .\gk + oa.s.(Tl/z); k=1,e.0( (10)

where the i are independent complex normals with mean Q_and covariance
matrix 2nT fYY()O e It allows one to obtain approximating distributions
of functions of Fourier transforms by elementary manipulationse The abstract

theorem is in Skorokhod (1956). (Here T‘l/zo (Tl/z) tends to O with probability 1.

aeSe
The above are first- and second-order resultse. In the bispectral estimation

procedure to be presented, third-order results are employede. Suppose the

real-valued series Y(t) has mean Cy and third-order moment function

cypy(wev) = E3¥(t4u) = o J[r(tev) = o ] [¥(8) - o]}  (11)

tyu,v = O,+l,eee o Then the bispectrum of the process Y(.) at bifrequency

(X\yu) is given by

frrAm) = (207° 2 T ogyy(u,v) expl-i Quniv)y (12)

-00 ,p. co ©
In the case that Y(.) has mean O, analegously to expression (5),

. -2~1 T T T :
fry) =l (2072 £ {aJ) ay(u) T+ (13)
200
Fourier transforms at frequencies ;\,p,\) such that A+u++v = O are seen to

be statistically dependent in a special waye The quantity
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———

1T ) = (207207 al(N) aj(w) aj0+w) (14)

is the third—order periodograme. Some of its statistical properties are

developed in Brillinger and Rosenblatt (1967), in particular one has

E IyyyOok) o~ £yyy(Agn) (15)
var Iy (M) ~ g3 £y(0) £yy(n) £3,000) (16)
that

provided/0<|1<A < \+2u < ® o Further the asymptotic covariance of third-
order periodograms at distinct bifrequencies is negligeable and the
Periodogram may be smoothed to estimate the bispectrum, with the estimate
asymptotically normale. Details may be found in Brillinger and Rosenblatt
(1967) « Bispectral analysis is useful in dealing with nonGaussian processes
and with nonlinear systemse

The specific procedures discussed later in this paper are concerned
with the estimation of a finite dimensional parameters The estimate is
generally normal and an expression may be set down for the covariance matrix
of its asymptotic distributione The rigorous development of such results
generally proceeds in the following two step fashion:(i) an empirical loss function
QT(G) is recognized. The estimate © is the value of @ minimizing QT(Q) .
As T > oo, QT(O) tends in probability to the function Q(8) having a unique
minimum at @ = OO * Then, under some reg%%?rity conditions, S tends in
probability to the "true" value Oo ;(ii)/?ollows that one can act as if 3

is near Go and set down the following Taylor series expansion

() = ay(e,) + (G- )0, (an)
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for &, between 9 and 8, So one can write
"~ -1
- -m - ] " 2 18
6 -0, ==que,)-ane. (18)

Often it is the case that JFQ&,(GO) is asymptotically normal with mean Q
and covariance matrix A and the case that Q%(Q*)‘v'g-l « One can then
conclude that J@(S - GO) is asymptotically normal with mean Q and covariance
matrix ?ﬁég .

The loss function may be a sum of squares, it may be a negative log
likelihood function, it may be a negative log likelihood function corresponding
to a multivariate normal with parametrized mean and covariance functionse. In
a broad variety of situations the computation of 3,for given QT , may be

carried out by iteratively reweighted least squares - a technique that haé

much to be said in its favour, see Green (1984).

The above two-step procedure, of first showing consistency then making
a Taylor expansion, is what was employed to formally develop the approximate
distributions suggested for the examples presented in sections 4, 5, 6

of this papere

To end this section of technical results,it may be mentioned that the
Fourier transforms basic property of converting convolution into multiplication
holds in an approximate sense in the finite cases In particular if Y(t) =
Z a(u)X(t=u), then d$(?0 = A(X)dg()o with A()\) = £ a(u) expi-iAuf « (This
approximation is made explicit in Brillinger (197%a) Lemma 3+4.1, Theorems

4+5¢2, 44543 for examples)
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SOME PARTICULAR TECHNIQUES
This section presents details concerning the implementation of regression
and
analyses, Gaussian fitting/ bispectral fitting by Fourier meanse There is
also brief mention of some variants in the computationse
Regressiones To begin consider the case of a linear time invariant model
such as
Y(t) = u + 2 a(u) X(t-u) + e(t) (19)
u
with X(t), Y(t) t = O,ee+,T-1 data available and with e(t) a stationary

mixing noise processe. Taking the (finite) Fourier transform of each side

of this relationship yields
a3 = A af\) + (A (20)

for O<:X< %, where the approximate conversion of convolution to multiplication
and the negligeability of the Fourier transform of a constant when 0<A< x ’
have been used. Consider now K frequencies, of the form 2ns/T, near N\ o

For many filters a(s+), A(+) is smooth so A(2ns/T) = A()\) and one has

ap(3E) & AN apEe) + a7 (21)

AN 438+ 1

with the\t8 a sample of size K from a complex normal of mean O and variance
2nT fce(}o o The Skorokhod representation is used at the last step

heree In other words
expression (21 ) has the essential form of a traditional regression
relationship (with the minimal difference that the quantities appearing

are complex-valuede) One is led directly to the estimate

O - B ey GEPIE @ D 17 (22)
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and to approximate the distribution of this last by a complex normal with

mean A()\) and variance
£, (N B a3(3E®) o (3= ] (23)
8

An estimate of fec()), test statistics, residual plots and the like all
suggest themselvese. Many details may be found in Brillinger (1975a)for the
time series cases Results follow in a similar manner for spatial and
spatial-temporal cases, the essence is to recognize the appearance of an
additive noise that one is willing to assume stationary and mixinge

Nonlinear Regressione Consider a model of the form

Y(t) = s(tle) + e(t) (24)

where © is a finite dimensional parameter and e(.) a stationary mixing

noise processe For example one might have.
s(t|e) = i o exp{—Bkt} °°S(Jkt + Sk) (25)

Where 8 = 3,8, ,)»8 k =1,e++,Kf « Taking the Fourier transform

gives
T,2ns T,2xns T,2ns

for 2ns/T near'k and the dz(g%g approximately complex normals having
mean mean O and variance 2nT fse()o « The functional form of dg(g%gle)
being known up to the finite dimensional parameter &, the problem is now
one of nonlinear regressione

The particular case of the model ( 25) is studied in some detail in
Bolt and Brillinger (1979) and Hasan (1982). The large sample distributions

two step
of the estimates are there obtained by thd’procedure described in section 2.
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Gaussian Fittinge This is a procedure, essentially introduced in Whittle

(1953), for the estimation of a finite dimensional parameter of a stationary
process by maximizing a corresponding Gaussian likelihoode It may be
motivated and described as follows: let Y(+) be a stationary mixing series
with power spectrum, fYY(AJO), containing the finite dimensional parameter 9.

For s an integer write

1; = (&2, r - £ 3ERle) . (1)

I: is the second-order periodogram at frequency 2ns/T . Treating the dg(g%g)

as exactly independent complex normals with mean O and variance 21t‘1'f‘s

leads to, up to a constant, a negative log likelihood of
T
= 28
A(8) };‘(log £, 0+ IJ/f) (28)

The Gaussian estimate minimizes this QT(G) e« (It is important to point
out that while the specific form of the criterion ( 28 ) was motivated
by Gaussian considerations, the resulting estimate may be investigated
in its own righte.) Properties of this estimate are developed in Hannan
(1969), Brillinger (1975b)and Dzhaparidze and Yaglom (1983), f@r examplee
The estimating equations obtained by differentiation of expression (28 )
are
of

; (1 - £,) 58/t2 = o (29)
Examination of these equations indicates that the estimate may be computed
by iteratively reweighted least squares as follows: given the estimate at
the previous iteration (nonlinear),regress Ig on fs employing weight ?;2

evaluated at the estimate of the previous iteration. Iterate til convergence e
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Standard error estimates are a by product of this iterative procedure.
They are appropriate in the case that fourth—-order spectra of the series
are negligeable; otherwise formulas like those of Section VII of Brillinger
(1974) need to be employede

An example of Gaussian fitting of runoff data is given in section 6
of this papere
Bispectral Fitting. Gaussian fitting makes use of second-order information
and statisticse When a process is nonGaussian, such a fitting procedure
cannot be expected to be efficients The procedure about to be described
seeks to obtain improved estimates by incorporating third-order informatione

Suppose the series Y(.) has bispectrum fYYY(a,uIO) also depending on 9.

Write
T =241 ,Te2nry T 218y T 2n(r+s)
s = (20 (T () () (30)
2nr 218
s = fypy(SFp19) (31)

Bispectral estimates formed by smoothing the third-order periodograms

(30 ) are asymptotically normal and independent of corresponding second-
order quantities (see Brillinger and Rosenblatt (1967).) This suggests
setting down QT(G) that is the sum of the second-order term (30 ) and

a term resulting from acting as if the third-order spectral estimates
Gaussiane When this QT(Q) is differentiated, with respect to ©, the following

system of estimating equations is obtained,

df
T 8 /.2
2(15 £) 3,a/f&3
2% T r.s
v i § (Irvs ) /frfsfr+a =0 (32)
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The first term on the left here is the second-order one, (29 ) . The
ﬁeights occurring in the second term correspond to the variance of the

third-order periodogram as given by ( 16 ).
Examination of these equations indicates that, once again, the estimates

may be computed by iteratively reweighted least squarese The regression

T

formulation involves both the I: and the Ir o Handle the I: as beforee.

9
DA

. T . . 27N
Now, at the same time regress the Ir,s fr,s employing weight T/?rfsfr+s
evaluated at the estimate of the previous iteratione (Preparing a computer
program to do this for the example presented in section 6 below did not
prove enormously difficulte)

It is important to validate models and fitse In the present case the

third-order fit may be examined by the standardizedquantities

2% T AT EARA
TIIr,s - fr,s| /frfsfr+s (33)
S 2nr 1A 2nr 2ns R .
where f = fYY( 7 |8) ana fr,s fYYY( B |@) ¢ An example is presented

in section 6.

The asymptotic distribution of the estimates of bispectral fitting,
may be worked out by the technique described in section 2. Their asymptotic
variance is found to involve spectra of order up to 6. Hence the standard
error estimates coming from iteratively reweighted least squares will not
be appropriate generallye They will be appropriate when the higher-order
spectira are negligeable relative to those of order 2. The standard errors

presented in section 6 are those from iteratively reweighted least squarese
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Some Elementary Modificationse It would be remiss not to point out that

practical application of Fourier techniques often requires elementary

preprocessing of the datae In the case that the spectrum of a process

contains neighboring peaks or has a substantial dynamic fall=-off,

it can be crucial to taper the data prior to evaluating its Fourier transforme

All that this involves is multiplying the (mean-corrected) data by a

function that tapers smoothly to O at the boundaries of the region for which
are

data./ available and is near 1 elsewheree

A second potent modification is prewhiteninge. Here there is preliminary

model fitting or data processing in order to make the spectral functions
more nearly constaﬁt in :\- This can lead to estimates that are substantially
less biasede In the case of a bivariate processyrephasing (also known as
alignment) can be crucial and it is an entirely elementary prewhitening
operatione One simply shifts the time argument of one series to make the two
series more nearly coherente

In the next sections specific examples of the uses of the above tools
to build analyses are presentede As part of the construction of these
analyses, one seeks out stationary mixing noise processes in the situation

to drive the stochastic analysis of the datae
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THE ESTIMATION OF CLOUD AND STORM MOTION

Leese et ale (1970, 1971) were concerned with the determination of
cloud motion from sequential pictures obtained via a geosynchronous satellites
Estimates of speeds and directions of movement were obtained by cross—
correlating a picture,at various translations, with a picture taken 24
minutes earliere. If Y(x,y,t) denotes the grey level of the picture element
at location (x,y) at time t , then the average correlation of Y(x+u,y+v,s)
with Y(x,y,0) across the picture, (really part of the picture), is estimated
and the translation (} ,¥) at which this is maximized is determined. The
speed of motion is then estimated by ( 42 +‘92)1/2/s and the direction
estimated by tan-l(ﬁ}sﬁ o The spatial array is a lattice, so the fast
Fourier transform was employed in the computationse. The results obtained
were compared with estimates derived by manual methods and good agreement was
found. Some other methods for tracking motion via pictures are described
in Aggarwal et ale (1981) + Examples of carrying out the computations
optically are presented in Bohm et ale (1981) .

Various researchers have concerned themselves with the problem of
determining storm motion from rain-gauge datas We mention, initially, the
papers/gi;gate and Read (1975) and Shaw (1983) « These workers proceed by
cross—correlating the individual gauge time series in triples of gaugess
Then (temporal) lags at which maximal correlation occurs are read off and

used with the coordinates of the gauges to estimate parameters of intereste
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consecutive
Marshall (1980,1983) investigated/2-min rainfall amounts for two English

stormse The networks had 19 and 36 gauges respectively (with not all
operating continuously) and were arrayed irregularlye Marshall spatially
interpolated the data to obtain values on a regular grid (lattice) and
then looked for translations giving the maximum correlation, in the general
manner of Leese et ale (1971) In this section a method is proposed that
simul taneously makes use of all gauges (not just in triples), that does
not require spatial interpolation (with its accompanying loss of information)
and that is sufficiently formal that uncertainty measures may be provided
along with the estimates evaluatede First the lattice case is discussed
howevere.
To begin jhere is a motivation for the use of the correlation

made by Leese et ale. . (This will later provide motivation for the procedure
in the irregular array case.) To simplify the notation for the moment,
let Yt(x,y) = Y(x,y,t) and suppose that data are available at t = 0,1
and x = l,eeeym ; y = 1,¢ee,n ¢ Then the nearness of a translation of the
second picture to the first may be measured by

22 ) (xtu,y4v) = Yo(x,5)]° (34)

Xy
with the summation over 1¢ x,x+udm, 1 {y,y+v $n « The translation may
be estimated by minimizing this quantitye Supposing "stationarity" and that
Yi and Yo have the same mean, one sees that minimizing (34 ) comes down
essentially to finding the (u,v) that maximizes the sample correlation
of Yl(-+u,o+v) and Yo(-,o) o The estimate obtained in this fashion may

not be expected to be efficient generally because expression ( 34) is a
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simple sum of squarese It ignor/borrelations between terms appearinge
In order to dévelop an"efficient" estimate, turn to Fourier inference
employing the results of Sections 2 and 3.
Consider the following formal structure: let S(x,y) denote a stationary

spatial process, corresponding to the signal at t = O« Let
Y(x,y,t) = S(x+Xt,y+ft) + e(x,y,t) (35)

with (X,¥) corresponding to the rate of translation of S(.) « Suppose
further that {co(x,y),el(x,y)¥ is a stationary spatial process, the two
components having coherence O . Then, from / 35 ) and the discussion in

Section 3 on Fourier transforms of convolutions' with . = znj/m and Bk - 2nk/n
T = (myn) - !
T . - . T T
dY(aj,Bk.t) £ expli(aX+ B)L)t}ds(aj,s ) o+ ag(assByit) (36)

for (aj'Bk) near (a,B) and with the dz(aj,ﬁk;t) aporoximately independent
complex normal with mean O and variance (2n)2mnfee(a,ﬁ;t) . Set dz(a,ﬂ) =

d$(a,B;t)- Then the variates
ay(a;,8) - expli(aX + pAfag(a,8,) (37)

will be approximately independent complex normals having mean O and
variance (23)2mn[fes(a,ﬁ;1) + fee(a,B;O)] « Restricting, for the moment,
consideration to Fourier values in the neighborhood of (a,B3) om is led

to estimate (X,¥) by minimizing
: 2 l47(a;8 ) = expli(aX + 83 al(a, 8 )12

or £l (a,8) = 2 Re(expli(aX + 8PIET (a,8)) + £5(c\8)  (38)
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where the fT(a,B) denote spectral estimates at wavenumber (a,B) e« Turning
to the construction of an estimate involving all Fourier frequencies, let
#T(a,B) = arg {flTo(a,B)} o Noting expression ( 38) and the dependence
of the complex normal variances on (a,B) one is led to consider estimating
(X,¥) by maximizing , for large P,
P 2% 2 T,2np 2 27p 27
I cos( TRX+ Fy - 4 (R,))w(FR,F) (39)
P P P'P P 4
Pyq=l
for some weight function w(+) « Now the variance of the asymptotic
distribution of ¢*(a,8) is proportional to (IR, («,8)|72 = 1] , witn
|R10(-)|2 the coherence of the processes Y, () and Y,(+) - This suggests

taking w(e) in ( 39:) to be
w(a,8) = [ IR (e,8) |72 - 1172 (40)

based on estimated coherencese. Note  that with w(e) = Iffo(.)l ,
expression (39 ) is essentially the sample cross-correlation function
and one has the Leese et ale estimation proceduree.

An expression for the variance of the estimate constructed from (39 )
may be set down directly. One has fT(a,B) ~ oX + B¥ with an asymptotic
variance [|R10(a,B)|-2 - 1],/2K, K being the number of periodogram values
averaged in forming the spectral estimates. This gives the asymptotic
covariance matrix of (X,¥) , by generalized least squares, as nA-IBA-IA(P

~ Ar VvV

where

L = Jf [eg] G 8] w(ayp) da ag
. 7. (41)
B = J/ [as] [« 6] w(e,8)%[ IRy (e,8)172 = 1] ac ap
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from which results for the Leese et ale procedure and the "efficient"
procedure may be obtained by choice of w(e) e

The development just provided,is a direct extension to the spatial case
of results developed by Hanran and Thomson (1973) and Hamon and Hannan
(1974) using results developed for spatial series in Brillinger (1970,1974).
Related work by Hannan for the time series case may be found in: Hannan
(1975), Cameron and Hannan (1978,1979), Hannan (1983)« A point that has
been emphasized by Hannan in the time series case is that, in the Fourier
approach it can be essential to rephase the series, that is realign them
to put them approximately in phase, before commencing spectral computationse
Such a"prewhitening" operation is called for in the present case as welle
One means of estimating the realignment translation is via the values
maximizing the cross-correlation of the two picturese.

In connection with the processes for which the above estimation procedure
may prove useful, note that expression (36') was basice It involved
replacement of the Fourier transform of the translated signal, S(.), by a
simple multiple of the untranslated signal's Fourier transformation. This
replacement may be expected to be reasonable for a broad class of processes,

including transients, and was noted in Section 2.

Turn now to the case of an irregular array, and proceed by setting
down an analog of expression (34.) « Let the coordinates of the array
sensors be denoted‘sj - (xj,yj) * Let translations be denoted by p = (u,v)

and let » be small. Now the nearness of a translation, p, of the second
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image to the first may be measured by

z () - LE)l? /=1 (42)

Ir-r-pl<a Iz -rpl<e

with the summation over the available datae The unknown translation may
be estimated by minimizing (42 ) with respect to py for a given A
Expression (42 ) might be generalized to the form
jz'kwT(gj-gk—f) |Y1(5j) - Yo(gk)l2 /z wT(zj-zk-g) (43)
with wT(o) a weight function concentrated near O . (Masry (1983) considers
a related time series covariance function estimates)

The estimates obtained in this fashion are ordinary least squares,
and hence may not be expected to be efficient generallye In the estimation
of the covariance function, at lag u, of an ordinary time series one issue
that arises is whether to divide the sum of lagged sample products by T—lul
or by T o It seems to be the case that thé latter choice is better in a
variety of situations, particularly when the population covariance function
is tending to O as |u{—9-aa0 In the present situation, this leads to
consideration of expressions' (42 ), (43 ) multiplied by say (1 - ‘B‘/T)
with T measuring the extent of the arraye. For larger g, the sum (42 ) has
fewer terms and hence greater variabilitye The multiplier reduces the
variability.

It is to be noted that this last procedure has not made use of a Fourier
transforme There has been some study of the Fourier transforms of irregularly.
distributed observations, see Brillinger (1972) and Dunsmuir and Robinson
(1981), but setting down a Fourier procedure here would be prematures

Two further hydrelogy references are Johnson and Bras (1979) and Amorocho (1981).
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PASSIVE SONAR

Turn now to a class of situations exemplified by passive sonar.
Let the data available be Y(xj,yj,t), j=lyeee,J and t = O,eee,T=1 « In
contrast with the assumptions of the previous section, in the present
case J will be assumed moderate and T largee. Suppose that a "wave " is
moving across the array from the far field and that it is desired to
estimate the velocity of the wave and the direction from which it is
cominge If the wave may be viewed as plane, then a model for the situation

might be
Y(x,y,t) = pcos(ax+By+bt+§) + e(x,¥,t) (44)

with the direction of travel specified by a = |£|cos g, B = |b|sin g,
where!& = (x,f) is the wavenumber , and with the (phase) velocity given
by'X/|§| e In what follows x’will be thought of as knowne This comes
about either from the collected data having been narrow-band temporally
filtered at frequency Y °F from‘x having been precisely estimated,T being
largee The principal unknowns are (a,B)

A traditional means of estimating («,B) is beamforminge Her§ one determines

(x,8) to maximize

| 22 ¥(x.,y.,t) exp{-i(ax.+ﬁy.+5t)} |2 (45)
I i
we
(see for example Knight et al. (1981) . Now,/ investigate this problem
we

by the method of Fourier inference, in particular/determine the large
sample distribution of the beamformed (or least squares) estimate and the
maximum likelihood estimates
resul ts
The details of the / may be found in Brillinger (1985). The point of

presenting it here is to: i) set down some results of practical importance

and ii) to show how those results follow directly via Fourier inferencee
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Let z(t), €(t) denote the J vectors [Y(xj,yj,t)] , [é(xj,yj,t)]

respectivelye Let

_lT-l .
Y = Tz (1) expl-i2nkt/r} (46)
t=0 ~

with a similar definition for.fk ¢ kK being an integere. Suppose that the
temporal frequency ¥ has the form 2nk'/T, k' an integer § O « From ( 44)

one sees that
Y i 2o o li(ax 4sy )b + ¢
k! 2 P i ik (47)

while for k / k', Y cj k ° Supposing one takes K frequencies of
?

Jak
the form 2nk/T near X from the discussion in Section 2, the corresponding

€, are approximately independent complex normal variates with meahlg and

covariance matrix 2%gee(3) * Now ordinary least squares estimates of «a,

are seen to correspond to minimizing

i$

_ 2 . 2
g Y5 o 5 e expfi(ax +py )} | (48)

with respect to a, B, 5, p or , asymptotically, to maximizing
| £ Y. exp{-i(ax.+By.)} |2 (49)
j k! 3

with respect to a, B « Let B denote the J vector [éxpgi(axj+6yj)}] and

T
S = 3§ Y.Y (50)
~y k#k' wk‘\-k

(This last is proportional to an estimate of 2z (¥) ¢ Then the generalized
e

least squares estimate corresponds to minimizing

(Y,

: T .
Y -28) 5N, - g et?) (1)
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After some algebra, (see Brillinger (1985)), this last is seen to

correspond to chosing (a,B) to maximize

13"y, )12/ 57 D) (52)
and bears a direct relationship to the Capon (1969) high resolution spectral
estimatee In practice it is convenient to prepare contour plots of the
quantity (52 ) as a function of (a,B) e

The large sample distributions of the ordinary and generalized least
squares estimates may be derived directly from expression (47 ) and the
asymptotic normality of the S ° Let Vj denote the principal value of
log Yj,k' « Then (47 ) leads to

. ] . . . 1
Vj log 5 + 13 + 1axj + 1Byj + o f% (53)

where‘g - [%ﬂ is asymptotically complex normal with mean 0 , covariance
matrix g%{ce(g) , asymptotically independent of the & 1 k # k' o Let

X - [Vj] and lettz denote the JA 3 matrix [1 xj yj] e Then the ordinary
least squares and the maximum likelihood estimates of (log % + 18 ,ia,ip)
in the model obtained from the above by replacing the € and Téby normal
variates (as is possible through the Skorokhod representation) are given
by ({73)-1§TY and (§T§-l§)_l§7§—{y respectivelys Their covariance matrices
may be estimated by $2(X X)X SK(X D)7 and 37(X s7IR) 7L (k-2) /(K~3-1)

respectivelye For this last to be reasonable, one needs K >J+1



BISPECTRAL FITTING OF MISSISSIPPI RIVER RUNOFF 1861-1880

The bispectral fitting procedure introduced in Section 3 was employed
in a preliminary study of river runoff, such data being often described
as nonGaussian (ege Lawrance and Kottegoda (1977)e) The data available
was monthly runoff at Fads Bridge, Ste Louis fom January 1861 to Sept. 1961+ In the
present study only the first twenty years of data were usede Figure l
presents the data in the form of Chernoff faces, Chernoff (1973)e In this
display the respective monthly values correspond to different features of
the faces,ege July corresponds to separation of the eyes (see the figure
caption for the other correspondences.) Displays such as this are proving
useful in throwing up suprising aspects of datae In the present case
one notes that large year to year variation is present. Figure 2
is the traditional plot of the datae Examination of this figure suggests that

the series is neither time reversible, (that is Y(=t) has the same distribu-

tion as Y(t) ), nor symmetrically distributede. These
are both necessary properties of Gaussian processese

Seasonal variation is a pronounced feature of runoff data. Its nature
is reasonably well understoode. In the present study seasonal variation
was'removed"by subtracting from individual monthly values, the average
level for that month across the whole data sete Figure 3 presents an estimate
of the density function of the first twenty years data, monthly means
removede (The estimate was computed via the procedure "density" of
Becker ;ﬁd Chambers (1984).) Pigure 4 is a normal probability

plot for the same datae There

are substantial indications of nonGaussianitye Figure 5 is a plot of a
month's value versus the previous month'se. Again nonGaussianity is suggested.

In summary, this data seems a plausible candidate for bispectral fittinge



- 26 =

Let Y(t) denote the seasonally adjusted value at time t, where t indexes
the monthly values from 1861 through 1880« An autoregressive of order 2
was fit to this data by the method of Gaussian estimation, as described

in Section 3¢ This process is described by
T(t) + a¥(+-1) + @, Y(t-2) = e(t) (54)

. . . . . . 2
where €(+) is a white noise series with mean O and variance o~ « The power

spectrum of this process is given by
62 -2
fYY(QO = §;|1 + alexp{-i)}+ azexp{—izﬁgl . (55)

The estimates of the parameters, and corresponding standard error estimates,
are given in Table le¢ The value of @, appears negligeable, but it will be
retained for the analyses,as doing so causes no difficultye Figure 6 is

a plot of the second=-order periodogram/gig)the corresponding fitted power
spectrum as determined from expression (55.)« In order to assess the
goodness—of-fit more formally an exponential probability plot of the

a3
Ig/fs ~ values was preparede This is given as Figure7  There is no

suggestion of substantial departure from fite

In expression (28) s ran from 1 to T/2 e The autoregressive of order 2
was taken to begine As indicated it fit reasonably well so no higher orders
were studiede The exponential distribution of the periodogram follows from

the complex normality of the Fourier values, see Theorem S5e2+6, Brillinger (1975a)e.

Next bispectrai fitting of the model (54 ), with the additional assumption
that E e(t)3 -'X<73 y was carried oute The bispectrum of the process
is given by
Yo
(2x)% A(N) A(w) A0hw)
where A(D) = 1 + alexp{-iﬁ] + aeexp{-iZA} « The estimates of the parameters,

(56)

frr ) =

and corresponding standard error estimates, are given in Table 2. It is
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to be noted that the standard errors have become smaller with the addition
of the third—order information in the cases of ay and a, e That the estimate
of o and its seee. are essentially the same for both fits probably results from the
fact that ¢ is a second-order parameter, the new third-order information
appears in X|-It is noteworthy too that the estimate of K’is 6+9 times its
standard error, confirming evidence of nonGaussianitye Figure 8 is a
contour plot of the modulus of the estimated bispectrum (estimate formed
by averaging 15 periodogramse.) Figure 9 is the corresponding fitted form,
evaluated from (56 )« FigureslO and 11 are corresponding perspective plotse
There is real agreement between the estimate and fite In order to examine
the goodness—of-fit in a more sensitive manner, standardized residuals
were computede Figures 12 and 13 are contour and perspective plots of the log
quantities (33) ¢ If the model is reasonable, then the distribution of
these will be approximately exponential with mean 1 « There is no strong
evidence of departurese ’

In summary, one can say that the bispectral fitting procedure has proved

‘ parameters

itself feasible, but that the estimates of second-order/were not dramatically
improved, although a further parameter has been able to be estimateds The
validations of the model provided by the contour and perspective plots do

seem importante
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DISCUSSION

The intent of this paper has been to set out some fundamental properties
of the empirical Fourier transform and to illustrate how those properties
could be used to build statistical analyses of some specific data setse The
processes involvdl may concern time functions, space functions or spatial-
temporal functions (or even point processes.) The statistics computed may
be linear, quadratic, cubic or more complicated. The analyses may be linear
or nonlineare The situation may be modeled ¥ia a finite dimensional parameter
or note Use of the Fourier transform transcends these issues. It converts
convolution (filtering) into multiplication and it converts serial and
spatial dependence into approximate independence and it does this latter
in a fashion that traditional statistical procedures can often then be
invokeds It is useful for both fitting and validation problems.

There are a host of other problems that can be approached via Fourier
inferences These include: kriging, detecti;n of change, analysis of extremes,
fitting state space models and extrapolation/forecasting- There are many
statistical procedures that have useful Fourier implementationse These
include: discriminant analysis, principal components, empirical Bayes,

Stein estimation and penalized likelihood fittinge. The properties of Fourier
procedures may be studied when there is long range dependence present in

the process and when the model is false. There is insufficient space to

do these things here, but hopefully the way forward to doing them is

clears Shumway (1984) is one reference that may be mentionede.
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Table 1

Second-order fit only

parameter al a2 o
estimate =-e61743 =+00551 35613
Seee «06511 «06511 1633

Table 2
Second= and third-order fit
parameter al a2 (og 'f
estimate -¢63408 -«01181 35634 1.2443

Sege «05388 «04982 1633 «1802



Figure Captions

Figure 1t Jane - area of face, Febe — shape of face, Mar. - length of nose,
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Figure

Figure
Figure
Figure

Figure

Figure

23

3s

4:
53
63
Ts

8:

Apre - location of mouth, May - curve of smile, June - width of mouth,

July - separation of eyes, Auge - angle of eyes, Septe — shape of eyes,

Octe = width of eyes, Nove — location of eyes, Dece — location of pupil
(See Becker and Chambers (1984).)

Mississippi River runoff, 1861-1880, monthly means removede.

Density estimate, Mississippi River runoff, 1861-1880, monthly means
Tremoved

Normal probability plot, data of Figure 2.

Scatter diagram of successive monthly values, data of Figure 2.

Log periodogram and fitted autoregressive of order 2, data of Figure 2.
Exponential probability plot of standardized periodogram values,

data of Figure 2.

Log modulus of estimated bispectrum, data of Figure 2.

Figure 9: Log modulus of fitted bispectrume

Figure 10: Perspective plot corresponding to Figure 8.

Figure 11: Perspective plot corresponding to Figure 9.

Figure 12: Contour plot of log modulus-squared of standardized residual e

Figure 13: Perspective plot corresponding to Figure 12.
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