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ABSTRACT

In this paper, the relationship between code length and the selection of the

number of bins for a histogram density is considered for a sequence of iid observa-

tions on [0,1]. First, we use a shortest code length criterion to select the number

of bins for a histogram. A uniform almost sure asymptotic expansion for the code

length is given and it is used to prove the asymptotic optimality of the selection

rule. In addition, the selection rule is consistent if the true density is uniform [0, 1].

Secondly, we deal with the problem: what is the "best" achievable average code

length with underlying density function f? Minimax lower bounds are derived for

the average code length over certain smooth classes of underlying densities f. For

the smooth class with bounded first derivatives, the rate in the lower bound is shown

to be achieved by a code based on a sequence of histograms whose number of bias

is changed predictively. Moreover, this best code can be modified to ensure that

the almost sure version of the code length has asymptotically the same behavior as

its expected value, i.e., the average code length.
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1. Introduction

Dawid (1984) introduced his prequential approach to statistics, arguing that

the purpose of statistics is to make sequential probability forecasts for future ob-

servations. This led him to selection procedures which compare different models on

the basis of their accumulated prediction error, which for a given model is measured

by
n

-log g9t-1 (xt xt-1) (1.1)
t=1

where xn = (XI, . . ,xn), and gt-l (xt xt-l) is a fully specified predictive density for

Xit, given by some fixed procedure using xt-I and the model. From a quite different

perspective Rissanen (1986), see Rissanen (1989) for a comprehensive discussion

and references to earlier work, studied the same sum (1.1), viewing it as the length

of a predictive code for xan corresponding to the distribution g, where

n

9(Xn) gI t-1 ( lt I tt-1 ) (1.2)
i=l

Key notions in Rissanen's approach to statistics are the description length, the

predictive description length, which is just another name for (1.1), and the stochastic

complexity of a set of data xn relative to a class of probability models. In terms of

each of these lengths, there is an associated model selection procedure, which we

call MDL (minimum description length), PMDL (minimum predictive description

length) and MSC (minimum stochastic complexity).

In the independent and identically distributed (i.i.d.) case where all the models

are smoothly finitely parametrized, Rissanen (1986) has shown that all these model
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selection criteria give, on the average, asymptotically equivalent results. Indeed in

this case they are all asymptotically equivalent to the criterion now termed BIC.

The almost sure equivalence of these criteria is also likely to be true, although it

has only been proved fully in certain special cases, see Speed and Yu (1989) and

references therein.

It is not at all clear that the prequential or PMDL approach, and the MDL and

MSC criteria will lead to asymptotically equivalent results in the case of infinite-

dimensional (also called nonparametric) models, either on average, or almost surely.

One of the aims of this paper is to explore this topic with a simple infinite di-

mensional model class and its simplest finite-dimensional approximations: smooth

densities on the unit interval, and histograms with equal bin-widths. This study

was begun by Hall and Hannan (1988), and continued in Rissanen et al. (1989),

and a number of our results are extensions or refinements of results found in these

references. In particular, we give expansions of (1.1) valid a.s. and in expectation,

when the elements of x" are i.i.d. with a density on [0,1] satisfying some stan-

dard regularity conditions, and g is based upon histograms with both a fixed and

a time-varying number of bins. In the former case, it turns out that the various

model selection procedures mentioned above can be regarded as equivalent, but this

equivalence breaks down if the number of bins is permitted to vary with t.

As well as studying the behavior of the model selection criteria mentioned

above, Rissanen (1986) denrved an interesting lower bound for the code length

achievable using finite-dimensional parametric families, when the data are gener-

ated by a member of one of these families. Specialized to the case of i.i.d. random

variables, the bound involves a sequence of probability models {fke : 0 E ek},

k = 1,2,..., where ek is a compact subset of IRk with non-empty interior, and

we assume that the densities fk,e satisfy certain standard regularity conditions. It

states that for all distributions 9 of x"n and for all k > 1, there is a subset AD of ek
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with Lebesgue measure zero, such that for 6 V Ag,

Ek,G log [fkn(xn)/g(: )] (1.3)
liminf >1 13
n-4oo jklogn

Here fk g denotes n-dimensional product of the density fk,e, and the expectation is

taken with respect to this density. Because of the well-known equivalence between

prefix codes and probability distributions, see Rissanen (1989), (1.3) may be para-

phrased as follows: without knowing the true source distnrbution f n a, we have to

use (asymptotically) an extra 'knrI log n bits per symbol, to encode a sequence

n" generated by fkna no matter what prefix code we use. This rate ' kn-I log n

depends critically on the assumption that the true source distribution belongs to a

smooth finitely parametrized family, and the second main topic of this paper is to

seek lower bounds of the form (1.3) in the infinite-dimensional case. One such has

been established in Rissanen et al. (1989), and in §3 below we establish a minimax

lower bound for the redundancy, in the spirit of Davisson (1983). A minimax ana-

log of (1.3) above in the finite-dimensional case would refer to the class Gn of all

densities of "n, and have the form

mnEGn mS.XGeek Ek,G log [fEke(,n)/g( n)]
liminf -kG g >1. (1.4)
n-= oklogn

This is readily proved (in the i.i.d. case) from results in Clarke (1989). Our

minimax lower bound in the infinite-dimensional case has the same general form as

(1.4), but with 2 k log n replaced by n4.

We turn now to a brief description of our results, expressed in the terminology

of coding theory, see Hamming (1986) and Rissanen (1989) for this background. For

the most part, it is straightforward to translate back to the prequential statistics

terminology of Dawid (1984, 1989).

In §2 below we give an expression of the form (1.1), which defines the length of a

predictive code for zn based upon a histogram with m equal-width bins. We need to

modify the obvious expression slightly, and it turns out that the natural modification
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coincides with expression (2.3) of Hall and Hannan (1988). Thus the asymptotic

expansions we derive parallel theirs, although we obtain ones valid a.s. and in

expectation whereas theirs were only established in probability. We also interpret

the expression obtained as a two-part code, thus provding a natural link between

the infinite and the finite dimensional cases. Finally, we give some asymptotic

results concerning the data-determined number m' n of bins selected by our criterion,

and establish optimality and consistency results which are quite analogous to those

which hold with finite-dimensional models and for histograms with other selection

criteria, see Stone (1985).

The subject of minimax lower bounds for expressions of the form (1.1) is ad-

dressed in §3, where a bound is derived by modifying familiar arguments from

density estimation, see e.g. Devroye (1987). For the class F of boundedly differen-

tiable densities which is used in most of our discussion, the redundancy can decrease

at a rate no faster than nqs, although by assuming smoothness of degree s this

rate increases to n- a

We then turn to the construction of codes, equivalently predictive probability

densities, which achieve the same rate of decrease of the redundancy. Here it be-

comes clear that the codes (densities) discussed by Hall and Hannan (1988) and

Dawid (1989) do not achieve the lower bound rate, basically because they are in-

sufficiently adaptive. In §4 the code described in Rissanen et al. (1989) is shown to

achieve the lower bound rate, on the average. Moreover, we describe a modification

of the earlier code which achieves the same rate a.s.

The proofs of certain results in §2 are deferred to §5, and an Appendix collects

some results on so-called Poissonization, necessary for establishing the a.s. approx-

imations required for our theorems. Unfortunately the proofs are all rather lengthy,
but we have been unable to simplify them appreciably.

2. The selection rule

Suppose X1,..., X,, are i.i.d. random variables with density f on [0,1]. For
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any fixed integer m, write Ik,m = [(k - 1)/m, k/m] and denote by Hm the family

of histograms with m equal-width bins, i.e.,

Hm = {h:h= E Ck E Ck = m Ck > O}.
k=i

Moreover, let Nk,m(t) = t lI (a) be the counts of those x. falling into the

kth bin Ik,m in the first t observations.

For each m we will take the histogram with m bins based on :t as the predic-

tive density gt, and construct a density, and hence a prefix code, on the n-tuples.

However, we must modify the naive histogram estimator to avoid the problem cre-

ated by the fact that the predictive density will take value zero on some of the

bins at the beginning of the encoding. We add to the beginning of our n-tuple z n

m numbers YiI ... ,ym1r where Yk is taken to be an observation from the uniform

distribution on Ik,m, with different Yk being independent. Denote the conditional

predictive density of Xn given yi, ... ,ym by

n

gm,n,y(xl. ,Xn) =IJJ fmt-1(x2t I i Y...Y Ym)
t=1

where m is the histogram based on Hm and data zt-,y1,. . . ,ym:

Ast-1 YiI..t-1+m
f l(xt I xt- l y .. Ym)=m NkM(t- 1) + 1 on Ik, M

Note that the form Of f,t_l is independent of the particular values of the Yk, and

so we can integrate out Yk and get the same expression as the unconditional density

on xn. Denote the result by 9m,n-

The expression for 9m,nt can be greatly simplified, as we can reorder the terms

in the product without changing its value. Letting k(xft) be the unique k such that

2t E Ik,m,

=nft mNk(zt),m(t- 1) +1
t=l

(n +m-1+m
n+m~(r-i)!t=
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( (m(n-i)! jj JJ (Nk(zt),m(t1) + 1)
(n + m -1!k=1 k(xt)=k

= m (m 1))! II Nk,m(n)!. (2.1)
(n+m-1)! k=1

The above expression is exactly the same as equation (2.3) in Hall and Hannan

(1988), who took the stochastic complexity version of the code length, that is, they

took the marginal distribution of zn obtained by integrating out the multinomial

paxameters with respect to a uniform prior. This is known to be equivalent to

adding m more observations, which is what we have done.

By Stirling's formula n! = nfn+ e NV2eCii where Icnl < 12 (n + 1), we can

expand the factorials in (2.1). Cancelling out terms and using the convention that

log Nk= 0, if Nk = 0, we get:

n m
9log9m,n(10) =- log fm,n(xt) I slog Nk +m log -+ Rm,n

t=2 ~k=1 m

n m 2

=-s log !fm,n(t) + Y +log Rmn

where fm,n(x) = mn k=1 Nk lk^ m (Z) is the histogram density estimator based

on x n, and Nk,m(n) is abbreviated Nk for simplicity. Moreover, by the bound on

cn, the remainder term Rm,n is bounded by an O(m) term.

We can interpret expression (2.2) as a two-part code length: the first term is

the code length for the data n" using the fitted model from Hm, and the second is

the code length required to encode the estimators of parameters of the fitted model.

(The number of bits required to encode a parameter estimate which has standard

deviation a is approximately -log a, and the value mn-INk which fm,n takes on

'k,m has a variance of approximately m2n-2Nk, provided m and n are sufficiently

large.)

Now we have obtained a class {9m,n} of densities on [0, 1]n. If we want to

use one of them to encode data with an underlying density f, the best code in

the average sense will be the one which gives the smallest redundancy. Therefore
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we would like to find the gm,n equivalently, the mn minimizing E1 log f m/g,mn
Ef log ffn - Ef log 9m,n, that is, the one (those) minimizing -Ef log 9m,n. As will

be seen later (Theorem 2.4), the minimizer is asymptotically unique in the sense

that the ratio of any two minimizers tends to 1 as n tends to infinity. However, the

quantity -Ef log 9m,n, is unknown since we do not know the underlying density f

but we can always minimize the data-driven quantity - log 9g,(,n(xn) and hope that

it will behave like its expectation. We will restrict the range of m for selection to

n-{m: nlfL <m <n 2}

where e1 and E2 are two smal positive constants satisfying 0 < el < C2 < 1. We

propose the following selection criterion for the code or bin-width:

Selection rule. Choose mn to minimize -log99m,n(xn) over m E An, i.e. write

mn= arg( mmn -lOgg10 n(9 ))- (2.3)
mEAn

In order to analyze the behavior of our selection rule further, we need to put

some smoothness conditions on the underlying true density f.

Let F denote the family of densities on [0,1] which are uniformly bounded

above and below, and also have a uniform bound on the first derivative:

F={f:O<co<f()<cl<coo,If'(z)j<c2,xZE [0 1];j fd=1}.

On the range An, we have the following expansions for the per symbol redun-

dancy using 9m,n. Proofs for Theorems 2.1 and 2.2 will be given in §5.

Theorem 2.1. Suppose that f is in Y, z" denotes i.i.d observations from f, and

f #1. Then as n oo, uniformly inm onAn:

1 log f=()=(2 Cf + -log
n

(1 +o(1)) a.s.-logmn =)~ m n mJ
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where cf=-f2 fol dx.

It is obvious that cf (which is a multiple of the Fisher information of f) mea-

sures the smoothness of the density function f, but it is zero if f is the uniform

density on [0, 1]. In this case we will offer a separate discussion, see Theorem 2.5

below. The above expansion is also true in expectation.

Theorem 2.2. Suppose that f is in Y, a n denotes i.i.d observations from f, and

f #1. Then asn-oo, uniformlyinmonA:

-Ef log f (xn) I Cf
I

+ 2-log-(1 + o(l))

It is clear that selecting m by minimizing -log 9m,n is asymptotically equiv-

alent, almost surely and in expectation, to trading off - Cf jy against 2 m log n.

When m gets large, the first of these terms gets smaller, and the second gets larger.

In fact, the first term is an approximation to the model error between f and Hm,

and the second an accumulated estimation error from estimating parameters in Hm.

We now make these remarks more precise.

Let fm denote the density in Hm which assigns the same probability to each

bin Ik,m as f does, i.e., for x E [0,1] let

m

fm(x) = m E k l k,.(,()
k=1

where k =l,m f dz:.

We then have the following theorem. It shows that fm is the closest element of

Hm to f in the sense of the Kullback-Leibler (K-L) divergence, and also gives an

approximation to this closest "distance". The proof for the first part is a straight-

forward application of Shannon's inequality, and the second part is an exercise in

analysis using Proposition 2.7 of Freedman and Diaconis (1981).
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Theorem 2.3. (i) For any fixed m,

min Ef log h Ejlog'f.h%EHrn h fm

(ii) Form uniformly in the range An:

Eflgfi 2 Cfm2 (1 + 0(l)).-

We now offer a heuristic proof for the expansion in expectation, which shows

clearly how the above two terms arise.

Firstly, we insert fn ("), break Ef log fn/gm,n into two terms by the addi-

tivity of the log function, and observe that fm(xn)/gm,n(xn) depends on an only

through the counts Nk. These counts have the same distribution under f and fi,

and so we have

fn fn fn
Ef log '-Ef log +Ef 1

9m,n o mn+ 9m,n
fn fn

= Ef log + Efm log
m 9m,

o 2 Cf W2- + Efm,, log 9m

The second term is known to have the order " m log n by results in the para-

metric case, see Rissanen (1986). This is because under fm we are dealing with

the multinomial parametric family and 2 m log m ifs the rate we get in such a case.

This expression can be viewed as the accumulated estimation error for estimating

the multinomial parameters, or equivalently as the smallest redundancy achievable

by usinig a code rather than the true density fn.

We turn now to a discussion of the optimality and consistency of the selec-

tion rule. It was noted above that mn given by the rule (2.3) also mnimizes the

data-dependent redundancy, and we note here that mn might not be unique for

a particular data string :. To be precise we should define m, as a minimizer

of -log 9m,n. Fortunately, m is asymptotically unique in the sense described in
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Theorem 2.4 below. The asymptotic agreement of the data-dependent redundancy

and the expected redundancy suggests that our mn will approach the m which

minimizes the expected redundancy, that is, mn, will be asymptotically equivalent

to

M* = arg(mifl Ef1logfnxnn g(MEAn f 9ggm,n(n))
as n - oo. This can be stated formally as follows.

Theorem 2.4. Under the assumptions of Theorem 2.1, we have the following ex-

pression as n -. oo.

(i) mn = (3cf n/log n)I (1 + o(1)).

(ii) =n= m*(1 + o(l)) a.s.

(iii) Ef log n(n) = (3cf) (n1 log n) (1 + o(l))/2.

(iv) log (n) {Ef log fn(aln)/g9mon(n)}(1 + o(1)) a.s.

As remarked by Hall and Hannan (1989), the rate of mn',1 (n/log n)i coin-

cides with the rate for the bin width which minimizes the largest deviation of the

histogram and the true density, see Stone (1983).

Write S(m) = cfm2 + I m log a, R(m) = nI log[fn(:n )/gm,n(:n)], and

L(m) = Ef R(m). Denote by ?Zms, min and mn the minimizers of S(m), R(m) and

L(m) respectively over the range An. Then we have the following lemma.

Lemma 2.1. If we choose mm i mn and mn over the range An, then as n oo

(i) L(m*)/S(fizn) 1.

(ii) R(Mvin)/S(fn)-n) 1 a.s.

(n)f=n (3cf n/log n)i(1 + o(l)).

(iv) n

(v) mn/fnn -4 1 a.s.
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Proof. (i) The asymptotic expansion in Theorem 2.2 gives

L(m*) = S(m*)(1 + o(1)). (2.4)

Since m* is the minimizer of L(m),

L(m) (n) = S(fhn)(1 + o(i))

which yields

L(m*)/S(Mn) < (1+ o()). (2.5)

Similarly, by Theorem 2.2

L(71n)= S(fnTn)(1 + o(1)) (2.6)

and

S(Mn) < S(m*) = L(m*) - o(l) S(m*)

which together give

L(m*)/S(vYn) > 1 + o(M) S(m*) S(OO) * (2.7)

Note that S(m*)/S(fnn) is bounded, since otherwise S(m*)/S(Mn) oo
for some

subsequence of n. For the sake of simplicity, we assume this is the case for the whole

sequence. The L(m*)/L(fnn) -. oo by (2.4) to (2.6). This contradicts the fact that

L(m*) S L(fnn), because m* is the minimizer of L(m). Combining (2.5) and (2.7)

completes the proof of (i).

(ii) Similar to the proof of (i) by Theorem 2.1.

(iii) Putting the derivative of L(m) with respect to m equal to zero yields

cfm 3 = n1' log n -n1 log m-n-1.

Thus, .&nn, as the root of this equation, takes the form

m'nn = (3cf)* (n/log n) an(f) ,
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where an(f) 1 as n -* oo. Alternatively, we can write

=n- (3cf)* (n/log n)I (1 + o(1)). (2.8)

(iv) Substituting (2.8) into S, we have

S( =n) 2 (3cf)* (n-' log n)I (1 + o(i)).

By Theorem 2.2,

L(m*)/S(m*) 1,

which, together with (i), implies that

S(M* )IS(hn-) 1,

that is
-Cf m* -2 + m* n- log(n/m*)} (2.9)

{(3cf ) (n-'I log n)*}3
Since both terms in the numerator are positive, we have

mFn 2{(3cf)* (n-' log n)*} c, (2.10)

where c is a non-negative finite constant.

We now show c is non-zero by contradiction. If c 0, the (n/log n) 4=o(m*)

and m* n1I log(n/m*)/{(3cf)i (n1I log n)I} -+ 1, but these cannot both hold at

the same time.

Therefore, m* = bn(f)Mn. By (2.9), the constant bn(f) equals (3cf)i (1 +

o(l)). This completes the proof of (iv).

(v) This is similar to the proof of (iv), but using Theorem 2.1 instead of The-

orem 2.2. o

Proof of Theorem 2.4

(i) Combining (iv) and (iii) of Lemma 2.1 gives,

mn ,n(1 + o(1)) = (3cf n/log n)* (1 + o(l)).
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(ii) Combining (v), (iv) of Lemma 2.1 gives

mn = Mn(1 + o(M)) = m*n( + o(M)).

(iii) Combining (i) and (nii) of Lemma 2.1 gives

1 E log fn(xI )/gmo,(xn) = L(m*) = S(vn)(1 + O())

- 2 (3cf)* (n-1 log n)I(I + o(l)).

(iv) Combining (i) and (ii) of Lemma 2.1 gives,

- log fn(n)/g&n,n(n)n
R(Min) = S(fhn)(1 + o(M)) = L(m*)(1 + o(l))

- {Ef log fn(zn)/gm n(xvn)}(l + o(1)). 03

A question left from the earlier discussion is the case f = 1, for here we do not

have the asymptotic expansions given in Theorems 2.1 and 2.2. In this case, the

model error term is zero, i.e., fm- f-1 for all m. Fortunately, our selection rule

mn will lead us to the uniform density as n gets large, but to allow this, we have

to give rmn a range which permits the choice m = 1. Let us define the range Bn by

Bn {m:1<m<nE2},

where 0 < 62 < 1. In the following statement, m'n minimizes (2.2) over m E Bn-

Theorem 2.5. If n is a sequence of i.i.d observations from the uniform density

on [0,1], then with probability 1, mn = 1 all but fitely often.

If f _ 1, then R(m) 0-log 9m,n(xn) and S(m) = 2-log a. For any fixed

6 > 0, let

Tn() = I{IR(m) - S(m)I<I S(m) for al m E Bn = [1, ne2]} .
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Lemma 2.2. En=l P(Tnc()) < °°

Proof. It follows from f =1 that qk = m- and f(xt) 1. Thus R(m) - S(m)

can be written as
n m

-E log{fm,n(Xt)/fm(3:t)}- log Nk/nqk + O(m)
t=1 k=1

m Nk m

=-L Nk log - 2 log Nkln4 + O(m) (2.11)
k=1 k=1

By the remark after Lemma 5.3

£P(ma Nk log > em) < oo

andand~~~~~0 m Nk
P (max | log , > cm) < 00

n=1 k=1 f'k

which imply that °n°=l P(Tn,(6)) < oo by (2.11) and S(m) = O(m log n).

Proof of Theorem 2.5

It suffices to show that mn = 1 on the set Tn(6) for some 6, since it then follows

that
00 00~~~00
P(m^n:A 1) < PP(Tn( ) < °°-

n=1 n=1

which by the Borel-Cantelli lemma yields mn -- 1. Since mn is integer-valued, it

follows that, for almost all sample paths z0, there is a n(x°) > 0 such the mn = 1

for n > n((OO).

A direct calculation of the derivative of S(m) with respect to m shows that

S(m) is strictly increasing as m increases on Bn provided that n > el/E2. Moreover,

for any 6>,0 S(1) < S(2) is equivalent to 6 < 3og n-l4og-2 which holds for1-6 ~~~~~~~3logn-2log 2 hls o

6= - if n > 4. For this particular 6, when n > max(4, el/E2), we have on Tn(b)
4

IR(m) - S(m)I < 6S(m)

for all m in Bn.
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Taking the values 1 and mn as m in the above inequality gives (1 -6) S( - n) <

R(miin) and R(1) < S(1)(1 + 6). Together with the fact that R(m'n) < R(1) because

mn is the minimizer of R(m), the two inequalilties yield

S( "'n) < S(1M 1+d, < S(2)

where the last inequality holds by the choice of 6. Since S(m) is strictly 'increasing

on Bn, this implies n-= 1 and this completes the proof. o

Simulations show that mn, will correctly choose the uniform density even for

moderate sample sizes, for example, n = 25 to 50. If f is a stepwise density, i.e.,

belongs to Hm for some m > 1, min then will also pick up the correct m eventually.

For those cases where f is close the uniform density, i.e., when the jumps between

the blocks are not very big, our selection rule tends to pick the uniform density

until the sample size gets very large. An example is that when f is a density with a

jump of size 0.2 at 2, 1500 data points are still not enough to recognize the jump.

This behavior is not unreasonable if we want a density estimate as being close in

global measure to the true one, since it will pick up the uniform density which is

close to the true stepwise density, but it is less satisfactory as a device for locating

the positions of the jumps. The same phenomenon is observed in the context of

spectral density estimation, when a similar miniimum code length criterion can be

used, see Hannan, Cameron and Speed (1990).

3. Minimax lower bounds

In the previous section we found the best code 9g,nn,n among a specified class

from a data-driven criterion (2.3). In fact, we showed two things. First, we calcu-

lated a lower bound on the expected redundancy using one of the codes in our class

{9m,n m E An} i.e., for any fixed f in :F:

mm - Ef log fn(z;n) > (3cf)i(n-' log n)4 (1 + o(1))/2. (3.1)
mEAn n m,(x

Since f is usually unknown, the lower bound in (3.1) does not tell us as much
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as when the constant were independent of f. This leaves the question of whether

there exists a uniform lower bound over f in F.

Second, we proved that 9g,h,,n achieves this lower bound. Note that we re-

stricted ourselves to a very particular class {g,n, m E A,} of codes. We therefore

ask: can we do better than this if we search through a larger class?

Strictly speaking, gd,n is not a density on n-tuples because mn, depends on

our data 29'. To make gn, a code, we need to encode the estimator of the model

class, i.e., the integer m-n [(3cf n/log n)i]. Using the universal prior on integers

(Rissanen (1983)) will cost n-1 log mn st O(n-1 log n) extra bits per symbol, which

is negligible compared with the order of the lower bound (n1 log n)s. Thus, it

causes no problem to treat 90n,n as a code on n-tuples, but it is still not a predictive

code. We need to scan all the data before we can decide which code we are going to

use for this particular data string. Obviously, this can sometimes be inconvenient.

In this section we will try to provide answers to the two questions: What is the

miiimax lower bound on the expected redundancy? And, can we achieve this lower

bound using a predictive code, i.e. a code that can be implemented using only one

pass through the data?

For any code g(Xn), i.e., density function on [0, 1]n, we can write the redun-

dancy encoding messages of length n from a continuous source f as an accumulated

prediction error as follows:

Efn log9ELt-I log f(1(:lt t1) dxt (3.2)

where ft-1 is the (product) density function of xt-.

It is helpful to recognize that each term in the preceding summation is the

density estimation error of gt-l. expressed in terms of K-L divergence. There is a

large body of work in the literature on the mniimax rate for density estimation when

f is assumed to be a member of a smooth family, see Bretagnolle and Huber (1979),

Assouad (1983), Birge (1983), Devroye (1987), and references cited there. There

are a number of different techniques used to prove mi imax results, but they are all
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similar in one way: they all try to find a subfamily whose minimax risk, which is

always a lower bound to that of the full family, converges to zero at the same rate as

that of the full family. Usually such a subfamily is chosen so that its members are

hard to estimate well simultaneously by a single estimator. A quantity involving

distances between members of this subfamily is then found which gives a lower

bound to the minimax risk of the subfamily, and therefore of the full family. The

choice of such subfamilies requires considerable care. Pinsker (1980), and Donoho,

Liu and MacGibbon (1990) give geometnrc conditions on the full family which ensure

that the minimax risk of the subfamily is, to within constants, the minimax loss of

the full family. Our strategy is similar.

The following inequalities will be needed below. Both can be found in Devroye

(1987), whose notation we follow, writing K(f,g) = f log(f/g), and H2(f,g)

(4 )~~2.fG/J7- NF)

Lemma 3.1. For any two densities f and g on [0, 1], K(f,g) > H2 (fg).

This is just Exercise 1.4 p. 16 of Devroye (1987).

Lemma 3.2. For any two densitiesf andg on [0,1], f min(f,g) > 1 - H2(f,g).

This is an easy consequence of Theorem 1.3 p. 7 of Devroye (1987).

Unfortunately, we cannot get our results as direct consequences of existing

mimimax lower bounds in density estimation, since we cannot freely exchange the

"min max" and the sum. However, we can repeat the argument used in density

estimation for the accumulated estimation error, and get a version of Assouad's

minimax lower bound, this time in accumulated Hellinger norm.

Lemma 3.3. Let Y, be the set of densities on [0, 1] with 2r elements denoted fe,

where 8 (= 2 ... 6r) is an r-tuple of-i's and +1's. Let {Ai, i 1,...,r} be a
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partition of [0, 1] into r disjoint subsets, such that there exists a > 0 and f3 > 0

with the following properties: for all 0 and i we have

j+/Ti7 >(3 and JfVT) > a

where (9)j = Oj except at j-i, and (0&)i -0,. Then for all g in G, the set of

all densities on [0, 1]", we have

min max;Efn log f >.ra(i - vV )

Proof. We will use the trivial fact that the maximum of r numbers is greater or

equal to the average of these r numbers, and then interchange summations.

For any fixed g in Gn,

maxc 1 Efn logf > 2-r nEf log -
fE.,Fr n = feErn _

feEr t=1 9ii

n2~ >1 EfeiJe o

=2Es~~~~2 EfSt##IA I#;v/) fe$ log dx)

t=1 n feE[A -t

>~~~~~~2-- Efe EI;(SF Ini (Vfe-,iO) dct-I

t=1 nfeEFr
Now we look at one term. It can be written as

1 r

EEftlL(I7>~FT2+fiLV7 m]
2 =1 Eftit1+Eit,

.2 2 Z Lg.t(v')2d ,:i ft7)2 dt91)min(ft-1,f(31 d4
Ai= G

> Ierasinf J lof+pft1t)) 2 Ira6inf(1-H22(fa,+Ift-
> IrWa(1 - >22St12 ra(1-/2( a)
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Thus, summing up over t,

max Ef log f rcr-E ( - > 4 rax(1-/;,,f)

At first sight, it seems that we can try the same argument with the K-L

divergence so that we would not have to go through the Hellinger norm, and we

might even have a better lower bound this way. However, the above argument will

break down at least at one point; equality (3.4) will not hold for K-L divergence

since K-L divergence is not a metric, and therefore there is no triangle inequality.

For our class F, we need to find the right subsets YF, with a and P3.

Theorem 3.1. For all r > 1, there exists a subset YFr of:F and a partition {Ai, i
3c21,... r I of [0, 1] such that the two inequalities in Lema 3.3 hold with a = 2 r-3

and,@ = 1-a. Then if r = r_ = Anl/3 for a suitably chosen A,

~1 fn 4 2

min max Efn log L>B4c2 n-Ng9EGn fEY fl 9

where B1 t 0.011.

Proof. We omit the detailed proof, which is a modification of the argument in

Devroye (1987, p. 66-69), done in such a way that smooth functions result and

expressions for a and / may be determined. 0

The same approach may be used to obtain minimax lower bounds for other

classes of densities. For example, with the class F. of densities having uniformly

bounded sth denrvatives, the rate becomes n-2*/(2.+l),

4. Achievability of the minimax bounds

For the family F, it has been shown that the rate n-I is actually optimal

since we can construct a predictive code g* to achieve this rate in expectation, see

Rissanen, Speed and Yu (1989), namely
n

g*(x ) = gt-1 (zt)
t=l
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where
Mt

Nk,mt +19t-I(75) E mtt-1 + mtl^m

and mt Pt1)4]
Clearly, g* is the histogram based on at-, modified to keep it away from zero.

Moreover, g* can be further modified to achieve this rate almost surely.

Theorem 4.1 (Rissanen, Speed and Yu (1989)). For all f in F, when n is

sufficiently large:

-Efn log f n(x) <Arn-i(l+o(l))
n 9~*(zn)

where o(l) -i 0 uniformaly in f in F, as n tends to infinity, and As is a constant

depending on the class F.

This result is proved in the reference cited.

Theorem 4.2. Let f* be a density on 2n defined predictively as follows:

n/An
f*(:fn) =gml( f ) II gmi (t)

i=n4/15

where
Mt Nk,mt + 1

gmtGcX)=Emt t 1+Mt Ilg'mt

An-nI+6 for some a E (O, and

[(An *n) if 1 < t < [An * n*]
Mt

[(An i)] if (i-1)An<t<i.An and i>n*.

Then, almost surely as n oo,

-log fn.(n) < Arn*I(I+o(1)).n f*(zn)-

This theorem will be proved in §5 below.
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The best g,. ,,, in §2 is no longer gives the optimal rate over the larger class G n

(compare (n-1 log n)i with the minimax rate ns), since it is not flexible enough

to adapt to the shape of the underlying density when more and more data are

obtained. This is because we restricted ourselves to a class with histograms with

fixed bin width for all the predictive denlsities gti-. A g* which gives the optimal

rate is one which updates the bin width each time a new observation comes along,

and this way, we do not have to scan the whole string to get the code. Note that the

bin-width updating is at the same rate as would be chosen by an AIC type criterion

based on xt-1, since we are in a similar situation to that in Breiman and Freedman

(1983), where the model error is never zero.

One problem, however, is the sample stability of g*, since updating at each

new observation may be too frequent. On the other hand, 9&n,n behaves well

along almost every sample path, although it does not give an optimal rate in the

minimax sense. A natural compromise is f *, which does not update the bin width

as frequently as 9*, but updates frequently enough to keep the optimal rate. As

stated in Theorem 4.2, the density f* has the stable sample-path behaviour desired.

A related result in which the same rate arises is given in Barron and Cover

(1989). They consider the problem of using the shortest code length principle to

derive a density estimator, and describe one which, when the true density lies in a

Sobolev ball converges in the Hellinger distance and im probability at rate n -4.

To get the sample stability and the minimax rate at the same time, we use a

predictive density f* defined on zn. Intuitively, f* is constructed by updating the

binwidth of predictive histograms only at the beginning of each block of size An,

where we decompose '" into blocks. The first block has size l = [An. nj], longer

than the rest, which have equal size An. More precisely,

n n/An
f*(Tn) = IIgmt -I (zt Ia 't) gmL(X ) II gm,(t)

t=l i=n*

where gmt.i_G(xt) is the histogram based on zt-1, with mtj1 equal bins, An = ni+*6
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0<6<<g, and

Mt

( [(Ann)] if 1 < t < [An.n ]
(An i) '] if (i-1)An<t<i-An and i>n'n.

We deal with the singularity problem the same way as before, i.e., we add to

the beginning of each block, y!i,... , ymi,, where y uniform on [i, +] and the

{yj} are mutually independent.

Alternatively, we could take Hall and Hannan's stochastic complexity version

of the density, which will give rise to the same predictive density. Thus, f * can be

written as
n/An

f * (xn =-gml'(XI) IIgmj (zi I XI90xi-l)I
i=n*i

where xi = (Xj..*aX
n ]) = Xn and xi = (T(i.)An+l .. iAn) for i =

4nI,..., n/An.

To be quite precise, we should take [ ] -[n4] blocks of size An from the

end of the data string, and put the remainder in the first block. This will increase

the size of the first block by a size of smaller order than [An * ni].

Note that by Theorem 2.1, ifml = [An * n*] i, then as n -oo

- log gm1 (2'1 )/fmi (xl')
[4i I_Ml_ log An.n4 1(

=An nT[ mc, +- m log- (1 + o(l)) a.s.
2An.n*AM

Moreover,

i~(a IzlI,..,i-1) -gm,(xi, *,2 i-1,IXg i (-
gm, (Z;; ... s t-

which gives

li =-log 9m;( 1 I X21)
fmi (xi)

=-logg,9m.(zl,. ..i) +logg9m,(1 . ..xt1)+logfm, (zi). (4.1)
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We will expand the silmmands of the expansion

n

log[fVn(xn)/f*(x'A)] = Z{Li + log[f(zT')/fm,(Qi9)]}
i=l

for each i, using Taylor's theorem, cf. the proof of Theorem 2.1, and then use results

from the Appendix to complete the proof. Denote by

Nk,i = , )

the count of x's 'in the first i - 1 blocks falling into Ik,mj, and by

Mk,i = j Ik,m, (x)
zEzi

the count of x's in the ith block falling into Ik,m3i For simplicity we will suppress

the i in Nk,i and Mk,i, since we will be expanding (4.1) for a particular i.

Let ri = (i - 1) An. By equation (2.2)

fmi(2 i

=-> (Nk + Mk) log N Mk *mi+ og(Nk + Mk)
k=1 k=1

iAn miNk m

+mi log-+ Rm,n + Nk log-r-mi > log Nk
mi ~~k=1 ri k=1

mi

-Mi lo '+ R2M,n + Mk 109 Ok * Mi
mi ~~k=1

where log 0 0, and

IR'm I <E2IRmnl Nk 9 m,nl N< Nk + Mk
Nk>0 N&+M&>0

Note that -log gm;(xi IZI,... ,I i-) can be written Li - log fmi (xi).

Proposition 4.1. We have the following expressionuniformlyin i E [n*, n],

as n-oo

I
..Li = m' l + o(l)] a.s.2 i
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The proof consists of a series oflemmas.

Rewrite Li as

Nk+Mk i-1 mi Nk + Mk mk
Nk log N t-Mlog kmi

Nk
lo N+ k=1-,n OM

1m Nk + Mk
-
1 log i

k=l

where Ri-= n + R 2 satisfies

Nk<0' k Nk+Mk >0

and express Li as

1, +I2+I3+4 + Ri

where

Nk + Mk
[klog N

i
ai-iI

lgNk+Mk i-1log i NkI

mi
I2=-E Mk log

k=l

I4 2 mi log t
0

It is easy to see that I4 = 2 m; (1 + o(l)) uniformly for i E [nfT, S] as n-+ oo.

Lemma 4.1. Uniformly in i E [nIt, [n, ni-'], as n -- oo

I' =2.i+(1+o(1)) a.s.

Proof. We can expand

mi

I1I= Nk log
k=1

Nk+ Mk
Nk

(i - 1)An4k
iAn4S

Ni ( Nk + Mk-iAnk)

=T1+T2, say.

mi

+ E Nk log
k=1

(1+
Nk rijOk)

rijOk

mi

-E
k=l

* N + 2 mi logNk 2 +-Rii' 1

1
<2

Nk + Mk
1
-

Nk >0

mi

Ii=-E1N
k=1

-kI3=-f 7
k=l

Nk + Mk
iAnOk
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We now introduce the notation AMk = Mk- EMk = Mk- AnPk and ANk=

Nk - ENk= Nk- riqk, and expand T1, T2 into four terms as follows:

Tj =Lj+Qj+Cj+Rej, j= 1,2.

Then, after some simplification,

+i LNk + Mk -iAnOk
k=l

= (Nk - rqk)2

k i(i - 1)Arnk

mi Nk- rik
+ Nk Nk

k=l ?ixk
m' (Nk- rk)(Mk -Anqk)
k=l iAnOk

= mi (1 + o(l)) a.s.

by (6) and (12) in the Appendix.

Similarly we can get Q - Q2 = -- (1 + o(1)) a.s. and both Ci and C2 are

smaller order than mi/i, hence Rei= o(mi/i) and Ii = (mi/2i) (1 + o(1)) a.s. as

asserted.

In fact Ql - Q2 can be simplified to

mi 2i-1

>E ANk 1i2(i 1)2An2+2 +
k=i

k=I12ANk + ANkAMk
2 1i2 &n2o2k

k=l -(i-),n Ok
(i-1)2ANkAMk+ AMk2

2k=l i2An2Ok

= 0 - --I(1 Io(1)) +2-(1 + o(1)) a.s.

by (8), (6), (13), (14), (12) and (7) of the Appendix,

2- I (1+ o(l)) a.s. as n-oo.2

Furthermore,

Cl=-* ZME aN[ANk+AMk]I
k=l kAqS

ri(ANk + AMk)3
i3A&n3o3 a.s. n -4 oo

by (10), (8), (21), (20), (8), (13), (14) and (9) of the Appendix. Similarly C2 =

o(mi/i) a.s. as n -- oo.

mi
0

i

0
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Lemma 4.2. Uniformlyin i E [nI,n7n] asn , I2 =- 2(1+o(l)) a.s.

Proof. 2 -=-k 1 Mk log Ni-k+MA-=in L+ Q + C + R, where

mi ANk + AMk mi
L- j Mk . _Anqk

k=1 =

m2 (1 + o(l)) a.s.i

by (12) and (7) of the Appendix. Simiarly

ANk * AMk
iAnOk

mi

k=l

AMk2
iAnqk

Q 1 i AMkANk2 + 2AMk2ANk + AMk
k=l i2An2o3 +1 2

2 i2An

=
I (1 + o(l)) a.s. as n - oo

by (13), (14), (9), (6), (7) and (12) of the Appendix.

Finally,

mi

C=-* MkZ"
k=l

[ANk+AMk']3
iAnqk J

mi AMk [ANk + 3AN2AMk + 3ANkAMk2 + AMk3]
= =l i3 An2o3

1m [Nkt + 3ANk2Mk + 3ANkAMk + AMk] (mi\
-3

'

i3A\n2,oA2 = OI-J
k=1

by (19), (21), (20), (11), (8), (13), (14) and (9) of the Appendix. Thus R = o(M'i)

a.s. as n -4 oo and we conclude that I2 = -M(1 + o(l)) a.s.

Lemma4.3. UniformlyiniE [n*, ni],asn-oo,Is=o(3 i) a.s.

Proof. The proof is similar to the proofs of Lemma 6.1 and Lemma 6.2 and will

be omitted.

The only thing remaning in the proof of Proposition 6.1 is to bound the re-

mainder term, which has the order O ( Nk>O 1h).

[ANk + AMk]2
i2Anqk

a.s. as n -4 oo
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Lemma 4.4. Uniformlyin i E [In , An, asn -k xo, EJN>O N = a.s.

Proof. Let Ani = { maxl<k<mi INkl,i - rjqkjj < (iAn)*+E} for some small e > 0.

Then on An,s

1 Nk,,>O 1

Nk,i Nti>o0 k,i-rijk + rijk

1
r,qSk

r,qSk (i

[1+ ANkSi
riOk

1
= 2~J[1 + ANk,i/riqSk]riqSk

mi

i=l

1

riOkk

+ (i7n)i-e)

(1+ '( ,&n)i mi)iAn( 1+

_)(1 + 0(l ))
i rijk

tA

Mi(j ) (1+io(1))= 0((iAn))
iAn IsA

mi . [n/An] ] mi (nsU)
An'* JA

To complete the proof, it is enough to show that

n/An

i=n* -An

P(An,,) <o. (4.2)

P(A ,) _ P(Nk,i- riqkl > (iAn)i+f) < j EjNk,i-riqkj2t
n - s k, ki= (in)fl)*+E'

_i 0(r0k)Y .ci(

<k=i (tA nl) J+2Eet (iAn)2d) = i&)2l

(ri0k )t
iAnlt

[iAn -
1 ]'

-o m = 0(1).%,ni

As iAn > An - n = n*+6, taking e large enough will guarantee that (4.2) holds.n

Proof of Proposition 4.1. Combine Lemmas 4.1-4.4.

Proposition 4.2. Iff f 1, then uniformly in i E [nft, =n] as n - oo

log fm( () _ t=(i-i)An+i
log f(2=)= An 2m + 0 )

2m; i

O<
Xt,i>

m44:
i=l
mi

i=l

i

Note that

since

a.s.

mi

i=l

mi0 1
i nj+b
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Proof. Let Yt,m, = log fi-t as in the proof of Lemma 5.4. By the method used

there we can obtain
iAn

Yt,m, EYt-m;
t=r;+l

> n+ Anmi))

S exp (-O(An)) = excp (- 0(nT)

Therefore

Ei P(mac | Yt,m -AnEYtX,miI >
n Anmi))xI Ylm

-

00 n/An oo
<= nEexp( -(n')) <
n=l . n=ls=n*

, . exp (-O(ni)) < 0 -

By Borel-Cantelli lemma, Proposition 4.2 is proved, provided that Ef log 9- =

02j4 (1 + o(l)), which is true by Lemma 5.5.

Proposition 4.3. Iff f 1, then as n --+ oo,

log f(n) 3(i+cf)nl(I+o(1))f*(xTn) I a.s.

Proof. Let the size of the first block be denoted fi = nA x An n+6 < n, and

write ml = [T-'] 1. By Theorem 2.1 above, as n -+ oo we have

lo [2 Cf m2 + 2 r1 log ] (1 +o(1))
'f*(2x1) 2 2 MlJ

a.s.

By Propositions 4.1 and 4.2 above, for i E [n*, fn], if mi = [(iAn)*]

f((i) =m Anc+f r A [ 1
log .--7+ J1+ (1) 2 (1 frI (1+o0(1))f*(zi)2i 2m22 L f a.s.

Therefore
n/An

.-] (1 + o(l)) +
Ml i~~~=n*

log = ft[1 1 MI lo I
( +cf)[Af (1+o(1))

=(i (log i) 1)+ (1(]+ cf)(+n) * 3 - n ]i
= O(i)+ 2 (1+cf)ni + o(l)] 3 (1 +cf)ni (1 +o(l)) a.s.



30

The justification for our summing up over i while keeping the o(l) term is that

o(1) is uniform in i. The constant - (1 + cf) is not the best possible, but without

knowing Cf, we might as well take mi = [iAn]* instead of Af[iAn]* with Af the

adaptive best constant. The best constant is [[c-*].
This completes the proof of Proposition 4.3 and hence of Theorem 4.2. o

5. Proofs for Section 2

In this section, we will provide proofs of the asymptotic expansions of the

redundancy of 9m,n, both almost surely and in expectation.

We assume that :" is a sequence of i.i.d. observations from the density f in

the class Y defined in §2. Recall that, by Stirling's formula, we can expand the

code length for data xn using 9m,n as:
n m

-1og 9m,n(2") =- log fm,n(2tt)- E log Nk + m log - + O(m) (5.1)
k=1 m

where Nk = t 1Ik,m(zt) fm,n(2x) = mr1n m Nkrlkm (x), and we adopt
the convention that log Nk= 0 if Nk = 0.

Thus the redundancy using 9m,n is

log fm,n(Xn) - slog fE(zi) + log frn(zt)
m

+ [-2 Zlog Nk+ m log-] + O(m). (5.2)

We will show that the first sum in (5.2) is the model error (cf n/2m2), the

second is o(m) log n and so negligible, and the third is the code length for the

parameters (j2 log a). The following Lemma will also be needed.

Lemma 5.1. Suppose that f E F and write Jm,n max,l<k<m ImN/nkln-mqk
Then for any integer q > 0 and m in An = {m nfl < m < nC2}, there is a

constant aq such that (i) E J2gn < ag cnn-(lI-2)q+e2 and (ii) uniformly in m E An,
as85 00 Jm,n = o(l) a.s.
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Proof. (i) By Lemma 3 in the Appendix, for any integer q > 0, there is an aq > 0

such that

E(Nk - n 4p)2,2 < aq(nOk )q-

Therefore,
m

E J2 < (m/n)2q E(Nk- nk)2q
k=l

m

< aq(m/n)2q nq 02 < aq Cq n-(l-e2)q+C2
k=1

since Pk < C1 m1 and m < nE2

(ii) By Markov's inequality, and taking q > 21e2+q in (i),
00 00

E j P(Jm,n > C) < C-2qE j2qm ,n
n mEAn n mEAn

< C-2q a q C n-(I-e2)q+e2 < e*-2q aq Cq n-(1-E2)q+e2 < 0,

n mEAn n

By the Borel-Cantelli lemma, (ii) is proved. 13

Lemma 5.2. Suppose that f E F. Then as n -k oo, nformly in m E An,

(i) E log {m( )) O0(m) a.s.,
t=l fm,n(xt)

(i)n E log ff(t O(m) .

t=l m,n Zt)

Proof
n nm m

Z log fm (N)k log Nk/nqSk = Nk log(l + (Nk- nkk)/n'kk).
t=l fm,nGct k=l k=1

Expanding log(l + (Nk -nk)/nrk), we have
m

£ Nk log(l + (Nk n- kk)/nTkk)
k=l

m

Nk(Nk-nTkk)/nPk)
k=l

m

-I N(l +N(Ok)2(Nk -nqk)2/(nqSk)2=L+Q,
k=l
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where fk is in between 0 and (Nk- nq)/nqSk.

(i) Let us look at the first term L.

m m m

L= Nk(Nk- nqk)/nqSk = (Nk- n k)2/nqSk + Z(Nk- nqk)
k=1 k=l k=1
m m

_>j(Nk-nq )2/nqS, since Nk=1
k=1 k=1

m

< comn1 j(Nk-nqSk)2
k=l

and so L = 0(m), since the sum is of order n(l + o(l)) by Lemma 4(i) of the

Appendix.

Moreover, by Lemma 5.1(ii), for n large, a.s. and uniformly in m E An,

max Ik I < co Jm,n o(l) < 2 -

Hence, a.s. and uniformly in m, the second term

m

IQI 2 E Nk(l + ek)-2 (Nk - nTkk)2/(nPk)2
k=1
m

<(8) > Nk(Nkfnfk)2/(nqk)2
k=1
m m

<(1) >j(Nk-nqSk)3/(nqSk)2 + (8) £(Nk- nqkS)2/nqk
k=1 k=1

< (18) (CO Im,n + 1)(m/n) E (Nk - nOk)2
k=1

m(o(1) + 1) 0(1) = 0(m).

(ii) If we take the expectation of L, we get

m m

EL-= E(Nk - n k)2/nk =(1 0k) =m- 1.
k=l k=1

It now suffices to show that E IQI= 0(m) is true. But

2E IQI = 2E IQI 1{Jk,m >e) + 2E IQI 1{Jk,,ne) .



33

Note that on {Nk > 0}, Ok + 1 > (1-nk)/nqk + 1 > 1/n!k, and hence

m

2E IQI 1{Jkm>E =E ENk(Nk- nOk)2/(nOk)2 (1 + ek)2 1{Jk,m>e)
k=1

= E E Nk(Nk- nlk )2 /(nOk )2 (1 + ek )-2 1{I,m >e}
Nk >0

<E '4Nk(Nk- n'k)2 I{Jkrn>e) = E E Nk(Nk- nkk)2 1{Jk m>e
Nk>0 k=l

m m

= E E(Nk- nk)3 1{Jk,m>e) + Enqk(Nk- nkk)2 1{J ,n>Eh*(5.3)
k=1 k=1

By Schwartz's inequality, together with Lemma 3 in the Appendix and Lemma

5.1(i), if we take q > (3 + E2)/(1- 62), we obtain

E(Nk- nck) I{Jfm>EI < /E(Nkc-nk) P (Jm,n > e)

< a/6(nqk)S) eq EJnleaqc6ac eqn6[(-e2)q-e2]/2+ - 0(1)

Similarly we can get EM Enqk(Nk-nqk)2 1{Jkkm >e} = O(m). Thus E IQI 1{Jk,m>} =

O(m). Since IOkI < Jm,n,
m

2E IQI 1{Jkm<el = E ,(Nk- nlkk)2/(nfkk)2 (1 + Ok)-2 1{Jk,m<fe
k=1

<(1- 6)2 E
m

Nk(Nk- ntk)/(nOkk) 1{Jkm E}
k=1
m

< (1- ) 2 E Nk(Nk n- k)2/(nPk)2
k=l

m m

< (1 e)-2 C-2(m/n)2 { , E(Nk- nkk)3 + E(Nk - nsk)2}
k=1 k=1

<(1 e)-2 c-2(m/n)2 2 n7 +
k=1

<2(1 -_ )2 c-2 (m/n)2 n < m2(1 -_ )2 c-2 (m/n)2 n(1-e2) = O(m). (5.5)

Putting (5.4) and (5.5) together, we have E IQI = O(m), and the proof is complete.o

Similarly, we can show
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Lemma 5.3. ForfE F, asn-oo, uniformlyinmEAn:

Nk
(i) L log - 0(m) a.s.,

Nk>0O

(ii) E L log -n= O(m).
NA:>0

Proof. As in the proof of Lemma 5.2, we use a Taylor exansion to get

>3 log Nk- E (Nk-nqSk)/nqkk-(2) E (1+Ok)2(Nk-nqk)2/(nOk)2.
Nk>O nlk Nk>0 N>I

By Lemma 4(ii) in the Appendix, we note that the first sum is o(m) a.s. and

uniformly in m E An, and its expectation is zero. The second sum is bounded by

the corresponding (absolute value of) quadratic term IQI, since

E (1 + Ok)-2 (Nk -nfkk)2/(nOkk)2 < E Nk(l + Ok)-2 (Nk - nfkk)2/(nfk)2
N,, >0 N,, >0

m

=-E N,~k(l + Ok)2 (Nk -nqk)2/(nfkk)2= IQI.
k=1

By the bound on IQI from the last lemma, Lemma 5.3 is proved. o

The almost sure statements in Lemma 5.2(i) and Lemma 5.3(i) were obtained,

using Borel-Cantelli lemma, by showing

P( max Nk log > em < oo

and
OO( Nk
EP( max

L log - >em < oo.
n

MEAn
=

nq$4

We refer to the proof of Lemma 4 in the Appendix for details.

Note also that the foregoing two lemmas actually hold on Bn D An, while the

following two lemmas hold only for An.
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Lemma 5.4. For f in F, uniformly in m E An, as n -+ oo

____xt f ln n
E log -nEf log+oog a.s.
t=2 frn(x) fm

Proof. Since m > nfl on An, it iS sufficient to show that

slog ogt)o2-+o( 2+mlogn) a.s.

For any fixed m in An, let Yt,m = log j- . Then the Yt,m are i.i.d. for t =

1,2,...,n, and

IYt,mI ±-max If(a) fm(X)I . 1.
CO z CO

Therefore IYt,m - EYt,mI < 2 Eam and V = 4nc2m-2 > E" varYt,m . By

Bernstein's inequality, for any E > 0:

P( (Yt1m-EYtim)) >77 <2exp(-.i12/(V+1M77)), (5.6)

where M-2 am-2 and v = ne(m-2 + mn- log n).

Note that

V+*'M77,2= C2 m-2 + 2 C2 m-lne 2
3 ~~CO 3 CO

(-+mn'lgn

2n - m-2 (1 + (m-2 + (m/n) log n))

=2n C2 m2 (1 + e (n-2E +nl2(o2) n)) < 4n 2-
CO ~3 lgCO

for n sufficiently large that 3 (n-2E2 + m-2(1-e2) log n) < 1. Thus,

2I(A -2\ e2CO )

2/(V +IM77) >772/(ncoSI = - n(m +m n1 log n)
3

,~zn } 4C2

> °n min(m-1 + m2 n- logn)2=(ni(logn))4c2 mEbAn log n.) = g(t

Substituting this bound into (5.6), we get

P Z(Yt,m-EY,tm) > ) < 2 exp (-O(ni (log n)i)).
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Thus as n oo,

00 n oo

E E P(|E~(Yt,m-Ytm) > 77 <2 excp 0(n (log n)i)
n=1 mEAn t=1 n=1 mEAn

< 2 n 2 exp(_O (nI (log n)*)) < oo.
n=1

Using the Borel-Cantelli lemma, the proof of Lemma 5.4 is complete. o

Lemma 5.5. Forf in YF and f # 1, we have as m -0oo

Ef log f=- Cf m2 (1 +o()).

Proof. We omit the straightforward but tedious calculations, which use Proposition

2.7 of Freedman and Diaconis (1981). o

Now we are ready to obtain the asymptotic expansions given in §2.

Proof of Theorem 2.1

Combining the above observations with Lemma 5.2(i), Lemma 5.3(i), Lemma

5.4 and Theorem 2.3(ii), we can complete the proof of Theorem 2.1.

Because co < mqSk < c1, we have

m m m

> log nk = log -
n

logmqk = m log-n+ O(m).
k=l k=1 m k=1 m

The pointwise redundancy is then

lgfn(zn) f + n log fm(zt)
g~,(2~l) 3 lg t=i fm,n(2;t)

+ [-i Z log Nk +m log m] + (m)

fm=[ k1 ]

- m log -+ m log
m m

2cfnm2+ Im log-2n+O(m) a.s. 02 2 ~m
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Similarly, we have

Proof of Theorem 2.2

Combining the above observations with Lemma 5.2(ii), Lemma 5.3(ii), Lemma

5.4 and Theorem 2.3(ii), we complete the proof of Theorem 2.2. 0

There is a nice little fact which asserts that fm is the "closest" element of Hm

to f in a certain sense. The Pythagorean identity is known to be satisfied by the

I-projection, but fm is not the I-projection of f to Hm: we are mini'mizing the K-L

"distance" in the other variable.

Lemma 5.5. ForanyhinHmandf in F,

f f fmEf log =Efff+Efm log-f Ef

where fm = , mqSk lI,m. Equivalently, K(f, h) = K(f, fm) + K(fm h).

Proof. For any h = pkm Ik,m in Hm with = Pk 1,

Ef log f-Ef fi= Ef log fm E log mSkh fm 0h Jk=10 MPk

= E
Pk

Efm logh. O

Proof of Theorem 2.3

Part (i) is proved in Lemma 5.5, s0 it is sufficient to prove part (ii). It follows

from Lemma 5.6 that

Eflg hEfyfEfm 1 h

and this completes the proof for (ii) since h was arbitrary. 0
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APPENDIX

The purpose of this Appendix is to derive almost sure asymptotic expansions

for the certain expressions encountered in §§4, 5, such as
m

T1=E(Nk-nkk)2
k=1

T2 E (Nk- nqk)
k=1 nk

where the {Nk} are multinomial random variables with parameters {q k} and E Nk

= n. Note that co m-1 < 'k < C1m-1.

Stone (1985) gives moment bounds on T1 through Poissonization as follows.

Lemma 1 (Stone (1985)). For each positive integer q, there is an universal

constant aq such that
m 2q

E ((Nk- n k)2 - n)} < c nQ(l + nq m-2q).
k=1

We will employ the same Poissonization tecqhnique to obtain bounds on mo-

ments of T2 and other expressions. We first find bounds for independent Poisson

variables instead of multinomials, and then observe that Stone (1985) has a gen-

eral argument (Lemma 4) which guarantees that bounds having the same rate (as

n -- oo) will hold for multinomials.

Lemma 2. Let Me (E = 1, 2,... ,m) be independent Poisson random variables with

means At such that 0 < A = Em7L At < oo. Set M = Mt, Pt= At/A and

Co p < pt < cpi (Co, c1 > 0). For each positive integer q there is a finite positive
universal constant A' such that

Et (Mt - MPr) 2 <
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Corollary. Let {Nk} be multinomial random variables with paramneters {qS k} such

that k=l =1, cOmMl < qk . clm-', and Eml Nk = n. Then for each

integer q, there is an niversal constant aq such that

E{a (Nk n#k)} .aq m2q.

Stone's (1985) argument for his Lemma 4 is general enough to derive the corol-

lary from Lemma 2 above. We refer to the paper for details.

Proof of Lemma 2. We begin by rewriting

E (M-MPt) A (Ml-A)+(M-)
t=1 P1 e= A

By the inequality (a + b)2Q < 22q (a2q + b2q), we get
(ME-Mp) <2 (2A)2qE _____ +m ~E(M-A)2 q (1)
jt= Pt>i: _ =L t) }

Setting T = e71 M' ALA , the 2q-th moments of T can be written as a sum of its

cumulants,

ET2q= j C(e1,...,e,) JJ K2t1(T) (2)
i=l

where the sum is taken over all the partitions of q such that E= ti = q (j < q,

ti > 0), since rKi(T) = 0.

Because the Ml are independent Poisson random variables, it follows that
m 'Mte-MAt AL1 (y1O-tK2t,(T) = ) = <- (/c)2 i2

Here and below we will use the same notation for possibly different constants.

Substituting this last bound in (2), we find that

ET2q < c J A(Ap/CO)-2t1 < cg E A -2qff-2q < CqA-p-2q. (3)
t=1

The second term in (1) is E(M _ A)2q, which is known to be a polynomial of order

q. Thus, there is a constant c' such that E(M - A)2q < c'q Aq. The last bound

together with (1) and (3) give

E{ (Me Pe)} < 22Q(cqp-2+cm2 Aq) <a'qp2
A similar Poissonization argument will give the following
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Lemma 3. Suppose that N is a binomial random variable with mean np. Then

for any integer q > 0, there is an aq > 0 such that

E(N - np)2q < aq(np)q.

Now we are ready to derive the a.s. expansions of T1 and T2.

Lemma 4. Under the assumptions of the Corollary to Lemma 2, uniformly in

m E An as n -. oo

m

T= Z (Nk - n4k)2
k=l

T2=Z (Nk- nqk)
k=l nk

=n(1 +o(1))

= o(m) a.s.

Proof. (i) It suffices to show that maxmEAn | jm 1 ((Nk-nn)2- n) = o(n) a.s.

as n o-+ o. Note that, for any > O,

m

P (ma;x |,((Nk-nOk )2 .n)|> en <
mEAn

P ( ((Nk-nk#))2 -n)|
k=l

(4)
By Markov's inequality and Lemma 1,

m-
p ((Nk-nqk)2-n) >n) <c,Cq2qme2Q n(1 + nqm2Q)
k=<

< cQ9-2jr (n-'z + n-2jLq) (5)

Combining (4) and (5), we obtain

P( mAx| ((Nk nk) n)| > en < -2q (n-q +ne2-2e2g)
mEAn

< C. C-2q (ne2- + n2e2-2E2q)

If we take

q > maX (C2 1 +2e

(i)

(ii)
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the above senres converges. Hence by the Borel-Cantelli Lemma,

m

max |((Nk-nk)2- n)|=o(n) a.s.

Part (ii) is proved similarly using the corollary to Lemma 2 and taking q > E 2 + l.o

Similarly we can obtain the following expansions, needed in the proofs of Propo-

sitions 6.1 and 6.2. to which we refer for the notation. Uniformly in i E [niA jj

as n- oo, with ri =(i - )An,
mi

k=l

(Nk - rikk) -i(mi 1)(1 + o(1))
Ok

I (Mk-Anqk)2
klk

- An(mi - 1)(1 + o(1))

(Nk- ri0kk)3
012

a.s.

a.s.

(6)

(7)

=- (ri * mi2) a.s. (8)
mi

k=l

O(An * m2) a.s.
mj (Mk-Alnk)3

#2k=l 2k
mi (Nk- r7i4k))>3~0k=l 3k

M
(Mk - AnOk)4

k=l 3k
mi;

£ 'AMkA&Nk
k=l
mj 1

A02Mk AN2k

A1 2 ANk =o(ii Ant * mi * nP)A M

ANk = o(mi * (iAn)i * nt)

mi

AMk_(-(n .)~-' AMk = (mi- (An)i+n.)

k=l

> AMk2=An(1 + o(l)) a.s.
k=l

a.s.

a.s.

IW( k- (1 + o(1)) I

=An2 ( (1 + 0(1))

(12)

a.s.

a.s.

a.s.

a.s.

a.s.

(9)

(10)

(11)

(13)

(14)

(15)

(16)

(17)

(18)

O(i I
- An - nv) a.s.

3 3
= O(il AnT a Mi 0 ny)



44

EAM AN3 =o(An2.m .i.nl) a.s. (19)

EANk-AM3 = o(An2. iin3) a.s. (20)
k=1 kk

EAN* ==O(i * m7An2) a.s. (21)
k=1 k

In (12), (13), (14), (15) and (16) y > 0 is arbitrary, whereas in (19) and (20)

we only need the results for some y > 0.

Let Ti be any of the expressions on the left-hand side of (6),... ,(21). As with

Lemma 4 (i) and (ii) above, the approach we adopt is to obtain a moment bound

via Poissonization on P(jTj - ETil > a,,ib where (an,,) is a suitable sequence of

numbers. The a.s. assertion then follows using the Borel-Cantelli lemma. To avoid

a tedious repetition of arguments, we select one of (6),... ,(21) and only prove that,

leaving the rest to the reader. Take (20):

EANk AMk
k=1 k

Since ANk and AMk are independent, ETi = 0.

Lemma 5. If {Nk} and {M*} are independent arrays of independent Poisson

random variables with EN' = AOk, EMk = /qk, k = 1,...,mi, and Ti' =

ki X*3 ANk(AMkI)3, then there exists a constant aq such that

EIT12q < aqmgfF2q As3Q.

Proof. As in the proof of Lemma 2 above,

EjTj=c2q E ,...,eJ K2e,(2),
C+l Ili K2tji=l

where

.(Ti) = EK21;.(ANdAM3 =Ei
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Now

K2ti (ANkMk3) c11,***,t, ]J E(ANk AM'3)2t

t]L+...+tj iJ=

< at;E II(ANk)ts (,Ppk)t< A;,3 P;
$=1~ ~ ~~~~=

Thus
mi

2 (2') < 4. , Pk 6ti ~Ati)>3ti pt < a' Ati J,t mip
k=1

Substituting this into the expression for EJT,I'21 we get

EIT!12q < a- i J mip2ti Atl I3ti
tl+...+tj=q i=1

< ag mrp2qAq ,3f aq mgp-2fq 3. o

Using Lemma 4 of Stone (1985) we are able to conclude that for our original

multinomial sum Ti we have

Corollary. EjTj 2q < a I m3Q iq(An)4,.

Proof of (20). For any e > 0 we have

P miax |an-i Ti| > e) < (an, e) EIT 12q < ata-ga2q C-2qM3q iq An4q
i i

If we take an,i = m7 i An2 * nV' for some y > 0, the last expression is easily seen

to be bounded by a' zk n-23g < a' jn n~2Yq* Now we can take q large enough to

ensure that this last series converges, and so deduce from the Borel-Cantelli lemma

that as n -. oo,

max Ia- Ti = o(1) a.s.

where an,i is as described, i.e., niformly in i E [n*, nj]

Ti =o(ma2*is An2 ny) a.s.

This completes our illustrative proof. 0



46

For those expressions amongst (6),... ,(21) for which the left-hand side has

non-zero expectation, the following fact is needed to get bounds on their moments.

Suppose that {Nk}, {Mk} are simiarly indexed independent multinomial ar-

rays with parameters (n, {qk}) and (m, {4k}) respectively, that {Nk}, {Mk} are

independent arrays of independent Poissons with means {APk} and {ISPk} respec-

tively, where cop < Pk . c1p and c' <Ok< c' for all k, and that

AI,-o*, P--Ol Ap, APoo,00

n,mo o,- O, ng, m --.oo.

Then as these limits are approached, for any integer j there is a constant cj such

that

E(Nk - nlk)j =Cjnq, 'k~'(1 + o(1))

E(Nk - APk)j = cj A'j p' (1 + o(1))

where qj = 2 j if j is even, and qj = 2 (j - 1) if j is odd. This implies that under

the same conditions,

E(Nk- nUk)j(Mk - m(k)t=cjctn§j " gmmq(1 + o(l))

and

E(Nk - AqSk)j(Mk,- mqk)t = CjCtM}+'/ly( + o(1))

since the {Nk} and {Mk} are independent, and similarly for {N'} and {M,k}.


