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ABSTRACT

Random coefficient regression and autoregressive models are important in diverse
applications such as the classical statistical analysis of random and mixed effects
models, the modelling of certain econometric and biological time series, and as a
means for image compression. This paper develops nonparametric prediction intervals
for a random coefficient regression model. The construction of these intervals requires
a consistent estimate for the joint distribution of the model’s random coefficients. Two
such consistent estimates — a new one using minimum distance ideas and an earlier
one based on estimated moments (Beran and Hall 1990) — are discussed.
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1. Introduction. Suppose that we observe n paired observations {(Y;,X;): 1 <1i < n}
from the model

Y, = A,+BX;, i=21 (1.1)

where the {(A;, B;,X;)} are iid trivariate random vectors and (A;, B;) is independent of
X; for each i. Model (1.1) is called a random coefficient linear regression model. In a
variant of this model, the {X;} are constants whose value may also depend on n. If
we write A; =a+ a;, B;=b + b; with a = EA, and b = EB;, then (1.1) can be put in
the form

Y, = @+bX) + (g +bX). (1.2)

Model (1.1) or (1.2) includes several important special cases:
(a) Ordinary linear regression. In (1.2), set b; = 0 w.p.1.

(b) Structured heteroscedastic linear regression. This is (1.2) when b; is not a degen-
erate random variable.

(c) Location-scale mixture model. In (1.1), the {X;} are not observed but their distri-
bution is assumed known.

A variant of (1.1) is the model

Yij = Al_] + B..X. l<i<I 1 Sj <] (13)

1t
where the random vectors {{A;;B;: 1 <j<J},X;} are iid and the random vector
{Aij,Bij: 1 £j <]} is independent of X; for each i. Model (1.3) includes random
effects and mixed effects models for the one-way layout. For instance, setting B;; = 1
w.p.1 and requiring EA;; = 0 yields a classical random effects model (Scheffé 1959,
Chapter 7).

Random coefficient regression models, their autoregressive analogs, and models
combining both features have been used to analyze certain econometric and biological
time series. Good surveys of this work are Nicholls and Quinn (1982) and Nicholls
and Pagan (1985). A very different application of bivariate random coefficient autore-
gressive models to image compression is given by Barnsley and Elton (1988).
Nevertheless, many basic statistical problems associated with random coefficient
models remain unsolved.

This paper seeks to construct a nonparametric prediction interval for Y,.; under
model (1.1), given the learning sample S, = {(Y;,X;): 1 <i < n} and the condition
that X,y = x. As discussed in section 2, the proposed prediction interval requires a
consistent estimate of Fup, the distribution of the random coefficients (A;, B;). Section
3 presents two such consistent estimates — one using minimum distance ideas and the
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other based on estimated moments. Proofs for the minimum distance estimate are
gathered in section 4. The estimated moment approach has been treated previously by
Beran and Hall (1990) in the case where A; and B; are assumed independent.

2. Prediction intervals. We make the assumptions on model (1.1) that are stated
in the first paragraph of the Introduction. The distributions Fpg of (A;, B;) and Fx of
X; are unknown. The problem is to construct a good prediction interval for Y, given
that X, = x, on the basis of the learning sample S, = {(Y;,X;): 1 <i < n}.

For every real x, let A, (-,F,p) denote the cdf of A, + B;x. Suppose Fap nisa
consistent estimate of Fpp in the sense of weak convergence. Two methods for con-
structing IEAB n are the topic of section 3. For every a in (0, 1), define upper and lower
critical values from the quantiles of the estimated cdf A (- ,f’AB',,):

n = AT - 0)/2,Fpp,]
den = AN+ 0)/2,Fpp,l.
The corresponding prediction interval for Y,,; given X ,; = x is then
Dyn = (y: &<y <de,). (2.2)

Clearly, D, ,, is a function of x and of the learning sample S,.

2.1

The conditional coverage probability of D, , for Y.y, given S, and X ,; =X, is

CP (Dx,nlx’ S, Fap) = Ay (ax,n’ Fap) — Ay (éx‘m Fap)- (2.3)
The coverage probability of D, ,, for Y., given X, ,,; = x, is then
CP (DynlX,Fap) = P[Ypu1 € Dyl Xpe = X, Fap]
= ECP(D,, xS, Fap)., 24

the expectation being taken over the distribution of learning sample S,.

PROPOSITION 1. Suppose the cdf A, (t,F,g) is continuous in t and F AB.n Converges
weakly to F,p in probability. Then, as n increases,

P
CP (D, ,1%,S,,Fap) = @ 2.5)

and
CP(D,,1x,Fpp) — © (2.6)

for every support point x of the distribution of X;.
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Thus, prediction interval D,, has asymptotic coverage probability o for Y.,
given X, ., = x. Section 4 contains a proof of Proposition 1. The following remarks
supplement the Proposition.

(a) It follows from the proof of Proposition 1 that
P[Y,,> am|x,,+l =x,8,Fapl and P[ Y, <& ,1X,4 = X,S,, Fap] both converge
in probability to (1 — a)/2 as n increases. In an obvious sense, prediction interval
Dy ,, is thus probability-centered for Y,,; when n is large.

(b) A sufficient condition for the continuity in t of A, (t,F,p) is that Fog be abso-
lutely continuous with respect to Lebesgue measure in R2.

(c) The standard linear regression model arises from (1.1) when B; = b w.p.1 and
A, has mean a and variance 2. The constants (a,b, %) are unknown. In this special
case, the distributions of A; and of B are trivially independent. Let b, denote the least
squares estimate of b. Define I:‘A’n to be the empirical distribution of the residuals
{(Y,-b,X;: 1 <i<n}. The estimate F,p n is then defined as the product probability
formed from IA:A',, and the point mass at b,. With probability one, FAB',, converges
weakly to Fag. This assertion may be checked by using the bounded Lipschitz metric
for weak convergence.

Proposition 1 applies and the endpoints of prediction interval D, , are just

& = bx+ FLL[( - @)/2]

Xx,n

den = bpx + ERLI(1L+ 0)/2]. @7

D, , can be viewed as the intersection of two one-sided prediction intervals for Y,
each having asymptotic coverage probability (1 + a)/2. For a different analysis of
these one-sided intervals in a standard linear regression model, see Beran (1990).

(d) A bootstrap algorithm based on a random sample from I:',,u;,n is a convenient
way to approximate the cdf Ax(-,FAB n) and so the endpoints of prediction interval
Dy, Draw q bootstrap variables {(A,:‘ ,B: ): 1 <k < q} from the estimated distribu-
tion Fap n- The empirical cdf of the values {Af + B,:‘ x: 1 <k < q} approximates
A, (- ,IA:AB’H) for large q.

(e) The cdf A, (-,F,p) is the conditional cdf of Y,,; given X .; = x. Suppose
A; ,11 (B) is any consistent nonparametric estimate of A;!(B,F,g); Stone (1977) gives
several constructions for A; ,,ll (B). The prediction interval

Dy = {y: ALl -0)/2] sy s AL +)/2]) 2.8)

also satisfies the conclusions of Proposition 1. Because the construction of ﬁx'n does
not fully use the structure of model (1.1), it is likely that D, , is a more efficient pred-
iction interval under model (1.1). The question needs more work.
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3. Consistent estimation of F,p. Both the minimum distance and moment-based
estimates for Fpp that are described in this section require identifiability of Fog. To
discuss the latter point, let Fx denote the distribution of X; and let Pyx = P (Fap,Fx)
denote the distribution of (Y;, X;). Here P is the function of Fop and Fx that is deter-
mined by model (1.1). The following result gives sufficient conditions for
identifiability of Fog from knowledge of Pyx. Proofs for both Proposition in this sec-
tion are deferred to section 4.

PROPOSITION 2. Suppose that the support of Fx contains an open interval, that
all moments of F,p exist and that F,p is uniquely determined by its moments. If FAB
is a distribution on R? such that

P(Fop,Fx) = P(Fup,Fx) (3.1)
then
FAB = FAB' (3'2)

In our application of Proposition 2, we will assume that the supports of Fyg and
F,p both lie within a fixed compact subset K of R2. Then, the moment assumptions
for the Proposition are satisfied automatically.

3.1. Minimum distance estimates. Suppose d metrizes weak convergence of pro-
babilities on R% A numerically tractable metric d is generated by the LZ (ju) norm on
bivariate characteristic functions, where W is a probability measure on R? with strictly
positive Lebesgue density. For the theory in this section, the choice of weak conver-
gence metric does not matter.

Assume that the support of F,p lies within a fixed compact subset K of R2. Let
C, = Co (K) denote the set of all distributions in R? supported on at most m points in
K, the mass of each support point being some multiple of 1/m. For example, C; con-
tains all distributions that give probability 1/3 to three distinct points in K, plus all dis-
tributions that give probability 2/3 to one point in K and probability 1/3 to another
point in K, plus all point mass distributions on K. Thus, C,, contains the unobservable
empirical cdf of the random vector {(A;,B;): 1 <i < m]}.

Let P, denote the empirical cdf of the learning sample S, = {(Y;,X;): 1 <i < n}
and let Fy n denote the empirical cdf of the {X;: 1 <i <n}. Define a minimum dis-
tance estimate F 'aB.n Of Fap through the requirement

d[ P, P (Fapp Fxn)] = Jnf d[P,P(G,Fx)] + ¢, (3.3)
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where m = m,, depends on n and €, is a very small constant. Computational feasibility
is the main reason for restricting the minimization on the right side of (3.3) to discrete
distributions G in C,,. Consistency of Fp n is the subject of the following result.

PROPOSITION 3. Suppose that the support of Fx contains an open interval, that
the support of F,p lies within the compact K, and that m, — o, € - 0 as n
increases. Then with probability one,

d(FapnFag) = 0 (3.4)

as n increases.

Some remarks related to this Proposition:

(a) Computing l:“AB n is a question of minimizing a function of m, variables — the
variables being m, candidate support points for f"AB n With ties permitted. Rate-of-
convergence arguments in (4.9) and (4.10) indicate that m = n is best. However,
computational constraints may force a smaller choice of m,,.

(b) Rates-of-convergence for f’AB n and effective numerical algorithms for f"AB,n
are currently under investigation by P.W. Millar and this author.
(c) Let

wx = EA{BD. 3.5)

As will be discussed in subsection 3.2, the moments {p;;} of Fap of given order can
be estimated consistently by a least squares algorithm. The estimated means and stan-
dard deviations for A, and B, provide guidance for the practical choice of the compact
set K in the calculation of Fp .

(@) Several theoretical variants of ﬁAB n preserve the consistency property (3.4).
For instance, the minimization in definition (3.3) could be over all distributions G
whose support lies in K. Or Fpp and Fx could be estimated simultaneously by the
minimum distance criterion. However, these alternative estimates are much harder to
calculate.

3.2. Moment-based estimates. The moments {p;;} of Fap all exist under the
compact support assumption. From model (1.1),

n= 3| k
EY) = £ [k]p,_k,kE(x,). 3.6)

Define the least squares estimates {l,_;,: 0 < k < r} to be the values that minimize

n . r(p e
El[Yi kgo[k]ur-»k,kxxl 3.7
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over all real {|, 3 :0 <k <r}. Under moderate assumptions on Fy, the estimated
moments {fl,yy:0<k<r} converge with probability one to the moments
{hxx:0<k<r}

This convergence suggests a moment-based procedure for estimating Fpp:

(i) Estimate the moments {p;:0 < jk <r} by carrying out the least squares
method above for 0 <r <,

(ii)) Construct a distribution f’AB n Whose moments up to order r, approximate the
{Ag:0<jk <n} with increasing accuracy as n increases. One approach is
through numerical conversion of an estimated Taylor expansion for the charac-
teristic function of Fpp. Other methods are bivariate extensions of Hausdorff’s
univariate distribution constructions; see Shohat and Tamarkin (1943, p.90ff) for
the latter.

We observe, without proof, that IA:AB’n converges weakly to F,p with probability one,
provided 1, — e much more slowly than n.

When A; and B; are independent, j;y = 0By with o; = E(A]) and B, =E(B}). In
this case, a simpler recursive scheme yields consistent moment estimates, as follows.
When r = 1, minimization of (3.7) yields least squares estimates &;, ﬁl. Given the
estimates {G, ﬁj: 1<j<r—1), define the estimates &, B, to be the values that

minimize
ﬁ[Y.f—ril [ﬂa, B, — o, — BXI]? (3.8)
Pa] i ket -k O, i .

over all real o, B,. A reconstruction algorithm of the type described in the preceding
paragraph then yields marginal distribution estimates IEA',, and f:B,n that are based on
the estimated moments {@;: 1 < j < r;} and {Bj: 1 < j < 1,} respectively.

Beran and Hall (1990) prove that IA:A e f-"'B n convey weakly w.p.1 to F,, Fg respec-
tively, provided r,, equals the integer part of € (log n)12 for sufficiently small positive €.
A numerical example in their paper illustrates the feasibility of the moment method
while noting possible difficulties with roundoff errors when r,, exceeds 30.

4. Proofs. This section gives proofs for Propositions 1 to 3.

PROOF OF PROPOSITION 1. Suppose {Fap;} is any sequence of distributions
converging weakly to Fyg. From the definition of cdf A, (-,F,g), it follows that
A, (-,Fap,) converges weakly to A, (-,F,p). By the continuity of A, (t,F,g) in t,
Polya’s theorem, and the assumed consistency of {IA:AB'n}



-8-

P
sx:pIAx(t,FAB.n)-Ax(t,FAB)I - 0. 4.1)

In view of (4.1) and (2.1),

Ay@nFap) = A, @xnFapn) +05(1)
= (1+0)/2+0,(1). 4.2)
Similarly,

AxCxmFap) = (1 -)/2+0,(1). (4.3)

The Proposition follows from (2.3), (4.2) and (4.3).

PROOF OF PROPOSITION 2. Suppose x lies in the open interval that is con-
tained in the support of Fx. Let v, (t) and W, (t) denote the characteristic functions of
A, (-,Fap) and A, (-,F,p) respectively. In view of (3.1)

V) = Yy (t), —o<t<eoo, (4.4)

Let ¢ (t,u) and ¢ (t,u) denote the characteristic functions of F,p and F,g respectively.
From (4.4) and model (1.1),

O(X) = (I, 1X), =—oo <t < oo, 4.5)
It remains to show that the moments of F,p equal those of F,g.

Define the differential operators

0 X 0
D= —-22
L0 ™ 5 t ox
{3 (4.6)
Do, = T %
and write ¢ (t, u) = 0" ¢ (t,u) /9t'dul. For every t and every integer pair (i, j),
0% (t,xt) = DioD}; 6t ) 4.7

where the superscripts on the right side represent iteration of the respective operators.
Setting t=0 in (4.7) and in its analog for <~|> establishes the desired equality of
moments.

PROOF OF PROPOSITION 3. For notational simplicity, the subscript n is omitted
selectively during this argument. The first step is to show that

d[P(Fap.Fx).P(Fap.Fx)] = 0 w.p.l (4.8)
Indeed, by the triangle inequality and definition (3.3) of IEAB,

d [P (Fap, Fx),P (Fap, Fx) 1
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IA

d[P,P(Fsp,Fx)] + d[P,P (Fyp,Fy)] (4.9)
inf d[B,P(G,Fx)] + d[P,P(Fup, Fx)] + ¢&,.

IA

Let F Ap denote the unobservable empirical cdf of the {(A;,B;): 1 <i < m}. The last
line in (4.9) is
A R A A
d[P,P(F op. Fx) 1+ d[P,P(Fap FY)1 + ¢,
A * ~
2d[P,P(Fpp,Fx)] + d[P(F pp,.Fx),PFpg. Fx)1 + &;,.

In this upper bound, the first term tends to zero w.p.1 by Glivenko-Cantelli applied to

lsn. The second term tends to zero w.p.1 by the weak continuity of P(-,-) in its two
* ~

arguments and by Glivenko-Cantelli applied to F o and to Fx. Hence (4.8) holds.

N

(4.10)

IA

Suppose next that {H,} are distributions supported within K and {F,} are distribu-
tions on the real line such that
d[P(H,, F),PFap F)] - 0 (4.11)
and F, = Fx. Then H, => F,p. Indeed, suppose not. Since the distributions {H,}
are tight, by going to a subsequence, assume without loss of generality that
H, = Fap # Fap. Then, by the weak continuity of P(-,-),
d[P(H,,F,),P(Fap Fx)] = 0. (4.12)

Convergences (4.11) and (4.12) imply that P(FAB,FX) = P (Fag,Fx). Hence, by Pro-
position 1, Fop = Fop. This contradiction establishes that H, = F,p.

Setting H, = IA:AB',,, F, = f:x,n and using (4.8) now proves (3.4).
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