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Abstract
We compute confidence bounds on the temporal probability density function (pdf)

of aftershocks of the 1992 Joshua Tree event, the 1984 Morgan Hill event, and the
1989 Loma Prieta event using a new statistical technique. The confidence bounds
assume that the aftershocks are a realization of an inhomogeneous Poisson process,
with an arbitrary monotone decreasing intensity. No functional form for the intensity
is needed. Under the usual Poisson assumption, the pdf is equivalent to the intensity of
aftershocks, normalized to unit area over the observation time interval. The width of
the bounds depends nonlinearly on the data and is quite different for the three events.
The maximum likelihood estimates of modified Omori intensity laws fit the Joshua
Tree and Morgan Hill data extremely well, but not the Loma Prieta data (the modified
Omori law would be rejected at significance levels less than 0.038).

Introduction.
It is generally believed that following a large Earthquake, the chance of aftershocks is large,
and decreases as time goes by (at least for a while until stresses build up again). Omori's
law [Omori, 1895] and its modification [e.g. Utsu, 1961] are decreasing intensity functions
often fit to aftershock sequences. The modified Omori law is that the number of aftershocks
by time t, N(t), has a Poisson distribution with intensity A(t) of the form

A(t) - A(M) (1)A(t= c+t)P

Davis and Frohlich [1991] verified that the modified Omori law provides a probabilistically
adequate fit to many small aftershock sequences with p ; .87; other investigators have gen-
erally (though not invariably) found p > 1 for large Earthquakes with many aftershocks
(e.g. Utsu [1961]). A number of theoretical studies using different physical models of Earth-
quakes predict a modified Omori law for some ranges of time, with values of p between 1
and 1.5 [Utsu, 1961; Mikumo and Miyatake, 1979; Kagan and Knopoff, 1987; Yamashita
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and Knopoff, 1987]. Nonetheless, the assumption of a particular parametric form for the
intensity of aftershocks is extremely restrictive, and the theoretical support of a modified
Omori law is suggestive, rather than conclusive. Furthermore, researchers are wont to draw
conclusions about physical differences between events using uncertainty estimates for the
parameters in the modified Omori law, and to project Earthquake hazard after main shocks
using the law (see, e.g., [Davis and Frohlich, 1991; Reasenberg and Jones, 1989]). The uncer-
tainty estimates are suspect, since they are conditional on the truth of the parametric model.
Estimates of p are also sensitive to the time after the main shock at which the aftershock
observations begin (C. Frohlich, personal communication, 1992).

Below we find confidence bounds on the "shape" of the intensity of aftershocks of the 1992
Joshua Tree event (figure 1), the 1984 Morgan Hill event (figure 2) and the 1989 Loma Prieta
event (figure 3) without assuming a functional form for the intensity. We assume only that
aftershocks are an inhomogeneous Poisson point process whose intensity decreases with time.
The "shape" of the intensity is the intensity normalized to have unit area on the interval
of observation; under the Poisson assumption it is also the conditional probability density
function (pdf) of the times of aftershocks given the total number of observed aftershocks
(see equation (7) below). The confidence bounds contain every monotonic pdf, parametric
or otherwise, consistent with the data at a specified confidence level. The confidence bounds
use a new statistical method introduced by Hengartner and Stark [1992] for finding confidence
bounds on monotone and unimodal pdf's. The technique is rigorous and conservative: the
bounds in figures 1-3 have at least 95% coverage probability, even though the sample is finite.
Models and the Method.
Models of the Intensity of Aftershocks. Aftershocks are usually modeled as an inhomoge-
neous Poisson process, assuming: (a) the numbers of aftershocks in disjoint time intervals
are independent, (b) the chance of an aftershock in an interval of time of length h is approxi-
mately proportional to h, with a remainder that is o(h), and (c) the chance of more than one
aftershock in an interval of length h is o(h). (A function g(h) is o(h) if limh_.o g(h)/h = 0.)
Let N(t) be the (random) number of aftershocks that occur by time t, where t = 0 is the
time of the main event. The intensity A(t) is

A(t) = lim N(t + E) - N(t) (2)

The modified Omori law says A(t) has the functional form (1). The probability that by time
T there have been exactly n aftershocks is

P{N(T) = n}= A (T)eAT (3)

where

A(T) A(t)dt. (4)
The expected number of aftershocks by time T is

00 AiA(T)
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The expected total number of aftershocks is A(oo). For the modified Omori law with p <
1, the expected number of aftershocks is infinite. This strongly suggests that modified
Omori laws with p :z 0.87 as found by Davis and Frohlich [1991] can not hold for all t.
Theoretical justifications of modified Omori laws typically find p > 1 [Utsu, 1961; Mikumo
and Miyatake, 1979; Kagan and Knopoff, 1987; Yamashita and Knopoff, 1987]. Kagan and
Knopoff [1987] argue that a modified Omori law should hold initially, followed by a transition
to an exponentially decaying intensity function. In these situations, the expected number of
aftershocks is finite.

Temporal Probability of Aftershocks. We need to relate the intensity A(t) of aftershocks
to the pdf f(t) of the times of aftershocks. Suppose we observe n aftershocks by time T.
What is the conditional distribution of the times of those aftershocks, given that N(t) = n?
Let {X,}>= be the (random) times of the n aftershocks, in no particular order. Then

P{Xi < tIN(T) = n} = A(t) 0 < t < T. (6)

The pdf of aftershock times is thus

f(t) A(t) 0 < t < T. (7)f()A(T)~
The Poisson assumption implies that the times are independent, so conditional on N(T),
{X,} are independent and identically distributed with density f(t). Equation (7) relates the
intensity A to f, which is the function we find confidence bounds for. If A(t) is monotonic,
so is f(t). The pdf f(t) characterizes the "shape" of the intensity, since it is the intensity
normalized to unit area on [0, T].

Computational Method. Hengartner and Stark [1992] show that confidence intervals for
the pdf at a fixed time t can be found by solving two linear programs. The basic idea of the
method is to define a set of densities that, with specified probability, are consistent with the
observations. Restricting attention to monotone densities within that set, we ask how large
and how small those densities can be at a specified time. The solution to those optimization
problems gives a confidence interval for the pdf at that time. The computations can be
repeated at many points. Monotonicity of the pdf allows us to interpolate the ends of the
confidence intervals between those times conservatively to get a confidence envelope. See
Hengartner and Stark [1992] for the complete theory, which is closely related to the "strict
bounds" approach to inverse problems [Stark, 1992].

The confidence region for the distribution is defined using the Kolmogorov-Smirnov dis-
tance from the empirical distribution. Let {Xj}7.=. be the random times of n aftershocks.
The empirical distribution function is

n

Fn(t)-- it>Xi (8)
j=1

where

1t>Xj- 0' t < xi (9
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The Kolmogorov-Smirnov distance between two measures F and G is

lIF- Gl =sup lF(t) - G(t)J. (10)
i

Massart [1990], sharpening a result of Dvoretzky, Kiefer and Wolfowitz, shows that if F is
the true probability distribution of the data, then

Pr{llF-Fnll < x} >1-a (11)

where
In-

X = Xn(a) -
n
*(12)

Thus {G: IG - Fnll < X} is a 1 - a confidence region for F.
Hengartner and Stark [1992] show that finding the largest and smallest values at a point

among monotonic densities of measures in that confidence region can be reduced to finite-
dimensional linear programs: Let {xj}> I1 be the observed aftershock times, and let {zj}'+'
be the x's augmented by the extra point t > x1, and sorted in increasing order. Suppose
t = Zk. Define

Wi= Zj+1 -zj,-= *1... ,n -1. (13)
Hengartner and Stark [1992] show that if F has a monotone density f(t) then the two linear
programs (1) maximize P3k-, and (2) minimize 13k, subject to the constraints:

Cl .1> /2 > ... >fln > O°

C2 E= j/3w -1

C3 X + mm 1, ** *, n

give the endpoints of a 1 - a confidence interval for f(t). The constraint Cl imposes mono-
tonicity and positivity; C2 ensures the density integrates to unity, and C3 forces the density
to be in the confidence set. Intervals at any finite set of points can be interpolated conserva-
tively using the monotonicity of f to get a piecewise constant simultaneous 1 -c confidence
envelope for f.

Changing variables to y, -,/3 facilitates implementation since positivity of each
yj replaces Cl without using slack variables. The other constraints are easily rewritten in
terms of {-yj}. We used Numerical Algorithms Group, Inc. (NAG) subroutines to solve these
linear programming problems for hundreds of confidence intervals for each data set.
Data and Results.
1992 Joshua Tree event. Lucy Jones provided us with Southern California Seismographic
Network (SCSN) aftershock data for this magnitude 6.1 event, which occurred at 4:50:22
on April 23 of this year. At the time of writing (May 12, 1992), less than three weeks
after the event, the SCSN Real-Time Processor had identified approximately 3460 putative
aftershocks within a 20km radius of the main shock, located near 330 57'N latitude, 1160
19'W longitude. We culled the aftershock sequence for events larger than magnitude 2.0, of
which there were 1820. Figure 1 plots the confidence bounds on the probability of aftershocks
for this event, and the density corresponding to the maximum likelihood estimate (MLE)
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of a modified Omori law for this data [Ogata, 1983]. (The MLE of the parameters of the
modified Omori law fit as an intensity function is the same as the MLE of the parameters
when the corresponding Omori-based density is fit to the empirical distribution of times; see
also equation (7).)

The bounds are a 95% confidence envelope for f: every monotonic pdf that agrees ade-
quately with the observed data in the Kolmogorov-Smirnov sense lies between the bounds.
The parameters of the MLE were p = 1.453 and c = 1.540. This is an unusually large
estimated value for c (Lucy Jones, personal communication, 1992), reflecting the slow decay
of the intensity of aftershocks with time. The MLE modified Omori law lies between the
bounds, but this does not guarantee that it agrees adequately with the observations. In fact,
the density derived from the MLE Omori law has a KS misfit to the empirical distribution
of 0.0176, which is extremely small. (A hypothesis test based on Massart's inequality would
reject the null-hypothesis that the data come from the MLE Omori law at significance levels
above 0.646.)

1989 Loma Prieta Event. Robert Uhrhammer provided us with University of California
at Berkeley Seismographic Stations aftershock data for this event, which occurred at 4:15:43
on October 18 1989. The data, spanning October 18, 1989-January 1, 1992, comprise events
within 40km radius of the epicenter (37.ON latitude, 121.8W longitude) at depths of 0-20km.
There were 221 events with magnitudes at least 3.0, which is the level at which the catalog
is thought to be complete (R. Uhrhammer, personal communication, 1992). Figure 2 shows
95% confidence bounds on the probability of aftershocks, together with the density derived
from the MLE modified Omori law. The MLE of p was == 0.963, and the MLE of c was
c = 7.71 x 10-. Since p < 1, this corresponds to a nonphysical situation where the expected
number of aftershocks is infinite. The KS misfit of the MLE Omori law to the data is 0.095;
a hypothesis test based on Massart's inequality would reject the hypothesis that the data
come from this modified Omori law at significance levels below 0.038.

1984 Morgan Hill Event. Robert Uhrhammer provided us with USGS identified af-
tershocks of the 21:15:18 24 April 1984 magnitude 5.9 Morgan Hill event, located near 370
18.58'N latitude, 1210 40.60' W longitude, for April 24, 1984-December 31, 1984. The after-
shocks include all events located between 37.0 and 37.5 degrees North latitude and between
121.5 and 121.83 degrees West longitude. We culled the file for events with magnitudes at
least 2.0; there were 766 such events. Figure 3 shows 95% confidence bounds and the MLE
Omori density for this event. The MLE was p = 0.554 and c = 0.0018. (Again, if this value
of p held for all time, the expected number of aftershocks would be infinite.) The KS misfit
of the MLE modified Omori density to the empirical distribution was 0.0345: Massart's in-
equality assigns a (conservative) p-value of 0.324 to the null hypothesis that the data come
from the MLE Omori law.
Conclusions.
If aftershocks are a Poisson process, the conditional pdf of aftershock times given the num-
ber of aftershocks observed is just a scaled version of the intensity function. Nonparametric
confidence bounds on the conditional pdf can be computed by linear programming using the
additional assumption that the intensity decreases with time. No functional form for the
intensity need be specified. This gives hope that one could detect real differences between
statistical properties of aftershocks of different events and rigorously constrain physical the-
ories of aftershock generation, without resorting to parametric estimates and parametric
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uncertainties.
The linear programming approach of Hengartner and Stark [1992] is computationally

practical for sequences of several thousand aftershocks using off-the-shelf linear programming
subroutines; more efficient code would allow tens of thousands of events to be used. Based
on the SCSN data for the Joshua Tree event, BSS data for the Loma Prieta event and USGS
data for the Morgan Hill event, the maximum likelihood estimates of modified Omori Laws
provide probabilistically excellent fits to the 1992 Joshua Tree event and 1984 Morgan Hill
event, but a mediocre fit to the 1989 Loma Prieta event. In all three cases, the MLE Omori
densities are not rejected at significance level 0.05, and lie within the confidence envelopes.
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Stations data, and to Lucy Jones for Southern California Seismographic Network data. We
are also grateful to C. Frohlich for helpful conversations. This work was supported by NSF
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Figure Captions.
Fig. 1. Confidence bounds on the pdf of aftershocks of the April 23, 1992 Joshua Tree
event. Solid lines are 95% simultaneous confidence bounds on the pdf of aftershocks, using
only the assumption that the probability of aftershocks decreases with time. The dashed
line is the pdf derived from the maximum likelihood estimate (MLE) of the modified Omori
law for the intensity of aftershocks (see equation 7). The MLE parameter estimates were
p= 1.453, c = 1.540. The results are based on 1820 aftershocks with magnitudes at least
2.0 occurring between April 23 and May 12, 1992, as identified by the Real-Time Processor
of the Southern California Seismographic Network.

Fig. 2. 95% confidence bounds on the pdf of aftershocks of the October 18, 1989 Loma
Prieta event. The dashed line is the pdf derived from the MLE modified Omori law, which
had p = 0.963, c = 7.71 x 10-. The figure is based on 221 aftershocks with magnitudes at
least 3.0, as identified by the University of California at Berkeley Seismographic Stations.

Fig. 3. 95% confidence bounds on the pdf of aftershocks of the April 24, 1984 Morgan
Hill event using 766 aftershocks with magnitudes at least 2, identified by the US Geological
Survey between April 24 and December 31, 1984. The dashed line is the pdf implied by the
MLE modified Omori law, which had p = 0.554, c = 0.0018.
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Fig. 1: Joshua Tree Density Bounds; MLE Omori 's Law
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Fig. 2: Loma Prieta Density Bounds; MLE Omori's Law
U--

Loma Prieta Aftershocks

October 17, 1989-January 1, 1991

221 events with magnitude 2 3.0

I

200 400
Time (days)

600 800

103

*102

1o

ioo

10-1

10-2

10-3

10-4

10-5

c"wr

*S
_C.
U)^
1o
Q)

4

0



Fig. 3: Morgan Hill Density Bounds; MLE Omori's Law
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