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1 Introduction
Suppose we observe noisy samples of a function f,
v, = !“-) +2, 1= 1,...,n,

where the {, = —x + 2x(i/n) are equispaced on [—x,x] and the
noise terms z, are independent and identically distributed (i.i.d.)
according to a Gaussian N(0,0?) distribution. We are interested
in estimating the quadratic functional Q(f) = [ (f*(t))dt,
and we know, a priori, that [T (f{™(t))%dt < 1, where m > k.
Our aim is to find estimators Q(v) for Q(f), and we evalu-
ate performance according to the worst-case mean-squared error
sup; E(Q(v) - QU™

This is a problem of estimating a nonlinear functional of f
from incomplete. noisy data on f. Such problems have been ad-
dressed by Ibragimov, Nemirovskii, and Has'minskii (1987) and
by Fan (1988). In general the study of such problems is just
beginning, and precise optimality results are unavailable. For re-
lated literature, see Levit (1978), Hall and Marron (1987), and
Ritov and Bickel (1988).

We will show in this note that if we restrict attention to
the class Q, of inhomogeneous quadratic estimators Qv) =
e+ ¥ g, of the quadratic functional Q, and if we restrict
attention to periodic functions in

Fm =1{f: f,...,](""" abs.cont.
T™x)y= fM=n) l=0,....m~1
[ umwrd<ny

then it is possible to derive precise asymptotic results on the
minimax quadratic risk

Ry(n) = inf sup E(Q(v) - Q)™

and a simple, easily computable quadratic estimator. Specifically,
we establish the following:



Theorem 1 Letr = ‘z‘n‘:‘" < 1/2 and 4m? > | + m. Put

B = (20) P 12k 4 2m + 1]-'“(-\‘/’_5)".

Letw; =n~'T7_ v exp{2x /-1 1"—_')'-'("—'1} denote the j-th (com-
plez) Finite Fourier Coefficient of v, and set W; = 4x(|u;|* —
o?/n). Then the estimator

Qo(v) = B/2+ 3_j™(1 - B> ), W,

1>0

is asymptotically minimar as n — oo, in the sense that
sup E(Qo(v) ~ QU ))* ~ Ry(n).

Moreover,
Ry(n) ~ A(k, m)e*n~?

where
A(k,m) = (20) 2731 - )2k + 2m 4+ 1)

Several remarks are in order. First, the estimator in question can
be computed in order O(nlogn) arithmetic operations, which
serves as partial compensation for our decision to restrict atten-
tion to quadratic estimators. Second, we will show that even by
employing arbitrary measurable functions of the data as estima-
tors, the rate (7':)" cannot be essentially improved. Third, the
case r > 1/2 excluded by the above theorem corresponds to the
case where estimates with rate of convergence "“—’ are available
and classical methods are available.

An interesting aspect of our approach is the use of ideas from
linear estimation to solve this problem. That is, we transform
the problem to a problem of estimating a linear functional and
use recent results of Donoho (1989) on minimax affine estimates
of linear functionals to solve the problem.

In a final section we compare this result, which concerns opti-
mal estimation in the presence of stochastic noise, with the prob-
lem of optimal estimation in the presence of deterministic noise.



2 Minimax Quadratic Estimation

In sections 2 and 3 we consider an apparently different estimation
problem. We observe datay, =0, + z,, 1 = 1,2,..., where the z,
are i.i.d. N(0.¢?). We know a priori that 8 € O, and we wish to
estimate the quadratic functional Q(8) = 772, .02, (all ¢, > 0),
in such a way as to attain the minimax quadratic risk

Rye) = infsup E(Q(y) - Q(0))’

Here Q is the class of guadratic estimates, i.e. any rule of the
form Q(y) =Y., 4,uy, +e, where (¢,,)) and e are constants. Fan
(1988) has shown that for certain ©, we can specialize attention
to the class Qp of diagonal quadratic rules, which are of the form

Qy) =Y aly? — M) +e.

Say that © is orthosymmetric if, whenever 8 € O, then also
(£6,) € O for all possible sequences of signs (+). Fan's lemma
says that, if O is orthosymmetric, then the minimax risk over
rules in Q is attained by rules in Qp.

A further reduction is possible. A diagonal shrinkage rule is
any diagonal rule with

0<g <q.1=12.....

We denote the class of all such rules by Qps. Like the other
lemmas in this paper, the following is proved in the appendix.

Lemma 1 Let © be orthosymmetric. For estimating the or-
thosymmetric functional Q(0) = 3. q.0?, the minimar quadratic
risk 1s altained within the class Qps of diagonal shrinkage rules.

The reduction provided by this lemma is essential to our pa-
per. Let us indicate why. We record that

E(y}-¢) = @
Var(y? — ) = 4607 + 2¢*.



For a diagonal rule, we get

E(Q(y) - Q(8))* = Bias*(Q.0) + Var(Q.9),
where

Bias(Q.8) = Y (¢, — q.)67 + ¢

and

Var(Q.8) = 43y 267 4 243 7.

Note that the variance of Q(y) is heterogeneous - it depends on 6.
However, it turns out that for shrinkage rules, the heterogeneity
is asymptotically negligible, in a certain sense.

For example, suppose we are interested in the functional Q(8) =
Y. 82. Then shrinkage rules satisfy 0 < g, < 1 for all : and so for
all such rules, the heterogeneous term satsifies

42y gl <17y 0
If © is norm-bounded. so that 3,87 < M. say, then the hetero-
geneous term is uniformly of order O(¢?). Consequently, in the
cases where Rg(¢) >> 2, heterogeneity is unimportant.
Define, then. the pseudo-risk
R(Q.0) = ((6 — ¢.)0* + e)? + 24 Y % m

this is the true risk minus the heterogeneous term of the variance.
Consider the minimax pseudo-risk

Rq(¢) = inf sup R(Q.0).
Qps @

By the above comments, if @ = 3,82, and O is orthosymmetric
and norm-bounded, then

Ry~ Rq as ¢~ 0; (2)
we call this the homogeneous variance approximation.
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Given a sequence (r;) of positive entries. define the I,-body
0,((r,)) = {0 : £, ril0,)> < 1}. This set is orthosymmetric, and
if p> 1, convex, so Lemma 1 applies. The following result shows
that the homogeneous variance approximation holds for a special
class of I,-bodies.

Theorem 2 (Risk Approrimation) Let © = O,((r,)), withry, | =
ry, =1 p 22, m>0. Let Q be orthosymmetric, with weights
=gy = wtho<k<m+1/p-1/2. If Ry(c) >> ¢
then the homogeneous variance approrimation (2) holds.

The theorem is proved in the appendix. All other Theorems
in this paper follow from Lemmas proved in the appendix, and
arguments in the main hody of the paper.

Consider the problem of estimating the linear functional L(x) =
Y. 1, from data u = (u,), where u, = r, + v,, and the v, are or-
thogonal random variables with zero mean and common variance
n?. We suppose that we know a priori that x € X, a convex
suhset of I;. We use estimates from the class A of affine rules
i(u) =Y, l,u, + ¢, and we wish to attain the minimax affine risk

inf sup E(L(u) — L(x))*. 3)
A x

The problem is of interest here because of the following re-
mark.

E(i(u) - L)) = (L - L+ ) 49230 (4)

Comparing (4) with the definition (1) of the pseudo-risk for quadratic
estimation, we see that under the correspondence

— é'
’- = q
PN 2¢4
r, — 6
we get the precise equality
E(L(u) - L(x))* = R(Q.0). (5)
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Let us define

X
As

{(6):6€0)
{i:i(x):Zi.r.+e

o<i <)

Then we have, under the correspondence above,
Rg(¢) = inf sup R(Q.0) = infsup E(L(u) — L(x))®.  (6)
Qs o As x

In other words, the minimax risk Rg may be evaluated by solving
for the minimax risk among affine shrinkage estimates in a certain
linear problem.

Say that X is contractiveif the mapping Cy defined by Ci(x) =
(x4, Tk-1,0,T44,y,...) is a contraction of X:

C(X) C X.

If © is orthosymmetric and convex, one easily sees that the cor-
responding X is contractive. For § = (8,,...0k_y, +0x.0k4y,...)
and @ = (6,,...0,_y.—0:,0:,,....) are both in O, hence their av-
erage (046')/2 = (0,,...0,_,.0,0,,,....)isin O and the property
is evident.

Lemma 2 Suppose X is a contractive subsct of the nonnegative
orthant. Then for estimating the positive linear functional L(x) =
YL, with I, > 0, the minimar affine risk () is altained within
the class As of affine shrinkage rules.

In symbols
infsup E(L(u) - L(x))? = infsup E(L(u) ~ L(x))* (7)
As X A x

Ry(n: L,X) say.

Combining (6) with (7) gives:
Risk Isomorphism. Let © be convex and orthosymmetric.

Then
Rq(:Q.0) = Ry(n: L. X)
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with L. X, etc. defined according to the correspondence above.
Moreover, if Lo(u) = L, lu, + ¢ is a minimax affine shrinkage
rule for I, then Qo(y) = ¥, I.(y? — €?) + ¢ is a minimax quadratic
shrinkage rule for Q under the pseudo risk R.

A thorough study of affine minimax estimation is given in
Donoho (1989). Define the modulus of continuity

Q(8) = sup{|L(x)) = L{x_)| : |Ix; — x_4ll < 6, x, € X}.

Then. if X is convex, and if (6) — 0 as § - 0, we have, from
Theoremn 2 of Donoho (1989)

V()[4 < Ry(n) < Qn).
so that if (8) < & then R} < n¥". More precisely, if (2(8) ~ A"
as & — 0 then
Rin) ~ 273 (1 = 1) " 2%(n)

as n — 0. Finally. we can characterize the Affine Minimax esti-
mator as follows. Suppose that X is a norm-bounded and norm-
closed convex subset of I;. Then let & be the(!) maximizer of

0%(8)n?

Suppose the modulus 2(8y) is attained by a pair (x_,, %), so that
Lixy) — L(x_1) = &), |1y —x_4]} < 8, and x,.x. € X. Then
putling Xo = (Xy + x_1)/2, the estimator

2bo)
8

Lo(u) = L(x0) + co <X)— X, U - X >
is minimax among affine estimates of L. Here co = 83/(63 + 4n?).
Via the isomorphism above, these results all have implications
for quadratic estimation. But to apply them, we need to take care
that X is convex.
Definition. The orthosymmetric set © is quadratically con-
vex if the set X = {(6?) : 8 € O} is convex.
Note that [,-bodies O, are quadratically convex iff p > 2.

8



Theorem 3 Suppose that © is orthosymmetric, convezr, and quadrat-
ically convez. Define the modulus of continuity

w(6) = sup{1Q(8,) - Q(0_,)| : 3(67, — 67, ) < 6%.6,,6_, € ©).

Then

w’(\/ic’)ﬂ < Rgl(e) < w’(\/i(’).
In fact
w?(8) 2¢*
8et + 62
Moreover, if w(8) ~ A6 as ¢ — 0, then

Rq(¢) = sup (8)
>0
Ro(e) ~ 277 (1 — r)' "w?(€)

Finally, suppose that © is norm-bounded. Then the supremum in
(8) is attained al & > 0. The modulus of continuity w(by) is at-

tained by some pair (6_,.8,), and, putting 8,, = \/(6, + 0%, )/2.

@ minimaz quadratic estimator for the pseudo-risk R 1s

Qo(y) = o+ Y_dly? ~ P,

where €0 = ¥ .(q. — §,)02,.

. w(by)

9 =¢Co 63

(012- - 02—!.- ).

61
and ¢y = a—'.{-ro,.-



3 Minimax Weights for Ellipsoids

We now specialize. Let © = O,((r,)) with r, a sequence of pos-
itive constants tending to co. Geometrically, this is a compact
ellipsoid.

Theorem 4 Let ¢;,,r; > 0 with q,/r; decreasing to 0. With re-
spect to the pseudo-risk R. the minimar quadratic estimator for

Q = T, 0.0? over © = 0y((r.)) has weights
Go=aglq, —bor )y i =12,
for ay and by determined as follows: Put
ald) = Y ale -t
alb) = Yl -btr)}

alb) = Y orilq - br),.

[For each b > 0. cach of these sums has a finite number of nonzero
terms.] Then by 1s the marimizer of

_ (91(b)/gs(B))? 2¢*

IO = R B g b
and
_ aib)/ga(t)?
® 7 Bet + galbo) ga(Bo)?
Moreover,
Rg(e) = J(b).

So the optimal estimator has ¢, = ¢, ap (1 — ho&)#. The “min-
imax weights™ (1 — b.,s.l)+ are similar in form to those derived by
Pinsker (1980) in solving a certain optimal filtering problem. We
also remark that the optimal constant term eq for the estimator

in question is
o= (1 ~ a0)ga(bo)
o= b2 )
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The proof of the Theorem results from applying Theorem 3
above with the following

Lemma 3 Let q,,v, > 0 and let Y(x) be positive and monotone
increasing in . Then the optimization problem

S“Pz iz, —124) subject to
1]

Tz, — 1o, < 8
Torab(r,) <1
0<r,

has a solution with x_y = O identically. If y(r) = 1, x; is given
by
e = “(qt - ’"‘-)# (Q)

where a and b satisfy
02 2(‘1- - ’"")1&
"Zr.('l- =~ br).

5 (10)

(11)
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4 The White Noise Model

To relate the results of the last two sections to the problem of
the introduction we take one intermediate step. Consider (yet
another!) estimation problem: we observe

Y(t) = /_" f(u)du + W(t), te|-n x| (12)

where W is a Wiener Process, started at W(—r) = 0, i.e. a Gaus-
sian process with EW (1) =0, Cov(W (1), W(s)) = » + min(t,s).
We are again interested in estimating Q(f) = [7.(f™)(¢))dt and
we again know that [ € F,,.

An isometry reduces this to a problem treated in sections 2
and 3. Define an orthonormal set of functions (p,)2, in Ly[—r, 7]

=1
by the rules 4, (1) = 7':.1in(jl) and ¢, (t) = 7':(‘03(1’!), for
j = 12,... With respect to this system, f has the Fourier-

Bessel coefRicients 8,(f), where
0N = [ e
Define the empirical Fourier-Bessel coefficients
Y= /j. e (Y (dt):

then y, = 8, + z; with the z, iid. N(0.¢?). Now define (q,) by
Gy = q2, = J* and rgy_y = ryy = )™ One verifies that if

f € Fa. .
[ uyde =3 ek

and

/' (S 1)t = 3,02,

Hence the estimation problem of this section becomes a problem

from section 2, with Q(8) = ¥, ¢,02, and 8 = 0,((r.)).
Although the @; do not make up a complete orthonormal sys-

tem (they are missing the constant function), the coefficients (y,)

12



are sufficient, in the measure theoretic sense, for the problem
we consider. Hence, for our purposes, observing Y is completely
equivalent to observing the y = (y,). It follows that the minimax
risk for estimating [”,(f(™)(t))?dt using quadratic functions of Y’
is equivalent to estimating Q(8) using quadratic functions of y,
etc.

Applying Theorems 2.3, and 4, we easily get asymptotically
minimax quadratic estimates of Q. To work out the asymptotics,
note that

yl(b)='22j"(j"—hjh)+ -~ 2/mx1k(l2l_b/\2m)‘dx
1

~ b 2 __ 2 ]
k+1 2%k+2m+1

as b — 0, and, similarly,

—eh= 2 4 2
B) ~ bt _ +
9:(b) l4k+l 2k+2m+ 1 4m 1

=0 (13)

I 2 2
b) ~ p7TE - i b0 14
93(b) et e | (14)

These calculations, together with Theorem 4, give immediately
that

Rgle) ~ 2721 —r) (26 4+ 2m 4 1] TV (15)
We also get asymptotics for the optimal ag and ho in Theorem 4.
Ase — 0,

ao(e) — 1,
bole) ~ 272k 4 2m 1]

and, as g3(by)/g3(bo) = O(1) while ag ~ 1. the optimal centering
constant eg ~ by/2. It turns out that, to get asymptotic minimax-
ity, it is enough to use the asymptotic forms in these relations.
So define

Ble) = 2/ P2k + 2m + 1] 2™ (16)

and
¢ = (q.— Bri)s. (17)

13



With extra calculations, which we omit, one sees that although
the coefficients (17) are not exactly minimax for any ¢ > 0, the
excess risk is of smaller order than Rq. This implies:

Theorem 5 Let r = “':‘"':f < 1/2. Puty, = [T, o ¥(dt), 1 =
1,2,.... Let B and §, be defined as in (16) and (17). Then the

estimator

Qoly) = B8/2+ 3 4(y! — ¢
1s asymptotically minimar among quadratic estimates:

sup E(Q(y) ~ Q(f)) ~ Rqle) asc =0

and the minimar pseudo-risk Rg(¢) obeys (15).

14



5 White Noise and sampled data

We are now in a position to solve the problem of the introduction.
Note that observing v, = f(1,) + z, is the same as observing

V)= ZY i)+ 2 Y te(-nal (18)
no< e
But. if we have 22z, = ¢(1V'(,) — W(,_,)) this is visibly a Rie-
mann sum approximation to the white noise equation (12). Hence,
under the calibration
2xo0?

€= (19)
we expect the sampling model and the white noise model to be
essentially equivalent.

Let us be more precise. Define the empirical Fourier-Bessel
coefficient

n

b= [ ooy,

We propose to act as if the data y, were equivalent to y,. We
will apply the estimate Qg designed for use with (y,) at this noise
level (19) to the data (g,) instead.

The reader will note that the resulting estimate Qo(y) is pre-
cisely the estimate mentioned in the introduction. To see this,
compare Theorem 5 with Theorem 1, keeping in mind (19); and
also the analytic fact that the complex Fourier transform is re-
lated to our real orthogonal transform via

Theorem 1 follows from Theorem 5 by an approximation argu-
ment. The argument has two halves. First, we show that under
the calibration (19), Qo(y) is asymptotically equivalent to Qo(y).
Second, we show that no estimator based on Y, is better than
Qo(¥)-

Putting

N =2 et

15



we have §; = 6, + z;, where the z; are i.id. N(0,e?) for 1 <i < n.
For a given function f, compare the empirical coefficients (§;)
with (y,). Both have noise which is i.id. N(0,e?) for 1 <:i: < n.
On the other hand, the difference between the signal terms 8,( f)
and 6,(f) is not large either.

Lemma 4 If f is a real trigonomefric polynomial of degree <
n/2, so that 0,(f) =0 fori>n — 1, then

0..(N)=0(f). i=12...n-1 (20
Also, if [ € Fo, then
Bonlf) = 0N < ymn™ ™, i=1,...,n—1
for a numerical constant y,, which is finite if m > 1/2.

This leads to

Lemma 5 letr < 1/2 and4m? > m+ 1. With e as in (19), on
an appropriate probability space,

P E(Qoly) = Qo(¥))* = o(n™™)
From these lemmas, it follows immediately that

sup E(Qo(¥) — Q(f))? < Rqle)(1 + o(1)).

This completes the first half of the proof of Theorem 1. For the
second half, we argue that actually the reverse holds as well: for
all sufficiently large n,

inf sup E(Q(v) = Q)" 2 Rlo). (21)

Hence the estimator Qo(y) is asyvmptoticallv minimax among
quadratic estimates based on Y,,.

For fixed k. define F,, 4 to be the subset of F,, consisting of
those f with 8,(f) = 0forz > k. If k < n — 1, we may apply the

16



quadrature formula (20) to get that, on an appropriate probabil-
ity space, the first n — 1 empirical Fourier-Bessel Coefficients are
identical in the two different models:

yi=w, t=1,...,n—1. (22)
Define
Om =1{0=(0:f)): [ € Fa}
and
em.l = {0 = (0,(])) : .’E fm.l]'

Fork <n— 1, we have
inf sup E(Q(y) - Q(6))” = inf sup E(Q(y) - Q(8)*. (23)
Oma Q e..
We need the following:

Lemma 8 Define (¢.) by q2,-1 = q2, = j** and (r;)) by 3,y =
ry; = j*™. Then the solution vector x, provided by Lemma 3 has
2y, =0 for i > ng(8), say. If m > 1/4.

no(8) = o(67") (24)

[ts implications can be summarized as follows. Given r = (1,),
define the hyperrectangle

O(r)y={6:6'<r.i=12.}

If ©(r) C O we call the problem of minimax estimation of Q over
©O(r) a rectangular subproblem of ©.

Lemma 7 Lel ry,_y = ryy = j7" and 2,1 = @, = J*. where
k < m. For the pseudo-risk R, there is a rectangular subproblem
of ©,, which is equally as hard as the full problem, i.e. a sequence
T = (7;) such that

inf sup R(Q.0) = inf sup R(Q.6). (25)
Q e Q o(r)
Moreover, the subproblem is no(8y)-dimensional,

O(r) C Opmny (26)
where ng(8) was defined in Lemma 6: and &y < .

17



Combining these facts, and noting that (24) together with
(19) give ng(8p) = o(n), we get that for all sufficiently large n,
no(dp) <n —1and, asm > 1/4,
infsup E(Q(v) - Q) > inl sup E(Q(v) - Q(f))

N Fom ™ Fenmg
= inf sup F(Q(3) - Q(O)Y
O ng

= inf sup E(Q(y) - Q(O)) [by (23)]

v

> inf sup R(Q.6)
Q Ay

= infsup R(Q.0) [by (25)-(26)]
Q 8.

= Rgle).

and (21) is proven.

Our approach to Theorem | may be summarized as follows.
We solved the problem for the white noise observations (12).
Then we showed that sampled data (18) are in some sense equiv-
alent to white noise observations (12). See Nusshaum (1985)
for a specific instance, and Low(1988), Donoho and Low (1989),
for some general results on “white noise approximation” in lin-
ear problems. The notion of rectangular subproblems which are
equally as hard as the full problem arises, in a different context,

in Donoho, Lin, and MacGibbon (1989).

18



6 Rate Optimality

We now turn to the optimality, as regards rate, of our proposed
estimate, not just among quadratic estimates, but among all es-
timates. To discuss this fully, we first consider the white noise
model of section 2. As we saw there Ry < w?(e?). We now show
that the rate w?(¢?) cannot be exceeded even by using arbitrary
measurable estimates.

Theorem 6 Let © be quadratically conver and orthosymmetric
set, bounded in l,-norm, so that 307 < M < co. Let Q(6) =
Y q:0? with g, > 0. For smallc > 0, there erists a = a(c, M) > 0
so that

igfsup E(Q(y) - Q(8))? > w(ce®)a(c, M).
(2]

The proof is based on the following Bayesian hypothesis test-
ing argument. Let y, = 8, + z,. where as before the z, are i.i.d.
N(0,€?), but now 8 is a random variable, and 8 is independent of
(2,). Consider two different probability distributions s, gy for []
with the properties

Q(0) = go a.s. [l (27)

and :
Q(0) = gy a.s. [m]. (28)

Thus po and py concentrate on certain level sets of the functional
in question. In addition, suppose that

Supp(p,) C ©. (29)

Let Py, and P,, denote the marginal distributions of y that re-
sult.

Now estimating Q to within a precision finer than (q, —qo)/2 is
no easier than performing a hypothesis test between Hy : 0 ~ pio
and H; : @ ~ p,. Indeed. given an estimator Q we can always
test hypotheses by saying: accept Hy if Q < (g, +q0)/2 and reject

19



otherwise. Therefore, if we can show that no hypothesis test per-
forms very well in this setting then no estimator can consistently
have errors smaller than (¢ — ¢0)/2.

Formalize this (compare Donoho and Liu (1988)). Define the
testing affinity

m(Po.Py) = inf Eptv+ Ep(l —4).
v mble

which measures the sum of type I and type Il errors of the best
test between Py and Py. Then for any measurable function of the
data,

(Ery (Q(Y) = q0)* + Ep, (Q(Y) - a1)*) > [(q1 — o) /2] 7(Pr,. Po.)

Now, as Max > Sum/2, we get

inf sup E(Q(y) - Q) > [(q — q0)* /8] x(Py.. P.)

Q Supp(o)USupp(uy)

and as Supp(po) U Supp(p,) C ©
inf sup E(Q(y) = QU0 2 [(ay = a0)"/8] x(Py.. Po).

Let us assume for the moment that {(6?)} is closed in the I; norm.
Under this assumption, we will now exhibit a pair pg, py so that

a-gp = wlcd) (30)
(P Po.) = Ba(c M) >0. (31

and the theorem will follow.

We describe the construction. Let § = ce2. Applying Lemma
2 of Donoho (1989), the convexity, {; norm-closure and norm-
boundedness of {(8?)} imply the modulus w(é) is attained by
some pair (8,,0_,). Let s, be an i.i.d. sequence of random vari-
ables taking just the values +1 and —1, each with probability
1/2. Define sy by

6= (s0_,.)

and y; by )
9 = (s,0,,).

20



Thus, in each case, § amounts to randomly changing the signs
on a constant vector. Geometrically, go and p, concentrate on
the vertices of two hyperrectangles. Note that as © is orthosym-
metric, the condition (29) is met. Also, putting g0 = Q(6_,),
@1 = Q(8,), conditions (27), (28) hold. Now by construction,
Q(6,) — Q(0_-,) = w(ce?). Thus (30) holds, and the theorem re-
duces to verifying (31). This follows from:

Lemma 8 Let {z,} be i.id. N(0,¢?), s; be ii.d. with P(s, =
1) = 1/2, and P(s, = —1) = 1/2, and (s,) independent of the
(). Let (6,,) and (0_,,) be sequences of positive constants each
satisfying -0, < M. Let P,, denote the probability law of (y.)
when

yi=380,, +z,1=12 ...

Let Py, denote the probability law of (y;) when
yi=90_,+z.0=12,....

For all sufficiently small c, there exists an absolute constant a(c, M)
0 so that

Zwi. - 02—I.|)2 S ("1“

implies
*(Pyo. Po.) 2 Ba(c, M)

The proof of this lemma is given in the appendix. Modulo
the assumption of closedness, the theorem is proven. Now even
without closedness, we may for rach n > 0 find a pair po. 1,
attaining (30) to within 1/n and also satisfying (31). The theorem
therefore follows in the more general case as well.

For many applications of this theorems, it would suffice to use
the approach of Fan (1988). Our approach may be compared
to Fan’s by saying that we test between vertices of two (possi-
bly infinite-dimensional) hyperrectangles while he tests between
vertices of two finite-dimensional hypercubes.

What seems innovative in our approach is that the hyperrect-
angles we use are automatically derived for us from the modulus
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of continuity, rather than being found by trial and error. Our ap-
proach has a practical advantage, in that it is nonasymptotic, and
a conceptual advantage as well. It directly shows the (unusual)

“distance”
Y (6, -6%,.)

to be the key quantity in deriving a lower bound for nonregular
quadratic functionals.
In any event, let us apply this to the model of the introduction.

Lemma 9 Let ry,_y = 1y, = j* and q3,_y = qz, = j**, where
k < m. Let n > 0. There 13 a rectangular subproblem O(r) of
0,, with

inf sup E(Q(y) — Q(9))? 2 w(cP)a(c,1) (32)
Q a(r)

where the infimum 1s over all measurable estimates. Moreover,
the subproblem is ng(ce?)-dimensional,

O(r) C Omp (33)
where ng was defined in Lemma 6.

Applying again (22). together with ng(ce?) = o(n), we get that
for all sufficiently large n, no(ce?) < n ~ 1, and so

infsup E(Q(v) - Q(f))? > inf sup E(Q(v) - Q(f))
Q Fm Q Fmumg
inf sup E(Q(y) - Q)
Q Qg

wHeale.1) [by (32)]

[\

But w?(ce?) goes to zero at the same rate as Rg(¢). Hence
quadratic estimates are rate-optimal.
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7 Comparison: Optimal Recovery

Suppose we observe
u, =z, +v,

where we know x € X a priori, and the noise v = (v,) is now
deterministic, satisfying ||v]l; < n. We wish to estimate J, a
general, nonlinear functional. We evaluate performance of an
estimator J by the worst-case error

Err(J.x) = sup l.i(u) = J(x)|,
fivliga

and we are interested in procedures attaining the minimax error

E*(n;J.X) = inf sup Err(.J,x).
J xeX

This is the standard problem of optimal recovery of a functional
J from noisy data (see e.g. Micchelli and Rivlin, 1977). Define
the modulus of continuity of J,

(6. J, X) = sup{|J(x) = J(y)l : |Ix - y]| < b.x,y € X}.

1f X is convex, then the “central algorithm™ (Traub, Wasilkowski,
Wozniakowski, 1983, 1988) is minimax, with error

E*(n:J.X) = Q(2n)/2.

The results of this paper, where the noise is assumed random,
make for an interesting comparison. As discussed in section 2.
if J is an affine functional, and the ohservations are contami-
nated with random white noise of variance 7?, the minimax root
mean squared error is between (n)/2 and (7). Hence estimat.
ing an affine functional J, with a priori information X, leads to
essentially the same difficulty of estimation. whether the noise
is deterministic and chosen by an adversary, subject to the con-
straint that the norm of the noise vector be no larger than n, or
whether the noise is random and of variance n?. Formally,

(R*(m J. XN < E*(n: J.X), n—0.
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In fact there exist estimators which perform very well in both
problems. Donoho (1989) has a fuller discussion of the correspon-
dence hetween the statistical estimation problem and the optimal
recovery problem in the case of estimating affine functionals.

The results of this paper show that for estimating quadratic
functionals, the correspondence no longer holds. In the statistical
problem. the modulus w. rather than Q. controls the difficulty of
estimation. Not only are the two moduli defined differently, they
can have completely different asymptotics. For example, consider
the functional Q(#) = 3,02 Consider the ellipsoidal class O,,
defined by the constraint that 37,1782 < |. Then Q < 1 on this
class. It follows that (4:Q.0.) < 26, for every m > 0. On
the other hand, with r = 4m/(4m 4 1), then w(6:Q.0,,) < §".
Henee, il r < 1/2, there is no longer a comparability between
deterministic noise of size n and statistical noise of variance »?.
The statistical problem is harder, in the sense that.

(R'(r);Q,(-)))'/2 =0T >> E'(:Q.0)=<n, n—0.
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8 Appendix: Proofs
8.1 Proof of Lemma 1
Consider the operation (¢,) — () defined by
¢, = max(0,min(g;.¢,)). i =1,....
We will show that with an optimal choice of constant a, the in-
duced estimator Q(y) = @ + ¥, G.(y? — €?) has. better worst case,

MSE than does Q(y). Write MSE = Bias? + Var, where

Bias(Q.6) = Z(ﬁ. -q)0! +a

Var(Q.0) =423 §20* + 2 Y ¢

As §? < ¢ for all ¢,

Var(Q,0) < Var(Q.6), 8 € © (34)
Define
B.(§) = sgpzlj(é. X ALA
B_(§) = inf }_(d. — ¢)6
Then ‘

inf sup Bias*(a + Y_ (v} — €).0) = (B.(4) — B_(§))*/1 (35)
a 9 .

and the optimal choice of a is

a=—(B.(q)+ B_(9))/2

Similar formulas hold for 4.

Now we invoke orthosymmetry and convexity. This implies,
as in section 2, that if T is any set of subscripts. and 8 € O, then
r = (7,) defined by

= 0.'-51
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is also an element of ©.
Now let T, = {i : ¢, > q.}. Defining r as above, we get

Z r.z(‘il - q') 2 0.

and so

B.(¢) 2 0.

By the same token, B,(4§) < 0.
On the other hand, let T_ = {i : §, < ¢,}. Given an arbitrary
0 € O, define 7 using I = I_. Now

S G- a2 Y (4 —a)rl =Y (4 —q)f]

€T
and so

B_(4) = inf 3_ (4 - a.)6!.

3
On the other hand, for 1 € T_,

(¢ — )07 < (& = 967
termwise, for each 8. Therefore,
B_(§) < B_(9)
We conclude from the above that
B4(§) — B-(q) = Bi(§) - B_(q)
which implies, via (34)-(35), that Q has smaller worst-case MSE.

than Q.

8.2 Proof of Theorem 2

If 2k < m 4 1/p — 1/2 then Q(8) is bounded on 8, and so the
simple arguments given in the paragraphs before the statement of
the theorem suffice to establish the conclusion. So suppose that
2k>m+1/p-1/p.
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By the same type of asymptotics as in Section 4, putting
_m+l/p—k-1/2

m+1/p—1/4 (36)

then if r < 1/2,
Role) < e*, ¢ =0
Hence the result is equivalent to
sup(’Zé,’O} <<€ (37)
)

We will show below that if we know that

Yalsm (38)

and also 0 < ¢; < ¢, then
sup{Y_ 207 : 0 € ©,((r))) < CM™EE . M Lo (39)

where s = (1 — 2/p)-'. On the other hand, if Q is minimax
quadratic for the pseudo-risk R, then from

R(Q.0) 2 Var(Q.0) =2 3 4!
we have
Ro(e) > 24 Y g2
We may therefore take
M = Role)e™* ~ Gy, ¢ =20
in (38) and so, by (39) and some calculation
ey gl < Cye*r#1/0m+2/p=112) = (") ¢ 4 0.

It remains only to prove (19). We wish to evaluate

sup{_q707:  Yonlol <1

0<¢i<q

Y@< M)
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By Holder this is
sup{(L @ /el o< <
Y@< My

Now as r,_h/’ is decreasing in 1, the answer is to set ¢, = ¢, for

1 < mg and § =0 for t > mgq, for me = inf{i: ¥)_, q’ > M),
Thus the value of the problem is bounded above by

(iq.”/",h/')'/' = (mznﬂk—m)*l)l/.

=1
mzﬂl—m){llr

Now mgy = M which, together with the last display, gives
(39).

8.3 Proof of Lemma 2

Note that
infsup(L(x) = L(x))* + n* L0 = (By(D) - B-())* /4 + n* L.
L ¢
where A .
B.(l) = supz(l, —1)r,
X

etc. From this point on, the argument is similar to that for
Lemma |.

8.4 Proof of Lemma 3

First, we show that we may take ry; > r_, fori = 1,....

Indeed, if (x,,%_y) is a candidate for solution, then by relabelling

if necessary, we may suppose that 3" q;ry; > 3. q.z_y,. Define
I, = min(I—l.nTJ.-)

Ty = Ty,
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The new pair is at least as good as the original one: it makes

Y alFi~i0) 2 Y alzi—1000)

and so the new objective value is at least as good; but on the
other hand we have

IDBL AN ED BT RN)
and
Y (R -l <Y (-2, < 8
and so the new pair is still feasible.

Second, we show that among pairs with r,, > r_,, element-
wise, we may take x_; = 0 identically. Indeed, define

Tie =T — Toga

T = 0.
Then

Y i - o)=Y alr, - ra)
and

z(i'l.. - j'-l.-)1 = z(l‘l.- - I—l..)2 < 8

but, as ¥' is monotone

Yorw(Fy,) €3 ra(r)

etc. Hence the new pair is still feasible, and delivers the same
objective value.

Third, we note that x; may therefore be taken as the solution
to

sup Z qir, subject to

iz < &
T.riv(z) <1
0<g7,

29



Fourth, we check that with ¢(r) = r the solution has the
indicated form. Suppose that y = (y;) is an alternative vector
satisfying the same feasibility conditions. Then with h; = y,— 1,

Y riah (40)
Z"-hi (41)

Let T = {i:r,, > 0}. On I, by definition,

IV IV

q<bri,1eI (42)

Hence

S auh ST qh 453 rh, [by (42)]

€T 73
S(ri/a+br)h + Y rh, [by ()]
I Ic

a! ZII.I": + bzr,h,

0 [by (40).(41)]

A

Nl

and the proof is complete.

8.5 Proof of Lemma 4

[

2

=L et

= 2;"Zas.(tu)):v,d’,uu)
= Yar,.

b:n(f)

We recall the discrete orthogonality relations for sin and cos. Sup-
pose that i and j are not both equal to 0 mod n or to n/2 mod
n.

z'-: cos(i?%'i)sin(j?-?—‘) =0

u=1
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- 2xu 27u 2 i=41jmodn
g 0y = 2

u{:‘cos(t - ) cos(j o ) {0 else

2. 2xu. . 2xu 2 i=1jmodn
g 7Yy = 2

‘gsm(t " ) sin(j - ) {0 else

It follows that T35, = 1ifi = jmodn, T3 435, =1ifi =
j mod n, that T'yan-2ia2n = 1, that Fai_y2n_1-2i420n = 1 and
that T';; = 0 otherwise. On the other hand, if ¢ and j are both
equal to n/2 mod n, then T34, = 2 T2_13;-1 = 0if n is even,
but T'3_13,-1 = 1 if n is odd. The first conclusion of the lemma
follows.

For the final conclusion, note that if 8 € ©,,, the formulas
above give (with | <1 < nandi =25 —-1; thecaset =2jis
analogous)

6., - 6] = I3 Oisakn + Y O2ncso2iaeal

k>1 k>0

< (X (remn)" + Z(Trn-.-uun)_')'n
k>t k>0

= (G +kn) ™+ (k4 Dn = )7y
k>1 k>0

S "-m_y'ln/!

with v, = 2742 5, k-2

8.8 Proof of Lemma 5

We define Y, and Y as processes on a common probability space.
as follows. Let W be a Wiener process, started at —x. Let
do(t) = 1/V2x and define

w = /¢.(:)W(d¢) i=0,....

The w; are i.i.d. N(0.¢*). Define

n-1
zy = Zé.-(t.)wi u=12,...,n
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Using a transposed form of the orthogonality relations of the pre-
vious lemma, the z, are i.i.d N(0,0%). Moreover, by those same
relations

w, = %Zz.a&.(l_) i=1,..., n-1.

It follows that with these z;,

¥y = é.,..(f)+w,. t=1,...,n~1
Y 0-(.’)+'”-~

Hence _
U=y =0.N)-0() i=1,.. ., n—1.
Now consider
Qo(3) - Qoly) = 23_dwb + 3 4]

where 8§, = y, — y,. Note that §, > 0 only for 1 < ng, where
ng = o(n), (see Lemma 6 below). Therefore, for all ¢ appearing
in these sums, we have

6 < yun ™™
Put A = Qo(¥) — Qo(y). and use EA? = (EA)? + Var(A).
EA=2) 406+ g8l =2-1+11,
say. But
N < %346l
12" sup{3_ G0 : 3_r.67 < 1)

1/2 é’ t/2
Wrn (L &Y

_m";l-m-ﬂll = n—-m+ .'m"‘

IN A

x n =o(n"")

as 4m? —m — 1 > 0, while

Ao
< ™Y 6
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Cim
Imn Zq-

=1
"—Tmn:i$|

= n—!m+

A

X

g o(n”").

Hence (EA)? = o(n~?) uniformly in ©.
Now

Var(A) =4 Y §16] < dyan™ Y _§!

Now the weights §; are minimax; so Rg(e) > 2¢* T 7. Hence

2 Y742 < Rg(e)

and so
Var(A) < 29.n" ™ 2Rg(e).

As m > 1/2 and €72 = O(n), Var(A) = o Rg(¢)) = o(n~7").

8.7 Proof of Lemma 6
Let b(8) be the solution to eqs. (10)-(11) of lemma 3. Then

92”’) _ 51.

yn(")2

Using the asymptotics (13)-(14) for g; and g¢3 in section 4, we
have

b(8) ~ B(k,m)§", 6 —0

with B(k,m) = (1 —r) 22k 4+ 2m + 1|72 As 113, = 13,0, = 0
if 5j2™~%* > 1, we have

ng ~ bT-TE
substituting in functions of § for functions of b we get
no(8) < §73T

and so, if m > 1/4, then ny(8) = o(67").
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8.8 Proof of Lemma 7

Recall the risk isometry of section 2.

inf sup R(Q,0) = infsup E(L(u) — L(x))? (43)
Qos 0. A x

Consider applying Theorem 3 to the functional Q over the set
Om. Let ¢ be as in that Theorem, and let 8,.0_, be the pair
mentioned there. Let (zy,) and (r_,,) be the corresponding se-
quences defined by our isomorphism. By Lemma 3, in solving
the constrained optimization problem with § = v/2¢3, we may
take r_,, = 0 identically and r,; = 0 for ¢ > ng, for a certain
ng = ng(dp). By Theorem 1 of Donoho (1989),

infsup E(L(u) = L(x))? =inf sup E(L(u)— L(x))* (44)
A x A ]

[x-1.30

where [x_;.x;] denotes the line segment joining x_, to x,. Let
O((ry,)) = {0:6* < 1,,}). Then, one checks,

inl sup E(i,(u)—L(x))’: inf sup R(Q,ﬂ). (45)
A x_rx) Qo5 B((r,.)

Moreover O((21.,)) C Om.ny- Hence

inf sup R(Q.0) < inf sup R(Q.0) (16)
Qos 8((£.)) QDS O g

Combining (43)-(46), we get
Ra(e) = inf e R(Q.8)

Now in the corresponding linear problem, & = 75, see Donoho
(1989). It follows that here ¢p < e. The proof is complete.

8.9 Proof of Lemma 8

We use, without comment, terminology and notation associated
with the Hellinger distance between probability measures; com-
pare, for example Donoho and Liu (1988), Le Cam (1986). Let
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u= Py, + P, and define ¢, = ‘—2—:1. go = %L' Let p denote the
Hellinger affinity

p= /\/y_n/y_odﬂ-

Then the quantity of interest is bounded by
r(Pl,chO.c) Z %pi
Let ¢.(y) denote the probability density of N(0, ¢?) Then, putting

91:(¥) = (Se(y — 0,.) + Sy + 61,))/2 and go.(y) = (de(y —bo,) +
by + 0u,))/2. we have that

p=MN%p
where
p= / Vi1 /Go.dy.
Now in terms of (squared) Hellinger distance, h? = [(, /g1, —
Vi0:)’dy,

P’ =exp{23_log(1 — h}/2)}.
Define £(z) = |log(1 ~ r/2)|; then ¥(r) = &(r)/z is increasing
and
log ol = 3 €(h7) < w(suph?) 3_ A7,
We now use two facts. First. by the Lemma 10 helow
sup h? < 2(1 ~ exp(—c/8))

Second, as ¥, 0% < M, Markov's inequality gives. for each a €

(ovl]v
#[i:0_2., >a} < %

Hence putting 7, = {1 : 83, < a. 0}, < a},

TH = TR+ H

€T, il
< Y
' a
€1,
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where we used h? < 2. Invoking Lemma 11 below,

YK <Cla)- Y (63, - 61,0

€1, i
Suppose that ¢ = 1; then for each a € (0,1],
aM
108 o1 < $(2(1 = exp(~e/8)) (Ca)e’ + “0) = r(c.a, M),
say, and so the lemma holds in this special case, with
afc, M) = (16)~" exp(~2r(c,a, M)).

The general case then follows from this special case, with the
same a, by a certain scale invariance.

Lemma 10 Let ¥,(03, - 6,)* < c* and e = 1. Then

sup h? < 2(1 — exp(—c/8))

Proof. By convexity of squared Hellinger distance, the defi-
nition of gy, etc.,

h? < %H’(d’(' ~00,).6(- = 0,.) + %H’w(- +00.). 8- +6,.))
H¥(6.6(- — (8o, — 6,.)))
But

a
-
v

sup (63, - 61.)°

[\

sup (6o, — 0,,)".
The lemma now follows from the formula H?(¢. ¢(- — 7)) = 2(1 ~
exp(—n?/8)).
Lemma 11 Suppose that 1 > a > 0,;,00, > 0. Then
h; < C(a) 163, — 63,

with
Cla)=1+ / |z|*cosh*(az)é(z)dz
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Proof.
A= / (Vercosh(8,z) — \feocosh(8oz))¢(z)dz,

where e, = exp(—0}/2), eo = exp(—03/2). Hence

h;

IN

( / (ercosh(8yz) ~ feocosh(8,2)) ¢(z)dz)""?

([ (eocosh(812) - \feocosh(Boz))é(2)d2)!/*
I+ 11, say

+

Now, by a calculation,

I" = (exp(~8}/4) ~ exp(~03/4))" exp(6]) < (6] - 63)",

and

Ik = e;/(‘/coshwoz) - ﬁosh(ﬂ.r))’é(r)dz‘
Put (t) = y/cosh(t). Then, by a calculation,

¥(0o7) ~ ¥(6,7) < (8] - 63)/2 ||’ cosh(B,z)

117 < (07 - 02)* /4 / |z|*cosh?(8,z)$(x)dz

and the lemma follows.

8.10 Proof of Lemma 9

The argument is similar to that for Lemma 7. Put § = ce?, and
use Lemma 3 with that §. This gives sequences x_, = 0 and x;.
Defining 8, ; = ,/Z7; etc.. we get a pair (6,,0_,) to which Lemma
8 applies. Indeed, the random variable (3,0, ) is O((z;,))-valued.
We conclude, as in the argument for Theorem 6, that

inf sup E(Q(y) — Q(8))* > w(ce’)a(c)
Q ((£1,))

Now, by construction z,, = 0 for i > no. This completes the
proof.
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