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ABSTRACT

Random coefficient regression and autoregressive models are important in diverse
applications such as the classical statistical analysis of random and mixed effects
models, the modelling of certain econometric and biological time series, and as a
means for image compression. This paper develops nonparametric prediction intervals
for a random coefficient regression model. The construction of these intervals requires
a consistent estimate for the joint distribution of the model's random coefficients. Two
such consistent estimates - a new one using minimum distance ideas and an earlier
one based on estimated moments (Beran and Hall 1990) - are discussed.
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1. Introduction. Suppose that we observe n paired observations ((Yi,Xi): 1 < i < n)
from the model

Yi = Ai+BiXi i.1 (1.1)

where the ((Ai, Bi, Xi)) are iid trivariate random vectors and (Ai, Bi) is independent of
Xi for each i. Model (1.1) is called a random coefficient linear regression model. In a
variant of this model, the {Xi) are constants whose value may also depend on n. If
we write Ai = a + ai, Bi = b + bi with a = EAi and b = EBi, then (1.1) can be put in
the form

Yi = (a + bXi) + (a. + biXi). (1.2)

Model (1.1) or (1.2) includes several important special cases:

(a) Ordinary linear regression. In (1.2), set bi = 0 w.p.l.

(b) Structured heteroscedastic linear regression. This is (1.2) when bi is not a degen-
erate random variable.

(c) Location-scale mixture model. In (1.1), the (Xi) are not observed but their disti-
bution is assumed known.

A variant of (1.1) is the model

Yij = Aij + BijXi, 1 < i<I, 1 <j <J (1.3)

where the random vectors { Aj, Bij: 1 < j < J), XiI are iid and the random vector
{Aij,Bi:l< j < J} is independent of Xi for each i. Model (1.3) includes random
effects and mixed effects models for the one-way layout. For instance, setting Bij = 1
w.p.1 and requiring EAij = 0 yields a classical random effects model (Scheffe 1959,
Chapter 7).

Random coefficient regression models, their autoregressive analogs, and models
combining both features have been used to analyze certain econometric and biological
time series. Good surveys of this work are Nicholls and Quinn (1982) and Nicholls
and Pagan (1985). A very different application of bivariate random coefficient autore-
gressive models to image compression is given by Barnsley and Elton (1988).
Nevertheless, many basic statistical problems associated with random coefficient
models remain unsolved.

This paper seeks to construct a nonparametric prediction interval for Ynj. under
model (1.1), given the learning sample Sn= ((Yi,Xi): 1 c i < n) and the condition
that Xn+, = x. As discussed in section 2, the proposed prediction interval requires a
consistent estimate of FAB, the distribution of the random coefficients (Ai, Bk). Section
3 presents two such consistent estimates - one using minimum distance ideas and the
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other based on estimated moments. Proofs for the minimum distance estimate are
gathered in section 4. The estimated moment approach has been treated previously by
Beran and Hall (1990) in the case where Ai and Bi are assumed independent

2. Prediction intervals. We make the assumptions on model (1.1) that are stated
in the first paragraph of the Introduction. The distributions FAB of (Ai, Bj) and Fx of
Xi are unknown. The problem is to construct a good prediction interval for Yn+ given
that Xn+j = x, on the basis of the learning sample Sn = (Yi, Xi): 1 < i < n).

For every real x, let Ax ( * FAB) denote the cdf of Ai + Bix. Suppose FABn is a
consistent estimate of FAB in the sense of weak convergence. Two methods for con-
structing FABn are the topic of section 3. For every a in (0, 1), define upper and lower
critical values from the quantiles of the estimated cdf A ( FAB,n):

Cx,n = X- [(1- a)/2 FAB,n]

-X= AX 1 [(1 + a)/2,FA,]. (2.1)

The corresponding prediction interval for Yn+1 given X+l = x is then

DXn= dyxn).< Y < d (2.2)

Clearly, Dxn is a function of x and of the learning sample Sn.
The conditional coverage probability of Dxn for Yn+l, given Sn and Xn+ = x, is

CP (DX,n I x, Sn, FAB) = Ax ( FA)-dAx ( FA)* (2.3)

The coverage probability of Dxn for Yn+1 given Xn+j = x, is then

CP (Dx,n I x,FAB) = P [ Yn+j e Dx,n I Xn+1 = x,FAB]
= E CP (Dxn I x, Sn, FAB), (2.4)

the expectation being taken over the distribution of learning sample Sn.

PROPOSITION 1. Suppose the cdf Ax (t, FAB) is continuous in t and FABn converges
weakly to FAB in probability. Then, as n increases,

p

CP(DXn IxSw FAB) -* a (2.5)

and

CP(DxnIx,FAB) -* a (2.6)
for every support point x of the distribution of Xi.
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Thus, prediction interval Dxn has asymptotic coverage probability a for Yn+,,
given Xn+j = x. Section 4 contains a proof of Proposition 1. The following remarks
supplement the Proposition.

(a) It follows from the proof of Proposition 1 that

Yn+1 > dx,n I Xn+1 = x,Sw FAB ] and P [ Yn+ = x,Sc,FA] both converge
in probability to (1 - a) /2 as n increases. In an obvious sense, prediction interval

Dx,n is thus probability-centered for Yn+j when n is large.

(b) A sufficient condition for the continuity in t of Ax (t, FAB) is that FAB be abso-
lutely continuous with respect to Lebesgue measure in R2.

(c) The standard linear regression model arises from (1.1) when Bi = b w.p.1 and
Ai has mean a and variance ca2. The constants (a, b,c 2) are unknown. In this special
case, the distributions of Ai and of Bi are trivially independent. Let bn denote the least
squares estimate of b. Define FA,n to be the empirical distribution of the residuals
{Yi- bnXi: 1 < i < n). The estimate FABn is then defined as the product probability
formed from FA,n and the point mass at bn. With probability one, FABn converges
weakly to FAB. This assertion may be checked by using the bounded Lipschitz metric
for weak convergence.

Proposition 1 applies and the endpoints of prediction interval Dx,n are just

cxn = bnx+FL,nI[(l-a)/2]
dx, = bnx + FA,n(1 + a)/2]. (2.7)

Dx,n can be viewed as the intersection of two one-sided prediction intervals for Yn+1,
each having asymptotic coverage probability (1 + a)/2. For a different analysis of
these one-sided intervals in a standard linear regression model, see Beran (1990).

(d) A bootstrap algorithm based on a random sample from FAB,n is a convenient
way to approximate the cdf Ax(. 9FABn) and so the endpoints of prediction interval
Dx,n Draw q bootstrap variables k(As,B'): 1 s k . q} from the estimated distribu-
tion F, The empirical cdf of the values (A* + B *x: 1 s k s q) approximates
Ax (.* FABn) for large q.

(e) The cdf Ax(-,, FAB) is the conditional cdf of Yn+j given Xn+j = x. Suppose
AX (f3) is any consistent nonparametric estimate of A-1 (J, FAB); Stone (1977) gives
several constructions for A-1 (). The prediction interval

x,n= nyA [ a y [(l+a)/2]) (2.8)

also satisfies the conclusions of Proposition 1. Because the construction of Dxrn does
not fully use the structure of model (1.1), it is likely that Dx, is a more efficient pred-
iction interval under model (1.1). The question needs more work.
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3. Consistent estimation of FAB. Both the minimum distance and moment-based
estimates for FAB that are described in this section require identifiability of FAB. To
discuss the latter point, let Fx denote the distribution of Xi and let Pyx = P (FAB, FX)
denote the distribution of (Yi, Xi). Here P is the function of FAB and Fx that is deter-
mined by model (1.1). The following result gives sufficient conditions for
identifiability of FAB from knowledge of Pyx. Proofs for both Proposition in this sec-
tion are deferred to section 4.

PROPOSMON 2. Suppose that the support of Fx contains an open interval, that
all moments of FA exist and that FAB is uniquely determined by its moments. If FAB
is a distribution on R2 such that

P(FA,FX) = P(FA,Fx) (3.1)

then

FAB =FAB (3.2)

In our application of Proposition 2, we will assume that the supports of FAB and

FAB both lie within a fixed compact subset K of R2. Then, the moment assumptions
for the Proposition are satisfied automatically.

3.1. Minimum distance estimates. Suppose d metrizes weak convergence of pro-
babilities on R2. A numerically tractable metric d is generated by the 13 (,u) norm on
bivariate characteristic functions, where p. is a probability measure on R2 with strictly
positive Lebesgue density. For the theory in this section, the choice of weak conver-
gence metric does not matter.

Assume that the support of FAB lies within a fixed compact subset K of R2. Let
Cm = Cm (K) denote the set of all distributions in R2 supported on at most m points in
K, the mass of each support point being some multiple of 1/m. For example, C3 con-
tains all distributions that give probability 1/3 to three distinct points in K, plus all dis-
tributions that give probability 2/3 to one point in K and probability 1/3 to another
point in K, plus all point mass distributions on K. Thus, Cm contains the unobservable
empirical cdf of the random vector ((Ai,Bi): 1 < i < mi.

Let Pn denote the empirical cdf of the learning sample Sn= ((Yi,Xi): 1 < i < n)
and let Fxn denote the empirical cdf of the (Xi: 1 < i .n). Define a minimum dis-
tance estimate FABn of FAB through the requirement

d [ Pn, P (FAB,ni.Xn,F)] = inf d [ Pn,P (G. Fx n) ] + en (3.3)
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where m = m, depends on n and en is a very small constant. Computational feasibility
is the main reason for restricting the minimization on the right side of (3.3) to discrete
distributions G in Cm. Consistency of FABn is the subject of the following result.

PROPOSMON 3. Suppose that the support of Fx contains an open interval, that
the support of FA lies within the compact K, and that mn e cc, en -4 0 as n
increases. Then with probability one,

d(FAB,n,FAB) -* 0 (3.4)

as n increases.

Some remarks related to this Proposition:

(a) Computing FAB, is a question of minimizing a function of mn variables - the
variables being mn candidate support points for FAB, with ties permitted. Rate-of-
convergence arguments in (4.9) and (4.10) indicate that mnn = n is best. However,
computational constraints may force a smaller choice of mn.

(b) Rates-of-convergence for F",n and effective numerical algorithms for FAB,n
are currently under investigation by P.W. Millar and this author.

(c) Let

= E (Ai B k). (3.5)
As will be discussed in subsection 3.2, the moments fgj,k) of FAB of given order can
be estimated consistently by a least squares algorithm. The estimated means and stan-
dard deviations for A1 and B1 provide guidance for the practical choice of the compact
set K in the calculation of FABn,

(d) Several theoretical variants of FABn preserve the consistency property (3.4).
For instance, the minimization in definition (3.3) could be over all distributions G
whose support lies in K. Or FAB and Fx could be estimated simultaneously by the
minimum distance criterion. However, these alternative estimates are much harder to
calculate.

3.2. Moment-based estimates. The moments (j,,k) of FA al exist under the
compact support assumption. From model (1.1),

r n'
E (Y,r) = £ 2pT_k,kE(Xi) * (3.6)

k=_O k I

Define the least squares estmates (T-kk: 0 < k c r) to be the values that mnimze

[y' 2£ r
_ X. ] (3.7)
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over all real Jg_kTk: 0 < k c r). Under moderate assumptions on Fx, the estimated
moments tL,-kk: 0 < k < r) converge with probability one to the moments

(irIkIk : 0 < k < r).
This convergence suggests a moment-based procedure for estimating FAB:

(i) Estimate the moments 0jk:° < j,k < rn) by carrying out the least squares
method above for 0 < r < rn.

(ii) Construct a distribution FABn whose moments up to order rn approximate the

(Ai: 0 < j,k < n} with increasing accuracy as n increases. One approach is
through numerical conversion of an estimated Taylor expansion for the charac-
teristic function of FAB. Other methods are bivariate extensions of Hausdorff's
univariate distribution constructions; see Shohat and Tamarkin (1943, p.90ff) for
the latter.

We observe, without proof, that FAB,n converges weakly to FAB with probability one,
provided rn -4 0o much more slowly than n.

When Ai and Bi are independent, gj,k = ajXk with ai = E (Al) and Pk=E(Bt). In
this case, a simpler recursive scheme yields consistent moment estimates, as follows.
When r = 1, minimization of (3.7) yields least squares estimates d1, f1. Given the
estimates (x [: j r-istimates r to be the values that
minimize

n r-1
.£ [Yr I r dr_k -Xr _ prXy ] (3.8)
i=1I

I
k1

over all real ar, r. A reconstruction algorithm of the type described in the preceding
paragraph then yields marginal distribution estimates FA,n and FB,n that are based on
the estimated moments I cj: 1 < j < rnj and {j : 1 < j < rn) respectively.

Beran and Hall (1990) prove that FA,l, FB,n convey weakly w.p.1 to FA, FB respec-
tively, provided rn equals the integer part of E (log n)l'2 for sufficiently small positive C.
A numerical example in their paper illustrates the feasibility of the moment method
while noting possible difficulties with roundoff errors when r. exceeds 30.

4. Proofs. This section gives proofs for Propositions 1 to 3.

PROOF OF PROPOSITION 1. Suppose (FABn) is any sequence of distributions
converging weakly to FAB. From the definition of cdf AX( ,FAB), it follows that
AX(- ,FAB,n) converges weakly to AX(-.,FAB). By the continuity of Ax(t,FAB) in t,
Polya's theorem, and the assumed consistency of {FAB j
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p
sup Ax(LFABn) - Ax (t.FA) 0° (4.1)

t

In view of (4.1) and (2.1),

Ax (dx,n FAB) = AX (dxn, FABn) + op (1)
= (1 + )/2 + op(l). (4.2)

Similarly,

AX(eLxn, FAB) = (1-a)/2+op(l). (4.3)

The Proposition follows from (2.3), (4.2) and (4.3).

PROOF OF PROPOSITION 2. Suppose x lies in the open interval that is con-
tained in the support of Fx. Let irx (t) and ij,x (t) denote the characteristic functions of

Ax(- ,FAB) and AX(-,FAB) respectively. In view of (3.1)

Jx (t) = vx(t), < t< oo. (4.4)

Let 0 (t, u) and 4 (t, u) denote the characteristic functions of FAB and FAB respectively.
From (4.4) and model (1.1),

4 (t, tx) = (t,tx), -_ < t < oo. (4.5)

It remains to show that the moments of FAB equal those of FAB.
Define the differential operators

a _xa
at t ax
1 a (4.6)

Do, 1 t ax

and write 0(,J) (t, u) = a1+J 4 (t, u) / atiau. For every t and every integer pair (i, j),

O(i,J) (t, xt) = D ,o D6,,1 4 (t, tx) (4.7)

where the superscripts on the right side represent iteration of the respective operators.
Setting t = 0 in (4.7) and in its analog for * establishes the desired equality of
moments.

PROOF OF PROPOSITION 3. For notational simplicity, the subscript n is omitted
selectively during this argument. The first step is to show that

d[P(FAB FX)9P(FAB9FX)- 0 w.p.1. (4.8)

Indeed, by the triangle inequality and definition (3.3) of FAB,

d [P (FABI Fx),) P (FAB, Fx)]
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. d[P,P(FAB,FX)] + d[P,P(FABFx)] (4.9)

. inf d[P,P(G,Fx)] + d[P,P(FA,FX)] + en.

Let FAB denote the unobservable empirical cdf of the ((Al, Bk): 1 s i s m}. The last
line in (4.9) is

A
. d[P,P,FX)] +d[P,P(FB,FX)]+
. 2d[P,P(FAB,FXF)] + d[P(F AB9,FX),P(FAB?FX))] + n. (4.10)

In this upper bound, the first term tends to zero w.p. 1 by Glivenko-Cantelli applied to
Pn. The second term tends to zero w.p. 1 by the weak continuity of P(.,.) in its two
arguments and by Glivenko-Cantelli applied to FAB and to Fx. Hence (4.8) holds.

Suppose next that {Hn) are distributions supported within K and (Fn) are distribu-
tions on the real line such that

d[P(HI,gFn),P(FAB,FX)I 0 (4.11)

and Fn = Fx. Then H,n => FAB. Indeed, suppose not. Since the distributions {Hn}
are tight, by going to a subsequence, assume without loss of generality that
Hn = FAB . FAB. Then, by the weak continuity of P (, . ),

d [ P (Hn,Fn) P (FABFFX) ] 0. (4.12)

Convergences (4.11) and (4.12) imply that P (FAB, FX) = P (FAB, FX). Hence, by Pro-
position 1, FAB = FAB. This contradiction establishes that HnI*" FAB.

Setting Hn = FAB,nq Fn = FX,n and using (4.8) now proves (3.4).
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