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1 Introduction
Suippose we observe noisy samples of a function f,

I, = f(t,)) + Z,, i = I,...,n,

where the 1, = -r + 2r(z/n) are equispared on [-s,s and the
noise terms z, are independent and identically distributed (i.i.d.)
according to a Gaiissian N(O, 2) distribuition. We are interested
in estimating the quiadratic functional Q(f) = f_1 (ft)(t ,

and we know, a priori, that f2.(f()(t))2d1 < 1, where m > k.
Ouir ainm is to find estimaltors Q(v) for Q(f), and we evalui-
ate performance according to the worst-case mean-squared error
slup1 E(Q(v) - Q(f))2.

This is a problem of estimating a nonlinear functional of f
from incormiplete. noisy data on f. Such problems have been ad-
dressed by lbragimov, Nemirovskii, and Has'minskii (1987) and
by Fan (1988). In general the study of such problems is jtust
beginning, and precise opt.imnality restilts are unavailable. For re-
lated literatuire, see Levit (1978), Hall and M1arron (1987), and
Ritov and Bickel (1988).

We will show in this note that if we restrict attention to
the class Q, of inhomogeneous qujadratic estimators Q(v) =
e + ,,u' of the quadratic functional Q, and if we restrict
attention to periodic fiunctions in

F,, = {f: f,-..(fm-1) abs.cont.

f("(r) = ftt(-r), I = 0-. on- I

f(ft((t))2dt < I}

then it is possible to derive precise asymptotic resillts on the
,ninimax quadratic risk

R;(n) = inf sup E(Q(v) - Q(f))2,

and a simple, easily computable quadratic estimator. Specifically,
we establish the following:
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Theorem 1 Let r = 44,i-k < 1/2 and 4m2> I + m. Put

d = (27r)"2' 2r"/l2k + 2m + I ° .

Let w'j = n1 v. exp(2v v/WT( l)) denote the j-th (com-
plex) Finite Fourier Coefficient of v, and set W, = 4w,1u,2
o2/n). Then the estimator

Qo(v) = /2 ± -W
J>O

is asymptotically minimar as n -_ oo, in the sense that

sup E(Qo(v) - Q(f))2 - RQ(n).

Moreover,
R4(n)- A(k,,m)oa4'n-2

where

A(k,m) = (2r)2r23-'( I- rf'r 12k + 2m + I

Several remarks are in order. First, the estimator in question can
be computed in order O(nlogn) arithmetic operations, which
serves as partial compensation for our decision to restrict atten-
tion to quadratic estimators. Second, we will show that eveni by
employing arbitrary measurable functions of the data as estima-
tors, the rate (; )4' cannot he essentially improved. Third, the
case r > 1/2 excluded by the above thfeorem corresponds to the
case where estimates with rate of convergence a are available
and classical methods are available.

An interesting aspect of ouir approach is the uise of-ideas frotn
linear estimation to solve this problem. T'hat is, we transform
the problem to a problem of estimating a linear fiunctional and
use recent results of Donoho (1989) on minimax affine estimates
of linear functionals to solve the problem.

In a final section we compare this result, which concerns opti-
mal estimation in the prewsnce of stochastic noise, with the prob-
lem of optimal estimation in the presence of deterministic noise.
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2 Minimax Quadratic Estimation
In sections 2 and 3 we consider an apparently (lifferent estimation
problem. We observe data y, = e, + Z,, = 1,2,., where the z,
are i.i.d. N(O,F2). We know a priori that O E 9, and we wish to
estimate the quiadratic functional Q(O) = E qO02, (all q, > 0),
in such a wav as to attain the minimax quiadratic risk

R,(e) = in( sup F(Q(y) _Q(-))2

lHere Q is the class of quiadratic estimate, i.e. any ruile of the
form Q(y) = 4,,y +e, where (4,,) and e are constants. Fan
(1988) has shown that for certain 9, we can specialize attention
to the class Qn of diagonal quiadratic rilles, which are of the form

(y)= (Y2 _ f2) + e.

Say that, 9 is orthosvmmetric if, whenever 9 E 9, then also
(±#,) E 9 for all possible sequences of signs (±). Fan's letnma
savs that, if 0 is orthosvmmetric, then the minimax risk over
rules in Q is attained hv rules itn QD

A fiurther reduiction is possible. A diagonal shrinkage rule is
anv (liagonal ruile with

0 < ,<q,, = 1,2.

We denote the class of all such riules bv Qnc. Like the othfer
lemmas in this paper, the following is proved in the appendix.

Lemma 1 Let 9 be orthosynrnmftric. For fstimatmnq thfh or-
thosymmetrc functional Q(O) = q the minima: quadratic
risk is attained within the class. QD.C of diagonnl shrinkage riles.

The reduction provided by this lemma is essential to ouir pa-
per. Let us indicate why. We record that

E(y e2) = 82

V'ar(y - d2) = 4 292 + 2f4.
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For a diagonal rule, we get

E(Q(y) - Q(G))2 Btas2(Q,G) + Var(Q,O),

where
Bias(Q, ) = q - q,) ±+ f

and
Var(Q, 0) = 4f2Z22 +2 2 q2.

Note that. the variance of Q(y) is heterogeneous it depends on 0.
Hlowever, it turns oujt that for shrinkage ruiles, the heterogeneity
is asymptotically negligible, in a cert-ain sense.

For example, suppose we are interested in t he ftinct ional Q(0) =
, 02 Then shrinkage riles satisfvy < q, < 1 for all1 and so for

all such ruiles, the heterogeneous term satsifies

4Zf'2 02 < (2 0.2.

If 0 is norm-houinded, so that 0@,2 < Af, say, then t.he hetero-
geneous term is tinifornily of order O(f2). Consequiently, in t.he
cases where R'(f) >> f2, heterogeneitv is uinimportant.

Define, then, the pseuido-risk

R(Q, 0) = (,( q_ , )02 + r)2 + 2e4 4,q2 (1)

this is the truie risk minius the heterogeneous term of the variance.
Consider the tnininmax psetulo-risk

RQ(e) = inf smmpR(Q, 0).
Qnrs e

By the above comments, If Q = , 092 and ( is orthosvnimiietric
and norm-bounded, then

R, - R< as f 0; (2)

we call this the homogeneous variance approximation.
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Given a squence (r,) of positive entries. define the lp-hody
0,((rj)= 1 : ,r,r1,0' < I). This set is orthosymmetric, and
if p . 1 convex, so Lemma I applies. The following result shows
that the homogeneous variance approximationi holds for a special
class of lp-hodies.
Theorem 2 (Risk Approximation) Let 0 = Op((r,)), with r,-, =
r22 = jIrn p > 2, m > 0. Lt Q be orthosymmetric, with weiqhts
q2,-I = q2) = ji, with 0 < k < m + I/p - 1/2. If Ra(r) » (2
thfn the homoneneous ariance approrimation (2) holds.

The theorem is proved in the appendix. All other Theorems
in this paper follow from Lemmas proved in the appendix, and
argtiments in the main body of the paper.

Consider the problem of estimating the linear fuinctional L(x)
, I,r, from data u =(u,), where u, = i, + tm,, and the ', are or-
thogonal randorn variables with zero mean and common variance
mi'. We smppose that we know a priori that x E X, a convex
suihset of I,. We ise estimates from the class A of affine rules
1,(u) = , i,lL, + c, ani(1 we wish to attain the minimax afline risk

inif stup E L(u) - L(x))'. (3)A X

The problem is of interest here because of the following re-
mnark.

EL(u) - L(x))' = (Z(I, _ 14r + e)' + 12Ej2 (4)

Compa ring (4) with t.he (lefinition (I ) of thfie psed(lo- risk for clquadratic
estimation. we see that uinder the correspondrnce

l, 9.-

i, q-.
t12 2es4

we get, the precise equality

E(L(u) - L(x))2 = R(Q,O). ((15)



Let us define

X = {(O.2) :0E )
As - (L: L(x) =ZEi,,+e
As~~~~~~

0 < I,< l.)

Then we have, under the correspondence above,

RQ(f) = inf sup R(Q,O) = infrsup E(L(u) - L(x))2. (6)
QDS e A5sX

In other words, the minimax risk R7 may be evaluated by solving
for the minimax risk among affine shrinkage estimates in a certain
linear problem.

Say that X is contractive if the nmapping (Ck defined by Ck(x) =
(X,I...,...,,0,z&+i,...) is a contraction of X:

Cj'(X) c X.

If 0 is orthosymmetric and convex, otne easily sees that the cor-
responding X is contractive. For e = (O1,.. . ^-l,+19,'O+1,...)
and 0' = (9il. .G&, -lh,th#+,. .) are both in 0, hence their av-
erage (0+0')/2 = (0,,... .is0,i0 +& ...) sin O and the property
is evident.

Lemma 2 Suppose X is a contractire subset of the nonnfgativle
orthant. Then for estimating the positrre linearftunctional l,(x) =
I,1, with 1, > 0( the minimay affinc risk (.7) i. attainfd irithin

the class As of affine shrinkage rules.

In symbols

inf sup E(t(u) - L(x))2 = infsupE(i(u) - L(x))2 (7)
As x A X

= R(4i; L,X) say.

Combining (6) with (7) gives:
Risk Isomorphism. Let 0 be convex and orthosymmetric.

Then
RQ( ;Q.0) = RA(q; L, X)
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with L. X, etc. defined according to the correspondence above.
Mforeover, if L,0(u) = :, i,u, + * is a minimax affline shrinkage
riule for L. then Qo(y) = , i(y2 (2) + e is a rninimax quiadratic
shrinkage rille for Q unider the pseudo risk R.

A thorough study of affine minimax estimation is given in
Donoho (1989). Define the modiilus of continuity

12(6) = sup{jL(xi) - L(xi)l : lxl - x-t1 < 6, x, E X).

Then. if X is convex, and if Q(A) -4 0 as 6 -f0, we have, from
Theorein 2 of Donoho (1989)

so that if 12(6) "' then Rj _ 72. More precisely, if 12(6) .46"
as 6 0 thlen

as - 0. Finally, we can characterize the Affine Minimax esti-
inator as follows. Su1ppose that X is a norm-hounded and normTi-
closed convex SuIhSet (of 12. Then let 60 he the(!) maximizer of

oP472 + 62

Stuppose the modulus 0(6o) is attaine(l hy a pair (x, x ), so tfat
L(xi) - I,(x-) = 12(6o), l|x1 - x-ill < 6, and x,. x, X. Then
puitting xo = (xi + x-1)/2, the estimator

LO(u) = L(xo) + c-( 2°) < Xi - XI,11 -XO >

is minimax amnong affine estimates of 1,. Ilere c = 62/(62 + 4712).
Via the isomorphistn above, these results all have implications

for quiadratic stimation. But to apply them, we need to take care
that X is convex.

Definition. The orthosymmetric set 0 is qutadratically con-
vex if the set X = 1(02) :0 E 9) is convex.

Note that Il-bodies O9p are quadratically convex iff p > 2.
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Theorem 3 Suppose that e is orthosymmetric, contvez, and quadrat-
ically convez. Define the modulus of continuity

w(6) = supI{Q(01) - Q(0,_)I: Z(92 -Ij_ )< 62, O,,&1 E eE.

Then
W (V2(2)14 < Rq<(e) < W2( %/2f 2).

In fact

RtQ(E) = sup +(6)2t4 (8)

Moreover, if w(6) -A'A ast -- 0, then

RIQ(F) - 23r-2r'(I - r)' w2(f2)

Finally, suppose that 0 is norm-bounded. Then the suprrmum in
(8) is attained at 60 > 0. The modulus of continuity w(6o) is at-
tainfed by some pair (,1, 1), and, putting Oo, = 0(2, +0- ,)/2.
a minimar quadratic estimator for the pseudo-riAk R is

Qo(Y) = cro + .,(Y2 F2)

Where e = E.(q - 4)0'
W (6O)2 2

and c0 =
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3 Minimax Weights for Ellipsoids
We now specialize. Let 0 = 02((r,)) with r, a seqience of pos-
itive constants tending to oo. Geometrically, this is a compact
ellipsoid.

Theorem 4 Let q,jr, > 0 with q,tr, decreasing to 0. With re-
spect to the pseuldo-risk R. the minimar quadratic estimator for
Q = ., q,O92 orer 0 = 02((r,)) hms weights

q,= aO(q, - bor,)+, 1= .2....

for no and h0 determined as follows: Put

51 (h) = q.(.-b )

(b) = (q - r,)2

q3(h) = ,r,(q, - br,)+.

[For each b > 0. each of these sums has a finite number of nonnero
terms./ Then hn is the rnaximizer of

J(b) - (g,(b)/gZ(b))2 2F
8X4 + q2(b)/gf(b)2

and
9,(hb)/93(b0)2

8a0 + g2(bo)/g.3( b)2
Motreovor,

RIQ() = J(b4)

So the optimal estimator has q, = q ao(lI - b0A)+ The "min-
imax weights" (I -bo)+ are similar in form to those derived by
Pinsker (1980) in solving a certain optimal filtering problem. We
also remark that the optimal constant term eo for the estimator
in question is

ro = bo/2 + ( 2g3(bO)
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The proof of the Theorem results from applying Theorem 3
above with the following

Lemma 3 Let q,,r, > 0 and let VI'(x) be positivc and monotone
increasing in x. Then the optimization problem

sup E T I ,- 1,,) subject to

-_I )2 62
,r#IV(z ,) < I

has a Qolution with x_ = 0 identically. If vl( r) = x, xi is given
by

xi.. = a(q, -br.)+ (9)
where a and h satisfy

a2 (q,-br,)2 = 62 (10)

aEr,(q, -hr,)+ = I (11)
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4 The White Noise Model
To relate the results of the last two sections to the prohlem of
the introduiction we take one intermediate step. Consider (yet
anot her!) estimation problem: we observe

Y(t)= J f(u)du ±4tV(t), t E I-t1 (12)

where IV is a Wiener Process, started at W(-x) = 0, i.e. a Gaits-
sian process with EV(t) = 0, C(ov('(W1), W(s)) = r + min(,.q ).
We are again interested in estimating Q(f) = f" (f(m)(t))2dt and
we againi know thiat. f E F,.

An isometry reduices this to a problem treated in sections 2
and 1. Define an orthonormal set of fuinctions (,) in L2(-s.,i
by the ruiles <2,(1) = *a."zn(J) and p2,(t) = -cos( 't), for
j = 12,.... Wit.h respect to this system, f has the Fouirier-
Bessel coefficients 0,(1), where

0 (f) = f < (1)f(1)dt

l)efine the empirical Fourier-Bessel coefficients

y= f ,(t)Y (dl);

then y, = 0, + z, with the z, i.i.d. N(0,'2). Now define (q,) by
q2)_l q2= j2 and r2,-== =r Onte verifies that, if

j (ft&)(1))2dt = q 02

and
[ (-m(t))2di = Zr,0.

Hlence the estimation problem of this section becomes a problem
from section 2, with Q(O) =

_ q9o2, and e =-2((r,)).
Alt.houigh the V, do not make up a complete orthonormal sys-

tem (they are missing t.he constant function), the coefficients (y,)
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are sufficient, in the measure theoretic sense, for the problem
we consider. Hence, for our purposes, observing Y is completely
equivalent to observing the y = (y,). It follows that the minimax
risk for estimating f ,,(fJm)(t))2dt using quiadratic functions of Y
is equiivalent to estimating Q(9) using quadratic functions of y,
etc.

Applying Theorems 2,3, and 4, we easily get asymptotically
minimax quadratic estimates of Q. To work out the asymptotics,
note that

g,(b) = 2Z j2(j2k - 32') .. 2j|l (&(-2 b>2m)+dA

2

4k ±+ - 2k + 2m + 1

as b _ 0, and, similarly,
--I 2 4 2

g2(h) b

tk + I 2k + 2n + 1 ± 4rni + I1 b-0 (13)

g -,I(b)2 - 2 1 b-.O . (14)
2k + 2r±+ 1 4?4+ Il

These calculations, together with Tlheorefml 4, give imnmediately
that

RQ(f) r23-2( )- r'ri2k + 2rn + I1-2r(4r. (15)
We also get asymptotics for the optimal a) anid ho in TIhorem 4.
As F-0,

bo(E) 2'23/2r/12[2k + 2rri + l1 -/2(2,.

and, as 92(b)/93(0) = 0(1) While a( - 1, the optimal centering
constant e0 - 6/2. It tiurns out that, to get asymptotic minimnax-
ity, it is enough to use the asymptotic forms in these relations.
So define

3(O) = 2 '/2r'/212k + 2m - I1 r/2E2 (16)

and
q= (9,- f3r,)+. (17)
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With extra calculations, which we omit, one sees that althouigh
the coefficients (17) are not exactly minimax for any e > 0, the
excess risk is of smaller order than RQ. This implies:

Theorem 5 Let r = 4rn-4k < 1/2. Put y, = J,f,pj(jdt), i =
1,2,.... let fi and q, be defined as in (16) and (17). Then the
fetimator

Qo(Y) = 3/2 + (9 2)

i.s asymptotically minritnar among quadratir estimates:

-,lp N(Q(y) - Q(f))2 f Y() as 0
,r-

and the mrr enIne pseudo-risk RQ(f) obeys (1.5).
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5 White Noise and sampled data
We are now in a position to solve the problem of the introduction.
Note that observing t, = f(t,) + z, is the same as observing

2w 2w~- E-rw. (8

Vt- z, twn(t) = E
n

+- C (18) +
n

Bitt, if we have 2'z, = 1(4(t,)- -1(t,_.)) this is visibly a Rie-
mann sum approximation to the white noise equjation (12). Hence,
tinder the calibration

2\/ (19)
n

we expect the samplinig model and the white noise model to be
essentially equivalent.

Let uis he more precise. I)efine the empirical Fourier-Bessel
coefficient

We propose to act as if thhe dat.aa, were equlivaletit. to y,. We
will apply the estimate Qo designed for ise with (y,) at this noise
level (19) to the data (iy,) instead.

The reader will note that the resulting estimatle Qo(k) is pre-
cisely the estimate mentioned in the initro(diuction. To see this,
compare Theorem 5 with Theorem 1, kefping in nmind (19); and
also the analytic fact t.hat the complex Fouirier transform is re-
lated to our real orthogonal transform via

2v/Wut', = #2, + r7Y2J- I j = 1 2.

Theorem I follows from Theorem 5) by an approximat ion argiu-
ment. The argument has two halves. First., we show that tinder
the calibration (19), Qo(k) is asympt.otically equiivalenti to QO(y).
Second, we show t.hat no estimator based on 1', is better than
Qo(5l.

Putting
(f) = -E2w ( (t.)

n
u
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we have y, = 9, + z,, where the z, are i.i.d. N(O, f2) for I < a < n.
For a given function f, compare the empirical coefficients (y,)
with (y,). Both have noise which is i.i.d. N(O, 2) for I < i < n.
On the other hand, the difference between the signal terms 0,(f)
and 9,(f) is not large either.

Lemma 4 If f is a real trigonometric polynomial of degree <
n/2, so that O,(f) = 0 for i > n - 1, then

O,,(f) 0= G,(f), = 1,2,... n - 1. (20)

Also, if fE F,, then

1O.n(f) -_ ,(f)12 < -nn2", t=1. n-1

for a nutmerical constant -y, uthich is finite if m > 1/2.

This leads to

Lemma 5 L,et r < 1/2 and 4m2 > m + 1. With f as in (19), on
an appropritea probability space,

sup E(Qo(y) - Qo(y))2 =o(n
rF_

Fron these lemmas, it follows immediately that

sip E(Qo(y) <Q(f))2 < RQ(F)(l + o(l)).
-F,

This completes the first half of the proof of rheorem I For t he
second half, we argue that actuially the reverse hold,s as well: for
all suifficiently large n,

inf sup E(Q(v) _ Q(f))2 > R9(f). (21)
Q. F".

llence the estimator Qo(k) is asvmptoticaliv imiinimax among
quadratic estinmates based on Y..

For fixed k, define .,. to be the subset of F," consisting of
those f with 9,(f) = 0 for i > k. If k < n - 1, we may apply t.he
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quadrature formula (20) to get that, on an appropriate probabil-
ity space, the first n - I empirical Fourier-Bessel Coefficients are
identical in the two different models:

y,=y,, i=l.n-i. (22)

Define
9m = {0 = (O,(f)) f E F,,,)

and
0,= (0 = (0l.(f)) f E F,km).

For k < n - 1, we have

inf sup E(Q(y) - Q(#))2 = inf sup E(Q(y) - Q(6))2. (23)

We need the following:

Lemma 6 Define (q,) by q2,-1 = q32 = 4and (r.) by r2 =
r= j2 Then the solution vector xi prori'ded by Lemma 3 has
T, = 0 for i > no(¶). say. If m > 1/4.

no(6) = o('- ) (24)
Its implications can he summari7zed as follows. Given r = (r,),

define the hyperrectangle

O(r) = {0: 2<, i 1,2...).

If O(r) C 0 we call the problem of minirnax estimation of Q over
O(r) a rectangular subproblem of 0.

Lemma 7 Let r2,_1 = r22 - j2" and q2,-== = j2k where
k < m. For the pseudo-risk R. there is a rectangular .subproblem
of 6, which is equally as hard as the futll problfm, ie'. a sCequence
r = (r,) such that

inf sup R(Q,0) = inf suip R(Q, ). (25)
Q 9 0,

Moreover, the subproblem is no(bo)-dimensional,
0-(r) c . (26)

uwherr no(6) was defined in Lemtma 6; and 6n X (2.
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Combining these facts, and noting that (24) together with
(19) give no(&o) = o(n), we get that for all sufficiently large n,
no(bo) < n - I and, as m > 1/4,

inf suip E(Q(v) - Q(f))2 > inf sup E(Q(v) - Q(f))2

= inf sup E(Q(y) - Q(O))2
Q o.

= inf sup E(Q(y) _ Q(G))2 [bv (23)J
Q 0_.

> inf sup R(Q,O)
Q 0,00
inf(supR(Q,9) (by (2.5)-(26)j
Q o_

= RQ( ).

and (21) is proven.
Ouir approach to Theorem I may be summarized as follows.

We solved1 the problem for the white noise observations (12).
T'hlen we showed that samplei data (18) are in some sense equiiv-
alent to white noise observations (12). See Niisshatim (1985)
for a specific instanice, and Low(1988), Donoho and Low (1989),
for some general resiults on "white noise approximation" in lin-
ear problems. The notion of rectangiular suibproblems which are
equially as hard1 as the riull problem arises, in a different context.
ini Donobo, Liu, and NMacGibbon (1989).
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6 Rate Optimality
We now turn to the optimality, as regards rate, of our proposed
estimate, not just among quadratic estimates, but among all es-
timates. To discuss this fully, we first consider the white noise
model of section 2. As we saw there R< _ w2(e2). We now show
that the rate w2(,F2) cannot be exceeded even by using arbitrary
measurable estimates.

Theorem 6 Let e be quadratically conve: and orthosymmetric
set, bounded in 12-norm, so that o92 < Af < 0oo Let Q(O) =
E q,O2 with q, > 0. For small c > 0. there erists a = a(c, M) > 0
so that

inf sup E(Q(y) _ Q(9))2 > W2(Ce2)c(c, M).

The proof is based on the followinig Bayesian hypothesis test-
ing argitment. Let y, e, + z,, where as before the -, are i.i.d.
N(O, 2), but now 0 is a random variable, and O is independent of
(z,). Consider two different probability distributions 1Po, PI for 0
with the properties

Q(O) = qo (iS. Ipol (27)

and
Q(O) = q, as.. [p,l. (28)

Thus 1io and p1 concentrate on certain level set-s of the fiunctional
in question. In addition, suppose that,

Supp(p.) C 0. (29)

Let PO, and Pi,, denote t.he marginal distribtifions of y that, re-
sult.

Now estimating Q to within a precision fiiier than (q, -qo)/2 is
no easier than performing a hypothesis test, between /to : - 1o
and H1I: O - pi. Indeed, given an estimator Q. we can always
test hypothess bv saying: accept 1l0 if Q < (q, +4qo)/2 and reject
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otherwise. Therefore, if we can show that no hypothesis test per-
forms very well in this setting then no estimator can consistently
have errors smaller than (q, - qo)/2.

Formalize this (compare Donoho and Liii (1988)). Define the
testing affinity

ir(PO, PI)= inf Eph+ E,(lE -'I).
v mble

which rneasuresr the suim of type I and type If errors of the best.
test hetween PO and PI. TIhen for any measurable fuinction of the
(data,

(Ep y_(Q(y)qo2 y) _ q 2) > 1½, -qo)/212 ,r(pr,, p0,

Now, as M\ax > Suiin/2, we get

i!f SilI) [t(Q(y) - Q(O))2 > 1(q½ - qo)2/8R s(r,, P,)

a,d as Stilip(lo) U Sipp(, ) C 0

itnf stip E(Q(y ) _ Q(O))2 > [(qi - qo)2/8J]r(P,, P0.,).

Let us assuime for the mnoment that (0(2)) is closed in the 12 nornm.
Ulnder this assujmption. we will now exhihit a pair po, pi so that

q - qo = W(cf2 (:10)
r(Pi,,Po.,) > 8g(r.Af) > 0. (31)

and the theorem will follow.
We (lescribe the constructcion. Let S = re2. Applying Letnmma

2 of Donoho (1989), the convexity, 12 nornm-closuire and tiorm-
houndedness of ((02)) imiply the moduluis w(() is attained by
sorme pair (°1,*-1). Let ., be an i.i.d. sequjence of random vari-
ables taking juist the valuies +1 and -1, each with probability
1/2. Define ito by

and JLu uy
G=('s,9.
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Thus, in each case, O amouints to randomly changing the signs
on a constant vector. Geometrically, po and pi concentrate on
the vertices of two hyperrectangles. Note that as e is orthosym-
metric, the condition (29) is met. Also, putting qD = Q(01),
ql = Q(01), conditions (27), (28) hold. Now by construction,
Q(G,) - Q(0-1) = w(cf2). Thus (30) holds, and the theorem re-
duces to verifying (31). This follows from:

Lemma 8 Let {z,} be i.i.d. N(0,2), s, be i.i.d. wtith P(s. =
1) = 1/2, and P(s, = -1) = 1/2, and (s,) independent of the
(z,). Let (01,) and (O1.,) be sequeners of positive constants each
satisfying _929 < M. Let PI,, denote the probability lau' of (y,)
when

Y= s,9,, + z,,i = 1,2.
Let PO., denote the probability law of (y, ) uwhen

y,= 9, + z,,i = 1,2.

For all sufficiently small c, there erisis an absolute constant cv(c, M)
0 so that

2-2 )2 < ,2f4

implies
7rsP ,, Po,) . 8n(rc M)

The proof of this lemma is given in the appendix. Mo,dilo
the assumption of closedness, the theorem is proveni. Now even
without closedness, we may for each n > 0 find a pair Plof. iL,
attaining (30) to within I/n and also satisfying (3 1). rhe theorem
therefore follows in the more general case as well.

For many applications of this theorems, it would(i suffice to uise
the approach of Fan (1988). Our approach may be conipared
to Fan's by saying that we test between vertices of two (possi-
bly infinite-dimensional) hyperrectangles while he tests between
vertices of two finite-dimensional hypercubes.

What sxems innovative in our approach is that the hyperrect-
angles we use are automatically derived for Ius from the moduilus
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of continuity, rather than being found by trial and error. Ouir ap-
proach has a practical advantage, in that it is nonasymptotic, and
a conceptiial advantage as well. It directly shows the (unusuial)
"X(istiance"

to he the kev qulantity in deriving a lower houind for nonregular
quadratic fuinctionals.

In any event, let uis apply this to the model of the introdiiction.

Lemma 9 LIt r2,1 = r2) = j2" and q27, =2, =q 2k, where
k < in. let rj > 0. Thfre is a rectangular subproblem 0(r) of
0,, wvith

inf suip E(Q(y) - Q(G))2 > w2(cf2)a(c, 1) (32)

where the infimum is oier all measurable estimates. Moreover,
the stibproblv-m is no(ef2)-dimensional,

O(r) c 0m, , (33)
where nn was defined in Lemma 6.

Applying again (22), together with no(c2) = o(n), we get that
for all sufficiently large n, no(ce2) < n - 1, arid so

infsup E(Q(v) - Q(f))2 > inf sup E(Q(v)_ Q(f)
Qr ~~~~~~Qr-."0

= inf stip E(Q(y) _ Q(O))2

> w2(&)a(c,l) (by (32)J

Blut w2(ce2) goes to zero at the same rate as Rq(f). Hience
quiadratic estimates are rate-optimal.
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7 Comparison: Optimal Recovery
Suppose we observe

u, I, + t,

where we know x E X a priori, and the noise v = (t,) is now
deterministic, satisfying 11v112 < Q. We wish to estimate J, a
general, nonlinear functional. We evaluiate performance of an
estimator J by the worst-case error

Err(J,x) = sup lJ(u) - I(x)l,
tlvllt<

and we are interested in proceduire attaining the minimax error

E-(q; J, X) = inf suip Err(.i, x).
J xEX

This is the standard problem of optimal rrcotvsry of a fuinctional
J from noisy data (see e.g. Mlicchelli and Rivlin, 1977). Define
the modtilus of continuity of .1,

0(b; J, X) = sups IJ(x) - J(Y) : lix - yll < 6, x, y e X}.

If X is convex, then the "central algorithm" (Trauih. Wasilkowski,
Woiniakowski, 1983, 1988) is minimax, with error

E(q; J,X) = ( r)/2.

The resilts of this paper, where t-he noise is assmirned randlomTi,
make for an intereting comparison. As discuissedi in section 2.
if J is an affirne fuinctional, and t.he ohsrrvations are contatnll-
nated with random white noise of varianit e it, the muiitiniax root
mean squared error is between f(9)/2 arid Q(q). Ilence estimat.-
ing an affine functional J, with a priori inforTnationi X, leads to
essentially the same difficlilty of estimation, whether the noise
is deterministic and chosen by an adversary, subject to the con-
straint that the norm of the noise vector he no larger than Y7. or
whether the noise is random and of variance r2. Formallv.

(R'(q; J. X))' E-(q;J,X), u7 - 0.
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In fact. there exist estimators which perform very well in both
problenms. Donoho (1989) has a fuller discussion of the correspon-
dlence between t he statistical estimation problem and the optimal
recovery problenm in the case of estimating affine functionals.

The result.s of this paper show that for estimating quijadratir
fiinctionals, the correspondence no longer holds. In the statistical
problem. the modiliuis w. ratrher than Q. controls the difficiulty of
estimation. Not only are the two nmodili defined different.ly, thev
can have completelv (lifferent asymptotics. For example, consider
the funclet.ional Q(O) = ,o2. Consider the ellipsoidal class 0,,
(dflined bv the constraint that, i2m92 < 1. Then Q < I on this
class. It. follows that, 1?(A;Q.,O,)!, 26, for every m > 0. On
the othefr hand, with r -= 4tr/(4m + 1). then w(6;Q, 0,)~ 5'.
lIelene if r < 1/2, there is no longer a comparability betwefn
deterministic noise of si,ze i and statistical noise of variance t,.
'The statistical problem is harder, int the sense that.

-(R(7; Q, 0 ))1/2-2 >» E(;Q,0) t1, t1-n 0
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8 Appendix: Proofs

8.1 Proof of Lemma 1
Consider the operation (q,) " (q,) defined by

q, = max(O,min(q,,4,)), i = 1.

We will show that with an optimal choice of constant it, the in-
duced estimator Q(y) = a + E, q.(y2 _- 2) has, better worst case,
MSE than does Q(y). Write MSE = Bias2 + Var, where

Baso(Q,0) = 1( _ q9)002 + a

Var(Q, 6) = 4f2 Ex q202 + 2'4E q2

As q2 < q2 for all i.

Var(Q,0) < Var(Q,0), 0 E 0 (34)

Define
B+(4) = supEN, - q )8

0 j

B- (4) = inf (4, - 9,)02

Then

inf sup Blas2(a + -.(y,2_ (2), 0) = (B4 (q) -_n(4))2/ l (35)

and the optimal choice of a is

a = -(B+(q) + Bf(4))/2.

Similar formulas hold for q.
Now we invoke orthosymmetry and convexitv. This implies,

as in section 2, that if I is any set of subscripts, and 0 E 0, then
r = (r,) defined by

r,= Os"El
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is also an element. of 0.
Now let 1+ = :4, > q,j. Defining r as ahove, we get

Zr2,?(q, _-q,) > O.

and so
B+(4) > 0.

By the same token, +144) < 0.
On the other hand, let l = (I: 4, < q,). Given an arbitrary

O E 0, define r using I = _. Now

E(N _ q,)0.2 . Z(S _ q,)r,' = Z -q_)O9

and so
B_(4) = inf Z (4, - qt)o".0

On the other hand, for i E I,

(41 _ q0)fl < (q _ 0)8

termwise, for each 0. Therefore,

1_1(4) < BI(q)

We conclide from the above that

B+(4) - 3h(4) . B+(4) - B1(q)

which implies, via (34)-(35), that Q has smaller worst-case MSE
than Q.

8.2 Proof of Theorem 2

If 2k < rmi + I/p - 1/2 then Q(O) is bounded on 0, an(l so the
simple arguments given in the paragraphs before the statement of
the theorem suffice to establish the conclusion. So suppose that
2k > mrA+ I /p - I/p.
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By the same type of asymptotics as in Section 4, putting

r = m + I/p-k- 1/2 (36)

then if r < 1/2,
Rq(f)-t4', e-O0

Hence the result is equivalent to

* ,Upf2E,q2@~2 << F4rsup(tj22 4 (37)

We will show below that if we know that

2 <At (38)

and also 0 < q, < q, then

sup(Eq,202: 6E Op((rj)) < CGM-A , Af _ cc (39)

where = (I - 2/p)-'. On the other hand, if Q is minimax
quadratic for the pseuido-risk R, then from

R(Q, 0) > V'ar(Q, O)-2f 4 E 2

we have
RQ(f) >2'f4E 92

We may therefore take

M = RQ(F ),F-4 2(f4(--I, 0

in (38) and so, by (39) and some calculation

£2E 920 < C3,4?+I/(2m+2/P1/2) = 0((4r), f __+ 0.

It remains only to prove (39). We wish to evaluiate

sup(,E2@2 Er, 1,I' < I

0 <- 4i < ql

-E42 < )tj )
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By Holder this is

p{(Z2 /r2uP)II 0 <S q1 q

< M).

Now as r,2./p is decreasing in i, the answer is to set , = q, for
i < mO and q, = Ofor i > mn, for mO = inf: = q' > M}.

T'hus the value of the problem is hounded above by

M2#(2k-'.+)4-/S
E ,2"/r,2 /P) ""/' _ m 2+0

.~~~~ =n

Now tno Af4, . which, together with t,he last display, give
(39).

8.3 Proof of Lemma 2
Note that

inf sup(i,(X) - L(x))2 + q2 E 2 = (B+(i) - B (j))2/4 + 712E j2ax
where

B(i) = supE(i, - 1,)r,
x

etc. From t.his poinit on, the argtiment is similar to that for
LemTma 1.

8.4 Proof of Lemma 3
First, we show that we may take x., > -I., for = 1.
Indeed, if (xi, x.1) is a candidate for solujtion, then by relabelling
if necessary, we may suppose that qzrj., > Eq,ix,,. Define

I_,= min(z_,,s, i,,)
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The new pair is at least as good as the original one: it makes

rq.(i .. - -.J) ~> Fq (z1, - ir-1,J

and so the new objective value is at least as good; hut on the
other hand we have

Cr,twl, < Er,l(x_ ,

and

and so the new pair is still feasible.
Second, we show that among pairs with XI., . -I , element-

wise, we may take x, = 0 identically. Indeed, define

,= 2 , - Jr ,

*i_, =0.

Then
q iK,,) = Eq,(.r,, -

and
i,,)2= Z(x, ~,)2 < 62

btit, as 1i' is monotone

etc. tience the new pair is still feasible. and delivers the same
objective value.

Third, we note that x, may therefore be taken as the soliition
to

sup Eq, , subject to

, r, < 2

o < xi
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Fourth, we check that with 0/(r) = x the solition has the
indicated form. Suippose that y = (y,) is an alternative vector
satisfying the same feasibility conditions. Then with h, = y, - Xi,

O > Zrt.,h, (40)

0 > Zrh, (41)

Let1=I i,: , > 0). On I", by definition,

q,<br,, iEI. (42)

HIence

q,hi < jq,hi + bZ,rb, (hy (42)1
= Z(>I./a + br,)h, + b r,h, (by (9)]
1'I

= a-' ,.1 ,h, + b r,h,
< 0 (bv (40),(41)|

and the proof is complete.

8.5 Proof of Lemma 4

O,n(f) = - t() (tu)

We recall the discrete orthogonality relations for sin and cos. Sup-
pose that i and j are not both equal to 0 mod n or to n/2 mod
n.

Ecos(i) sin(j-) = 0
u=1
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(2Xru (21ru) t-= +: mod nZcos(. -)Cos(j~ = 2 =jmdF, n n tO else

Zsin(i_)sin(j2 u) = 23 ±j mod n

It follows that r2,j = I if i j mod n, r2,-,.2,_, = I if
j mod n, that I2,.2_2,+2kn = 1, that r2.112u. I- 2.+2&n = 1 and
that rF, = 0 otherwise. On the other hand, if i and j are both
equal to n/2 mod n, then r2,.I = 2; r2,_-.2,;_ = 0 if n is even,
butft2,12j1 = I if n is odd. The first conclusion of the lemma
follows.

For the final conclusion, note that if 0 E E0m, the formtilas
above give (with I < i < n and i = 2j - 1; the casei = 2j is
analogous)

I0,.n - 0,1 = I 0,+2&n + C 02n . 2+2knl

< (Ej(r,.2*n)' + Z(r2,,..,2+,&,j' )1/
k>1 k>o

= (Z(j + k)2 ± (k ± I)n _ )-2)1/2
_> k>O

-vn71/2

with y,, 22_+2,>O k-2

8.6 Proof of Lemma 5
We define Y,, and Y as processes on a common probability space,
as follows. Let W be a Wiener process, started at - r. Let
4'o(1) = 1/IV' and define

w, = J 0,(t)W(dt) i = 0.

The w, are i.i.d. N(0,.2). Define

n-l

zM =Z M,(t,)w, u = 1,2,..s.n.
.=0
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Using a transposed form of the orthogonality relations of the pre-
vious lemma, the z. are i.i.d N(0,a2). Moreover, by those same
relations

It follows that with these z,,

y,= O,,(f)+w,, i=l,...,n-l

y.= O,(f) +,.

Hlence
.Yi - Y.= - i- ..n-I.

Now consider

Qo(Y) - Qo(y) = 2Zq,yrn6, + q 2

where S, = y, - y,. Note that q, > 0 only for i < no, where
no = o(n), (see Lemma 6 below). Therefore, for all i appearing
in th)ese sums, we have

b, <Ym

Put A = Qo(k) - 4o(y), and use EA' = (EA)2 + Var(A).

2Z,0,6, + ZE6,2 = 2 I + 11,

say. But

Ill . .y'/2nm EqIOI
< <

- 1/2n-m('(Z )1/2

n-'n20 +l/3 _ n-I+Tk o(n- )

as 4m2 - m - I > 0, while
no

if< -t,n- 2m q
i
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no
< -Y.,n 2m Y q

nn-2"tn21
nn~2t+* = o(n')-

Hence (EA)2 = o(n-2') uniformly in e.
Now

Var(A) = 4e2 < 4n2-

Now the weights q, are minimax; so RQ(E) > 2f4 j q. Hence

2 4 C2Rq(f2f2q* < c-2&e

and so
Var(A) < 2ymfn2mfC2RQ(,).

As m > 1/2 and f-2 = O(n), Var(A) = o(Rq(f)) =o(n

8.7 Proof of Lemma 6
Let b(6) be the soliution to eqs. (lO)-( 11) of lemma 3. Then

92(b) = 62
9-.( b)2

Using the asympt.otics (13)-(14) for q2 an( qg in section 4, we
have

b(b) - B(k,m)K,. ^-

with B(k, m) = (1 - r )'/2[2k + 2m + IV-r/2 tAs xr,.2, = X1.2j- I 0
if bj2m-2& > 1, we have

no

substituting in functions of 6 for finctions of b we get

no(6)-6 --+7

and so, if m > 1/4, then no(6) =o(b').
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8.8 Proof of Lemma 7
Recall the risk isometry of section 2.

inf sup R(Q, O) = inf sup E(L(u) - L(x))2 (43)
QDse_l A X

Consider applying Theorem 3 to the functional Q over the set
Om. Let co be as in that Theorem, and let 01,0-& he the pair
mentioned there. Let (i.,.) and (Z_,,) be the corresponding se-
quiences defined by otir isomorphism. By Lemma 3, in solving
the constrained optimization problem with 6o = V22 we may
take xj., = 0 identically and Yl.j = 0 for i > no, for a certain
no = no(6o). By Theorem I of Donoho (1989),

infsup E(L(u) - L(x))2 = inf sup E(L(u) - L(x))2 (44)A x A [x_,.xl,
where 1x ,x1i (lenotes the line segment joining x,I to x,. Let
0(?((r1,-))= (0: 0,2 < xi.,). Then, one checks,

itif sup E(i(u) - L(x))2 = inf siip R(Q,0). (45)A 1X_,.Xll QD5I- *)
Moreover 0((z1.,)) C 0m,t ihence

inf stip R(Q,O) < inf suip R(Q,0) (4f6)
QDSv(rl.q Qns 0_ no

Combining (43)-(46), we get

R(F)= inf siup R(Q,0)
Ql).S 0, ,o

Now in the corresponding linear problem, i% , , see Donoho
(1989). It follows that here eo x. The proof is complete.

8.9 Proof of Lemma 8
We use, without comment, terminology and notation associated
with the Hellinger distance between probability measures; com-
pare, for example Donoho and Liu (1988), Le Cam (1986). Let
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p = Pi., + P2., and defineg, = -, 0go= '. Let p denote the
Hellinger affinity

P= Jg| ,V dp.
Then the quantity of interest is bounded by

7r(P,.,..Po,) p,

Let 4f(y) denote the probability density of N(O, F2) Then, putting
9t.Y) = (4(y - 9,.) + .(y + Ol,,))/2 and go,,(y) = (,O,(y - 00,) +
,0(y + 0,,.))/2. we have that

p = n p

where
p. = J /g'o,Edy.

Now in terms of (squared) Hellinger distance, h,2 = -(>/F_
y/g-.)2dy.

p2 = expf 2 log(1 - h.2/2)).
Define (xz) = Ilog(I - r2)1; then VI'(x) = F(x)/z is increasing
and

glogpl = Z(h') < VI(suph2)h2.

We now use two facts. First. hy the Lemma 10 below

sup h,2 < 2(1 - exp(-c/8))

Second. as j 92 < Mf, farkov's ineqiialitv gives. for each a E
(0,1J,

#{z :9,> a)< a-
a

Hence putting I.= II :9o, < a, 2 <a

h2 = + 2

eEl. ifT.

< h2+
35r. a
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where we used h2 < 2. Invoking Lemma 11 below,

Z h2 < C(a) 2i -_2 )2
ier. I

Suppose that e = 1; then for each a E (0, 11,

I log pl < v(2(1 -exp(-c/8))) (C2(a)c2 + -) r(c, a, M),a
say, and so the lemma holds in this special case, with

c(c, M) = (16)-'exp(-2r(c,a, M)).

The general case then follows from this special case, with the
same a, by a certain scale invariance.

Lemma 10 Let Ejo22 _ 92 )< 2 and = 1. Then

sujph,2 < 2(1 - exp(-c/8))

Proof. By convexity of squared Hellinger distance, the defi-
nition of ge., etc.,

,2 < 2H(O( _@,00 (. _@e )I.. ( +@00) (_ + of,

= If2('O, ( *(0,. - 9l.m)))
Btit

c2 > sup(92 _2)2

> sup(90,,--9,,)'.

The lemma now follows from the formula H2(d. I(. - 5~)) = 2(1 -
exp(_- 12/8))
Lemma 11 Suppose that I > a > O11,9Oo, > 0. Then

hi < C(a) 100".i 021
uwith

C(a) = I + J I|I cosh2(az)O(z)dx
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Proof.

h,2 = J(Ieucosh(Olx) - Ietcosh(9ox))2#(z)dz,
where el = exp(-02/2), co = exp(-02/2). Hence

h, < (J(5Iecosh(9,z) - /eocosh(9,x))2+(z)dx)"2
+ (J({/eoc°h(COh ) - VeoCOsh(eox))2I(T)dT)l12
= 1+ I, say.

Now, by a calculation,

2 = (exp(-92/4) - exp(-92/4))2 exp(92) < (92 _ 92)2,
and

112 = e2 |(Ircosh(9Oz) - cosh(9,i))2,(x)dx.
Put +&(t) = l/fcish). Then, by a calctilation,

V'(Oor) - V0119x) < (0l2 - 92)/2 lIl2corsh(9,z)
so

112 < (92 _ 92)2/4 J IrI4cosh2(81x)o()dx
and the lemma follows.

8.10 Proof of Lemma 9

The argument is similar to that for Lemma 7. Put. 6 = cc2. and
use Lemma 3 with that 6. This gives sequence x- I = 0 and xi.
Defining 9,,, = V/Fj etc., we get a pair (91,, 0 1) to which Lemma
8 applies. Indeed, the random variable (s.i,1.) is e((x,.,))-valued.
We conclude, as in the argument for Theorem 6, that

inf sup E(Q(y) - Q(0))2 > W(ce2)0(c)
4 0((X1,,)

Now, by construction xi., = 0 for i > no. This completes the
proof.
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