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 Abstract 

 
Inferring functional gene relationships is a major step in understanding biological networks.  
With microarray data from an increasing number of biologically interrelated experiments, it now 
allows for more complete portrayals of functional gene relationships involved in biological 
processes.  In current studies of gene relationships, the existence of dependencies between gene 
expressions from the biologically interrelated experiments, however, has been widely ignored.  
When not accounted for, these experimental dependencies can result in inaccurate inferences of 
functional gene relationships, and hence incorrect biological conclusions.  This article proposes a 
statistical framework and a novel gene co–expression measure, named Knorm correlation, to 
address this problem.  The most important aspect of the proposed model is its ability to 
decompose the interesting biological variations in gene expressions into two mutually 
independent components each arising from the genes and the experiments, in addition to 
variations due to random noises.  As a result, the Knorm correlation can critically de-correlate the 
experimental dependencies before estimating the gene relationships, thus leading to improved 
accuracies in inferring functional gene relationships.  Knorm correlation simplifies to the Pearson 
coefficient when experiments are uncorrelated.  Using simulation studies, a yeast microarray and 
a human microarray dataset, we demonstrate the success of the Knorm correlation as a more 
accurate and reliable measure, and the adverse impact of experimental dependencies on the 
Pearson coefficient, in inferring functional gene relationships from interrelated and 
interdependent experiments. 
 
Keywords: Covariance matrix; Co-expression measure; Experimental dependency; 
Functional gene relationships; Kronecker product. 
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1 Introduction 
 
 A major task in understanding biological networks is to infer functional relationships 
or associations between genes involved in biological processes.  Given a set of genes 
subject to various experiments or experimental conditions (related to a biological process 
of interest), the functional gene relationships of these genes can be broadly described as 
the relationships between the gene responses observed across the experiments, which are 
often coordinated in a manner prescribed by the pathways of the biological process.  
Using microarrays, gene co–expression patterns can be used to infer these functional 
gene associations.  This leads to the fundamental questions of how to quantify these gene 
co–expressions and how to interpret them in terms of functional gene associations or 
relationships. 

Among various gene co–expression measures defined by parametric or non-parametric 
approaches (e.g. Brown et al. 2000; Fraley and Raftery 2000; Yeung and Ruzzo 2001;  
Ramoni, Sebastiani and Cohen 2002), the Pearson coefficient, which is simple to use and 
provides direct interpretations in terms of positive and negative regulatory associations, 
remains a widely used core technique for inferring functional gene relationships from 
microarray data (Kim et al. 2001; Li 2002; Zhou et al. 2005).  However, in such analyses, 
the gene expressions were implicitly assumed to be uncorrelated across the experiments.  
Current gene co–expression measures do not deal with experimental dependencies in 
general. 
 The existence of experimental dependencies is, instead, a very real but widely 
ignored issue, especially when the experiments are (biologically) interrelated or 
interdependent.  For example, considering three experiments that are carried out 
independently, where one experiment is on wild type yeast, another experiment involves 
the mutation of histone H3 and the third experiment involves the mutations of both 
histones H3 and H4, it is biologically reasonable to expect the expressions of genes are 
more likely to be highly correlated (dependent) in the latter two experiments, since the 
mutation of histone H3 occurs in both experiments that result in a state which alters the 
expressions of genes responsive to histone mutations in a similar way.  Fig. 1 in Section 2 
demonstrates such dependencies in a yeast microarray dataset (Sabet, Volo, Yu, Madigan 
and Morse 2004).  When not accounted for, redundant genomic signals in gene 
expressions from many dependent experiments can overwhelm the important informative 
signals in the few uncorrelated experiments, leading to inaccurate estimates of gene 
associations, and hence incorrect biological conclusions.  This undesirable effect is 
illustrated by simulation studies in Fig. 2 in Section 2 and Fig A1 in the Appendix, and 
further demonstrated by a yeast and a human microarray dataset analysis in Table 1 in 
Section 5.  Hence from both simulation studies and real microarray datasets, there is an 
essential need to account for experimental dependencies in gene co-expression measures. 

The problem of defining a gene co-expression measure to more accurately quantify 
gene associations in presence of experimental dependencies is made more challenging by 
the data structure in such analysis involving data from multiple experiments. A typical 
dataset consists of gene expressions for p genes from n experiments, with replicates of 
the p gene expressions in each experiment observed independently of the replicates of 
gene expressions in the other experiments.  The number of replicates for each experiment 
may not be the same.  As such, two types of variations are present in a gene expression: 
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the biological variations that contribute to the functional gene relationships, and the 
variations due to random noises.  The biological variations are variations in gene 
expressions across the experiments as the genes respond in the biological process, and 
these variations are our parameters of interest.  Variations due to random or measurement 
noises also exist within each gene and within each experiment.  Hence, the statistical 
model to define the appropriate gene co-expression measure needs to model these 
variations and effects present in such data. 

This article proposes a statistical framework to address the statistical problem, and a 
novel gene co–expression measure, named Knorm correlation, to answer the biological 
question.  The statistical framework provides a model for the gene expressions data 
incorporating the biological and random variations, and the Knorm correlation provides a 
more accurate quantification of gene associations in presence of experimental 
dependencies.  Because the proposed model has the ability to decompose the interesting 
biological variations in gene expressions into two mutually independent components each 
arising from the genes and the experiments, in addition to variations due to random 
noises, the Knorm correlation can therefore critically de-correlate the experimental 
dependencies before estimating the gene associations (correlations) and thus lead to 
improved accuracies in the gene correlation estimates.  Briefly, gene expressions are 
modeled as responses from a linear additive model with random normal gene effects, 
experimental effects and gene-experiment interaction effects, and the dependencies 
between the interaction terms governed by the gene and experimental covariance 
matrices in a Kronecker product structured form.  The gene expressions are then 
described by a multivariate normal distribution with a Kronecker product structured 
covariance matrix.  Using a yeast microarray dataset as an illustrative example, this 
article also argues that the multivariate normal distribution with a Kronecker product 
structured covariance matrix is a natural and valid model for the gene expressions.  The 
gene correlation estimator, Knorm correlation, is derived as the Maximum Likelihood 
Estimator (MLE), which is then used in conjunction with a bootstrapping technique when 
applied to real datasets.  The Knorm correlation reduces to the Pearson coefficient when 
experiments are uncorrelated.  The Kronecker product correlation structure bears several 
advantages.  Besides maintaining the same experimental correlations across genes and 
the same gene correlations across experiments, this unique correlation structure also 
greatly reduces the number of covariance parameters.  Using simulation studies, a yeast 
microarray and a human microarray dataset, we demonstrate the success of the Knorm 
correlation as a more accurate and reliable measure, and more importantly, the adverse 
impact of experimental dependencies on the Pearson coefficient, in inferring functional 
gene associations from interrelated and interdependent experiments. 

The article is organized as follows.  Section 2 presents empirical evidence of 
experimental dependencies in a typical microarray dataset.  Section 3 introduces our 
statistical framework, Knorm correlation and estimation procedure.  Microarray datasets 
used in our analyses are described in Section 4, along with some data preprocessing 
steps.  Section 5 presents results of applying Knorm correlation in both simulation studies 
and real microarray datasets.  Finally, Section 6 discusses some practical and technical 
issues encountered in practice. 
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2 Empirical Evidence Of Experimental Dependencies 
 
 The existence of dependencies between gene expressions across experiments is a real 
phenomenon, especially in analyses involving multiple biologically interrelated 
experiments.  We use a publicly available yeast microarray dataset (Sabet et al. 2004), 
typical of the microarray datasets used in functional gene association studies, to illustrate 
such experimental dependencies.  This dataset is generated to investigate the influence of 
histone modifications on gene regulation, and consists of eight experiments with two to 
three replicate arrays for each experiment.  More dataset descriptions are provided in 
Section 4.  Fig. 1 shows scatter plots of normalized gene expressions between different 
experiments, e.g. Expt 1 versus Expt 4 in Fig. 1(a) (for each experiment, one of the 
replicated arrays is randomly selected for plotting).   

[Fig. 1 about here] 
 From Fig. 1, we see that the gene expressions in experiments 1 and 4 are almost 
uncorrelated, while gene expressions from experiments 3, 4 and 7 display roughly linear 
dependencies.  This observation is consistent with the biological expectations of the 
experiments, since experiment 1 is on wild type yeast, whereas experiments 3, 4 and 7 
are related to histone H3 mutations.  It is therefore biologically reasonable to expect that 
the gene expressions in experiments 3 and 4 are more likely to be similar to each other 
than that between experiments 1 and 4, since mutations of histone H3 occurred in both 
experiments 3 and 4.  The extent of dependency of gene expressions between 
experiments varies consistently with the biological expectations of the experiments (see 
Fig. 3 for experiment descriptions).  The scatter plots of gene expressions between other 
experiments and between different replicated arrays from each experiment (not shown 
here) show similar stories as described above. 
 
 
3 Statistical Framework 
 
 In this section, we introduce our statistical model for the gene expressions obtained 
from multiple experiments and the Knorm correlation. 
 
3.1 Statistical Model 
 
 For a multivariate gene expression matrix X  consisting of expressions of p genes 
(rows) in n experiments (columns), we assume the main effects from the genes and 
experiments are random and additive, and the gene-experiment interaction effects are 
random with dependencies among interaction terms governed by the gene and 
experimental covariance matrices (denoted by GΣ  and EΣ  respectively) in a Kronecker 
product structured form.  GΣ  and EΣ   characterize the biological dependencies in the 
genes and experiments which contribute to the functional relationships. Here, EΣ  
describes the dependencies between experimental covariates that affect the gene 
expressions for each gene in the matrix; GΣ describes the dependencies between gene 
covariates for each experiment in the matrix.  The random components in the gene effects 
and experiment effects are contributed by random noises, e.g. measurement errors.    
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Then, we have 
 

 GE= + + +X G E Γ ε ,  (1) 
where G and E are random effects from the genes and experiments respectively, the 
interaction effects 

 GEΓ  are random with vectorized 
 GEΓ  distributed as a multivariate 

normal distribution with zero means and a covariance matrix E G⊗Σ Σ , and ε  represents 
small random normal noises with zero means. So ( )E = +X G E .  Note that 

 GE,  ,  ,  ,  and X G E Γ ε  are all matrices of dimension p n× .  Our parameter of interest in 
this model is the gene covariance matrix GΣ . 
 The above modeling of the interaction term is motivated by the following 
consideration.  Consider the ideal case with no random noises but only the biological 
variations 

 GEΓ   which are of our interest.  After removing the fixed effects, projecting X  
onto the orthogonal gene and experimental eigenspaces determined by GΣ  and EΣ  would 
remove the dependencies among interaction terms and result in a matrix of independent 
random variables.  If these random variables are N(0,1), then when both covariance 
matrices are invertible, we have 
 ( )( )   E= −-1/2 T -1/2Λ D U X X V P  (2) 
as a matrix of i.i.d. N(0,1) random variables, where P  is a diagonal matrix with diagonal 
elements being the eigenvalues of EΣ  and the eigenvectors of EΣ  make up the columns 
of V (i.e. E   = TV P VΣ ), D  is a diagonal matrix with diagonal elements being the 
eigenvalues of GΣ  and the eigenvectors of GΣ  make up the columns of U (i.e. 

G T= U D UΣ ).  When the covariance matrices are singular, the pseudo–inverses of P  and 
D  can be used for projection.  This will achieve a similar projection effect; the elements 
in the resulting γ  are either independent N(0,1) random variables or zeros.  The number 
of zeros in γ are determined by the ranks of GΣ  and EΣ . 
 Following the above consideration and the assumption on Λ , we can then naturally 
model X  by 
 ( ) ( )( )   E= + +1/2 1/2 TX X UD Λ P V ε , (3) 
where ( )E = +X G E , and ε  represents the small random normal noises with zero means 
as in equation (1).  Under this model, if we ignore the error term, vectorized X  then 
follows a multivariate normal distribution with mean ( )E = +X G E  and a covariance 
matrix E G⊗Σ Σ , which is equivalent to equation  (1) (see Appendix for a detailed proof).  
Equations (2) and (3), together with the arguments on γ , provide a reasonable 
rationalization on the model described in equation (1). Justifications on the i.i.d. normal 
assumptions on γ are presented in a yeast microarray dataset analysis in Section 5.  
  To make the model identifiable, we further assume that ( ) iij

µ=G , ( ) 0jij
E= =E  

and that each experiment has a unit variance.  The assumptions on experiment mean and 
variance are valid as the (RMA) normalized gene expressions have the same mean and 
variability in each experiment, and without loss of generality, we can set them to 0 and 1 
respectively.  With these assumptions, ( )ij iE X µ= , where Xij is the (i, j)th element in X .  
We should also note that the identifiability constraints can be different when different 
datasets are considered.  In general, the identifiability constraints should be imposed 
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based on the nature of the data and the purpose of analysis.     
 Our model provides a single framework to explain variations in a gene expression by 
two mutually independent biological variations each arising from the genes and the 
experiments, and the variations due to random noises.  As such, the proposed model  can 
concurrently model both gene and experimental dependencies, by which we also obtain a 
significant reduction of parameter space describing the correlation matrix of X  from 

2~ ( )np  to 2 2~ ( )n p+ .  Another advantage of our model is that the Kronecker product 
structured covariance matrix maintains same experimental correlations across genes and 
same gene correlations across experiments, which agrees with the biological expectations 
of the data. 
 
3.2 Parameter Estimation 
 
 Based on the unit variance assumption on experiments, we will use ER , the 
experimental correlation matrix, to represent the experimental covariance matrix 
henceforth.  Given a gene expression matrix X , which is assumed to be generated from 
our model in equation (1), the MLEs of GΣ , ER , and µ  can be derived as 

 ( ) ( ) ( )1G 1ˆ   
TT T

n
−

= − −EΣ X µ1 R X µ1 ,  (4) 

 ( ) ( ) ( )1E 1ˆ   
TT T

p
−

= − −GR X µ1 Σ X µ1 ,  (5) 

 
( )
( )

1

1

 
ˆ

 T

−

−=
E

E

X R 1
µ

1 R 1
,  (6)  

where 1  is a 1n×  column vector of ones.  Our parameter of interest is the gene 
correlation matrix GR , which can be estimated as  
 G Gˆ ˆ  ,= -1/2 -1/2R W Σ W   (7) 
where W  is a diagonal matrix with same diagonal elements in ˆ GΣ .  The detailed 
derivations of the MLEs are presented in the Appendix.  
 It can be shown that the MLE of µ  derived from equation (4) is an unbiased and 
consistent estimator of µ , and that the MLE of ER  and GΣ  are consistent estimators 
when GΣ  and ER  are respectively known.  A brief proof is provided in the Appendix. 
 
 3.2.1 Bootstrapping Procedure to Estimate Gene Correlations in Real Microarray 
Datasets.  In real microarray datasets, we do not observe true matrix replicates (we only 
observe replicates of each single experiment/array) to derive our correlation estimators 
via the iterative procedure.  Hence, we implement an additional bootstrapping procedure 
to construct the p n×  data matrices from the replicates of each experiment.  A p n×  
bootstrapped data matrix X  is constructed by placing in the jth column of X  a randomly 
selected replicate ( 1p×  vector of gene expressions for p genes) from the jth experiment, 
such that the bootstrapped matrix is a random sample from all observed arrays.  By our 
model specified in equation (1), each bootstrapped matrix is sampled from the same 
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probability distribution.  We first obtain a reliable estimate of ER  and then use it to 
estimate GΣ .  To estimate ER , we (i) compute the experimental covariance matrix using 
the Pearson coefficient for each bootstrapped matrix, and (ii) take the average of the 
experimental covariance estimates over B.  With ER̂ , we estimate GR̂  as follows: (i) for 
the bth bootstrapped matrix where b = 1, …, B, obtain  G,bΣ̂  using equation (2), where µ̂  
is estimated from equation (4) via ER̂ , (ii) compute  G,bR̂  using equation (7), and (iii) 

take the average over all estimates  G,bR̂ , i.e.   G G,b
1

1ˆ ˆB

bB =
= ∑R R .  The gene correlations 

obtained from  G,bR̂  are called Knorm correlations.  We use B=500 in both the yeast and 
human datasets. 
 
4 Data And Preprocessing 
 
4.1 Microarray Datasets 
 
 We use two publicly available microarray datasets that are typical in current 
studies of functional gene relationships.  These two datasets each consists of gene 
expressions obtained from biologically interrelated experiments underlying a 
biological process of interest. 
 
 4.1.1 Yeast microarray dataset.  This dataset comes from a study by Sabet et al. 
(2004) to investigate the influence of histone modifications on gene regulation, 
consisting of gene expressions from eight experiments with two to three replicate 
arrays for each experiment.  Experiment descriptions are provided in Fig. 3.  This 
dataset is accessible through the NCBI Gene Expression Omnibus Database by the 
accession number GDS772. 
 
 3.1.2 Human microarray dataset. This dataset is generated by Lund et al. (2005) 
to study mechanisms regulating CD4+ cell polarization.  CD4+ lymphocytes were 
induced to differentiate into Th1 and Th2 through treatment with IL–12 or IL–4 in the 
presence of TGFbeta.  The dataset consists of 16 experiments conducted using 5 
related treatments at three time points besides the untreated cells.  There are two to 
four replicated microarrays for each experiment, resulting in a total of 34 
microarrays.  Experiment descriptions are shown in Fig. 5. 
 
4.2 Data Preprocessing 
 
 The raw data from each microarray dataset are first normalized using the robust 
multi-array average (RMA) method developed by Irizarry et al. (2003).  We next 
proceed to select a set of genes for our analyses, to be used to assess the performance 
of correlation estimators in inferring functional gene associations.  Since the main 
purpose of this gene set is to allow the comparison of estimator performance and not 
as an attempt to identify genes significantly differentially expressed over the 
experiments, we use a set of Gene Ontology (GO) annotated genes with high 
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expression variations across the experiments.  These genes are more likely to be 
genes responsive to the biological process, e.g. for the histone mutation due to the 
high expression changes, and therefore should be more biologically interesting in the 
context of the experimental datasets.  Being GO annotated, it allows a way of 
verifying the inferred functional gene associations via the GO.  From the GO 
annotated genes, we identify genes with high gene expression variations as follows: 
(i) for each experiment, rank the genes by their average expression over replicates, 
(ii) for each gene, obtain the difference between the maximum and minimum rank 
across the experiments, (iii) a gene is identified as highly variably expressed if this 
difference exceeds a specified threshold.  We chose the top 20% of such genes (532 
genes) for the yeast microarray dataset, and the top 10% of such genes (526 genes) 
for the human microarray dataset.  Note that this selection procedure is employed to 
select a set of genes (likely to be responsive to the experiments) based on which to 
assess the performance of correlation estimators in inferring functional gene 
associations.  Other gene sets can also be used for this purpose. 
 
5 Results 
 
 In this section, we first apply our proposed correlation measure, Knorm correlation, 
to a simulation dataset, a yeast microarray dataset, and a human microarray dataset to 
evaluate its performance.  To biologically evaluate the gene associations inferred from 
the real datasets, we assess the gene functional similarity based on GO Biological Process 
annotation.  Since there is no gold standard gene association measure, we use the Pearson 
coefficient as a comparison benchmark because of its widespread use and similar 
interpretations to our Knorm correlation in terms of gene associations.  The results 
demonstrate the success of our proposed method in practical applications. 
 
5.1 Application of Knorm Correlation to a Simulation Dataset 
 
 In this simulation study, we demonstrate the increased accuracies of Knorm 
correlation estimates over that of the Pearson coefficients in presence of increasing 
column (e.g. experiment) dependencies in two correlated row vectors (e.g. genes).  At 
each p% dependency level (with p=1,…,100), we first generate 1000 i.i.d. column 
vectors of dimension 2, each from a bivariate normal distribution with zero means, unit 
variances and a correlation of 0.17, and then assign the first 1000p% vectors to be the 
same as the first vector (while remaining the last 1000(1-p)% independent vectors 
unchanged).  Putting these 1000 column vectors of dimension 2 into a matrix, we now 
obtain two row vectors of dimension 1000 with a true row correlation of 0.17, and p% of 
the vector components being identical.  We then compute both the Pearson coefficient 
and Knorm correlation of the two row vectors, and plot the estimates in blue and red 
respectively in Fig. 2.   

[Fig. 2 about here] 
 The Knorm correlation was computed using equation (4) with the column correlation 
matrix known by the construction procedure of the row vectors at the p% dependency 
level.  Fig. 2 shows the effectiveness of Knorm correlation.  The Knorm correlation 
estimate is closer to the true correlation of 0.17 and has a much smaller variance until we 
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reach about an 80% dependency, than the Pearson coefficient which rapidly fails in 
accuracy after an approximate 5% dependency between the row vector components.  We 
also have similar observations for simulation studies with different values of true 
correlations, both negative and positive (besides the value 0.17), and we only present the 
simulation study with a true correlation of 0.17 here as an illustrative example. 
   Another simulation study demonstrating the effectiveness of an iterative procedure for 
estimating both the row (e.g. gene) and column (e.g. experiment) correlation matrices in 
the case of an unknown column correlation matrix is presented in the Appendix.  This 
iterative procedure is suggested by the MLEs of the row and column correlation matrices 
in equations (4)–(7).  However, in applying the Knorm correlation to real datasets, we 
need to modify the iterative estimation procedure and implement a bootstrapping 
procedure to estimate both the gene and experimental correlation matrices, since the real 
datasets do not have replicates of gene expression matrix as opposed to simulation data.  
We refer the reader to Section 3.2 for the motivation and detailed descriptions of the 
bootstrapping procedure. 
 
5.2 Application of Knorm Correlation to a Yeast Microarray Dataset 
 
 We present our results of applying Knorm correlation to a public yeast microarray 
dataset (Sabet et al. 2004).  We apply the Knorm correlation to GO annotated genes with 
high expression variations across the eight biologically related experiments selected by a 
procedure described in Section 4.2.  These genes, being more likely to be responsive 
genes for the histone mutation due to the high expression changes and therefore should 
be more biologically interesting in the context of this experimental dataset, is used to 
assess the performance of both the Pearson and Knorm correlation in inferring gene-gene 
associations   
 The estimated correlations between the eight experiments, shown in Fig. 3, are 
favorably consistent with the biological expectations.  These estimated experimental 
correlations agree with the scatter plots shown in Fig. 1.  The experimental correlation 
matrix describes the dependencies between experimental covariates that are assumed to 
affect the gene expressions in the same manner for all responsive genes.  

[Fig. 3 about here] 
 Based on the estimated experimental correlation matrix shown in Fig. 3, we estimate 
the gene correlations using Knorm correlation.  The Pearson coefficients are also 
computed using the gene expressions that are averaged over the replicates within each 
experiment (a common approach in practice).  The functional associations between genes 
are then predicted based on the sign and magnitude of their correlation estimates.  The 
magnitude reflects the extent of a gene pair’s synchronous response to the experiments.  
A positive sign indicates a parallel response while a negative sign suggests an opposite 
response.  We first assess the performance of the gene correlation estimates using GO 
annotations.  We consider genes as being annotated functionally related if they are in the 
same GO node at level 6 or more below the root.  We compute the percentage of 
functionally related gene pairs from among those with the highest Knorm correlation or 
Pearson coefficient (in absolute value).  Knorm correlation reports consistently higher 
percentages of annotated functionally related gene pairs than those obtained by the 
Pearson coefficient (see Table 1).   
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[Table 1 about here] 
Out of the top 10, 30, 50 and 100 gene pairs in estimated correlations, 30%, 36.7%, 38% 
and 27% (respectively) gene pairs identified by Knorm are known to be functionally 
related by GO annotations whereas only 10%, 20%, 26% and 21% (respectively) are 
functionally related gene pairs for Pearson coefficient.  This suggests that Knorm 
correlation is more effective in inferring functional gene associations than the Pearson 
coefficient.  The distinction is especially strong for the gene pairs with highly ranked 
correlations.  In general, the higher the correlation estimate, the more likely the inferred 
functional association is true.  It is worthwhile to note that the percentages of functionally 
related gene pairs from both the proposed method and Pearson approach in Table 1 
decrease and the percentage differences become stable as more top gene pairs are 
considered. 
 Many functionally related gene pairs with high Knorm correlation but low Pearson 
coefficient are supported by literature.  For example, MCM1 and SWI5 yield a Knorm 
correlation of 0.47, but a Pearson coefficient of only –0.08.  Since reduced acetylation of 
histone amino termini is known to be associated with reduced transcription levels of 
SWI5 (Deckert and Struhl 2002; Shimizu, Takahashi, Lamb, Shindo and Mitchell 2003) 
and MCM1 is known to be a direct regulator of SWI5 (Kumar et al. 2000; Lee et al 
2002), the expressions of SWI5 and MCM1 are expected to show positive correlation in 
this dataset where histone amino termini have been deleted or modified. The Knorm 
correlation has confirmed this expectation.  As another example, both CKA1 and PMC1 
are involved in maintaining cell ion homeostasis and yeast growth.  Knorm correlation 
gives a positive estimate of 0.62 between these two genes, which reflects their related 
roles, while the Pearson coefficient gives an estimate of only –0.02.  Scatter plots 
presenting the gene expressions of the above two gene pairs before and after removing 
the experimental dependencies are shown in Fig. 4, demonstrating the necessity of de-
correlating experimental dependencies for a more accurate correlation estimation.  As 
another example,  both HSF1 and CTK3 are involved in the regulation of transcription 
from RNA polymerase II promoter, with an expected positive correlation, which was 
revealed by Knorm correlation (0.53), but not by the Pearson coefficient (–0.03). 
 
5.3 Application of Knorm Correlation to a Human Microarray Dataset 
 
 We next apply Knorm correlation to GO annotated genes, selected by a procedure 
described in Section 4.2, for a human dataset presented by Lund et al. (2005).  We obtain 
both the Pearson coefficient and Knorm correlation estimates for each gene pair. 
   Fig. 5 shows our estimated correlations between the 16 experiments, which are 
favorably consistent with the biological expectations.  Our estimated correlation matrix 
effectively captures the dependencies (i) between biologically similar experimental 
conditions, e.g.  untreated cells, and experiments conducted at two hours after treatment 
when the treatment effect was not yet obvious, (ii) between experiments with the same 
treatment at different time points, e.g.  antiCD3+antiCD28+IL–12 experiments at two 
hours, six hours, and 48 hours after treatment, and (iii) between experiments with 
different but similar treatments at the same time points. 

[Fig. 5 about here] 
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   In validating the potential functional associations of top gene pairs (ranked by absolute 
correlation estimates), we use the GO annotations to evaluate the results.  We see from 
Table 1 that our Knorm correlation again reports favorably higher percentages of 
annotated functionally related gene pairs than those obtained by the Pearson coefficient, 
especially for the very highly ranked gene pairs.  Like the consistently high percentages 
observed for the Knorm correlation in the yeast dataset, the percentages for the human 
dataset shown in Table 1 again reinforce the effectiveness of Knorm correlation in 
inferring functional gene associations.  We should also note that the percentages in 
human dataset are consistently lower than those in yeast dataset, which can be attributed 
to the poor annotations in human genome.   
 Similar to the yeast results, many gene pairs predicted to have functional relevance by 
Knorm correlation but not Pearson coefficient are validated by experiments in the 
literature.  For example, APEX1 is a rate–limiting enzyme in DNA base excision repair.  
MSH6 is a primary DNA mismatch repair gene.  A recent study reported that the 
expression of APE protein leads to the suppression of DNA mismatch repair and that the 
MSH6 protein was markedly reduced in the APE–expressing cells (Chang et al 2005).  
Agreeing with these previous findings, our method reports a negative correlation of –0.41 
(4.5th percentile) between the two genes, which the Pearson coefficient fails to capture 
with a value of –0.18 (34th percentile).  Another example is the gene pairs RB1 and 
CDKN1A.  It has been reported that the retinoblastoma protein RB1 is a cooperating 
factor for the transcription factor MITF to activate the expression of the cyclin–
dependent kinase inhibitor gene CDKN1A, which contributes to the cell cycle exit and 
activation of the differentiation program (Carreira et al. 2005).  In accordance with this 
fact, Knorm correlation yields a correlation estimate of 0.45 between RB1 and CDKN1A, 
in contrast to a value of –0.05 provided by the Pearson coefficient. 
 
5.4 Model Justification   
 
 A key assumption in our probability model is the i.i.d. normal assumption on 
the elements in Λ  in equation (2).  As an attempt to justify that our probability model 
is a reasonable model in practice, we examine the qq-plot of the elements in Λ̂ , 
estimated from the yeast dataset analysis in Section 5.2, against a standard normal 
distribution, in addition to  performing a Kolmogorov-Smirnov (K-S) test on the 
elements in Λ̂ .  Λ̂  is computed by equation (2) using the mean and covariance 
matrices estimated for the yeast dataset.  Fig. 6 shows a randomly selected qq-plot 
among those obtained from 500 replicated expression matrices constructed through 
the bootstrapping procedure.   

[Fig. 6 about here] 
 The qq-plot in Fig. 6 is clearly suggestive of a standard normal distribution for the 
elements in Λ̂  (with a P-value of 0.2 for the K-S test).  Overall we observe good qq-
plots with an average p-value of 0.34 for the K-S tests.  The same study on the human 
dataset (Lund et al. 2005) yields similar observations.  Therefore our i.i.d. N(0, 1) 
assumptions on γ  are reasonably valid for the yeast and human microarray datasets, 
especially considering that the random noises ε  in model equation (1) are 
confounded with ER  and GΣ  which can make the model justification more difficult. 
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6 Discussion 
 
 This article has introduced a naturally intuitive statistical framework and novel 
correlation measure to estimate the row correlation matrix for matrix data when the 
columns are no longer uncorrelated.  When applied to microarray data, the matrix is the 
gene expression matrix with the (i,j)th element being the expression of gene i in 
experiment j, and rows correspond to genes and columns correspond to experiments.  Our 
method can more precisely capture functional gene associations in terms of their 
involvement in a biological process when experiments are correlated in two typical 
microarray datasets.  Knorm correlation is derived by modeling the gene expression 
matrix through a multivariate normal distribution with a Kronecker product structured 
covariance matrix.  
 In practice, we face several challenges when applying the approach to real datasets.  
First is the specificity of the gene set to the biological process of interest.  Equations (4)–
(7) show that the estimations of gene and experimental correlation matrices 
(dependencies) are intertwined.  Using different sets of genes could yield different 
estimates of experimental correlation matrices.  If a gene set consists of many 
unresponsive genes, the gene or experimental dependencies may be greatly obscured by 
irrelevant noises.   In our applications to the two mircoarray datasets, the gene sets were 
selected to be genes highly likely to be responsive to the experiments for the purpose of 
assessing the performance of the gene correlation estimators in inferring functional gene 
associations.  However, to be able to elicit more and to accurately determine a set of 
functional gene associations specific to a biological process, it is critical to select an 
appropriate gene set that highly relates to the biological process of interest.  The second 
challenge is the presence of random noise or non–biological variations.  In practice, a 
gene expression measurement consists of not only the interesting biological signals, it 
also consists of measurement errors and/or biologically irrelevant noises. By design 
(often with decisions beyond our control for publicly available datasets), these interesting 
biological signals are often confounded with biologically irrelevant variations (e.g. 
measurement errors), which makes it difficult to estimate the biological dependencies of 
interest.  Our gene correlation estimates become conservative because of these non-
biological noises.  The larger the noises, the more conservative our correlation estimates 
will be.  But more importantly, the Knorm correlation estimate will still retain the sign of 
the true correlation, and hence is still able to provide an accurate inference of functional 
gene association.  Third is the inference of directional relationships from the inferred 
functional gene associations.  Correlation only provides a first step in inferring functional 
gene relationships; it provides a measure whether the genes are associated with one 
another in the biological process of interest.  After gene associations have been 
established, a set of functionally related genes can then be identified (as carried out in the 
yeast and human microarray dataset analyses), and if of further interest, other 
technologies may be employed to determine their directional relationships.  
 There are also several technical issues when applying our approach to real datasets.  
First, replicates from each experiment are observed instead of replicates of full gene 
expression matrices. We addressed this problem by implementing the bootstrapping 
procedure (see Section 3.2), i.e. constructing a gene expression matrix by putting in each 
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column of the matrix a randomly selected replicate from the corresponding experiment.  
The bootstrapping procedure, in effect, resamples gene expression matrices from the 
multivariate normal distribution defined in equation (1).  Second, we have much more 
genes than experiments (p >> n) in real datasets, which can affect the quality of 
parameter estimates through the iterative procedure suggested by equations (4)-(7).  One 
possible way to reduce the parameter space of the gene covariance matrix is to explore 
special matrix structures, like the idea in Lasso (Tibshirani 1996). 
 We have shown that considering experimental dependencies is important in making 
more accurate functional gene association inferences.  Our applications to yeast and 
human datasets yield promising and biologically meaningful results.  It is reasonable to 
expect that Knorm correlation can improve the accuracy of biological inferences made 
from those experiments which are currently (and incorrectly) assumed to be uncorrelated.   
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 APPENDIX A: IMPACT OF EXPERIMENTAL DEPENDENCIES ON PEARSON 
COEFFICIENTS 

 
 In addition to the results presented in Fig. 2 in Section 5.1, we further investigate the 
adverse impact of experimental (column) dependencies on the Pearson coefficient of two 
uncorrelated genes across eight experiments (i.e. two row vectors of dimension 8).  In 
this simulation study, we simulate gene expression matrices with rows corresponding to 
genes, and columns corresponding to experiments.  Three different correlation matrices 
are used to describe the column dependencies: in Fig. A1(a), the column correlation 
matrix is an identity matrix to simulate for row vectors with independent vector 
components; in Fig. A1(b), the column correlation matrix consists of a mixture of zero 
and positive elements to simulate for row vectors with moderately positively correlated 
components; in Fig. A1(c), the column correlation matrix consists of elements in a range 
of 0.8 to 1.0 to simulate for row vectors with highly positively correlated components.  
Each histogram in Fig. A1 consists of 5000 Pearson coefficients, each computed from a 
pair of row vectors that are independently generated by a common multivariate normal 
distribution with zero means, unit variances and a specified correlation matrix as 
described above. 

[Fig. A1 about here] 
 From Figs. A1(a)–A1(c), we see a change in the distribution of the Pearson 
coefficients with increasing dependencies between the vector components.  Fig A1(a) 
shows a histogram representing the true distribution of Pearson coefficients between the 
two uncorrelated vectors. The distributions of the Pearson coefficients in Figs A1(b) and 
A1(c) become more skewed toward the larger absolute correlation values as 
dependencies between the components increase.  Fig. A1 is a clear demonstration of the 
adverse impact that experimental dependencies can have on the Pearson coefficients. 
 
 

APPENDIX B: EFFECTIVENESS OF THE ITERATIVE PROCEDURE FOR 
ESTIMATING BOTH ROW AND COLUMN CORRELATION MATRICES 

 
 The MLEs of the row and column correlation matrices (denoted by ER and GR ) in 
equations (4)–(7) suggest an iterative estimation procedure.  This simulation study 
demonstrates the effectiveness of the iterative procedure for estimating GR  and ER  when 
the column correlation matrix ER  is unknown.  Here, we simulate gene expressions for 
100 genes in 15 experiments; we generate five replicated matrices of dimension 100 15× , 
where each vectorized matrix transpose follows a multivariate normal distribution with 
zero means, unit variances, and a correlation matrix ⊗G ER R .  The gene correlation 
matrix, GR , has about 50% of its elements ranging between –0.45 and 0.45.  In Fig. 
A2(a), the experimental correlation matrix, ER , is an identity matrix (i.e. experiments are 
uncorrelated), whereas in Figs. A2(b), A2(d) and A2(e),  ER  is such that 9 out of 15 
experiments are positively correlated.  The reported Pearson coefficients are computed as 
the average of the five Pearson coefficients computed in each replicate by treating the 
experiments as independent observations.  

[Fig. A2 about here] 
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 Fig. A2(e) clearly shows that the gene correlation estimates by the iterative procedure 
(using 10 iterations) are more accurate than the Pearson estimates shown in Fig. A2(d).  
Figs. A2(b) and A2(e) also show that the iterative estimates (with the experimental 
dependencies unknown) are close to those estimated using the known true experimental 
correlation matrix.  In addition, we also see that the iterative approach, shown in Fig. 
A2(b), achieves comparable gene correlation estimates as would the Pearson approach in 
the uncorrelated experiments case, shown in Fig. A2(a).  Fig. A2(a) shows the estimation 
variations in the Pearson coefficients in this simulation dataset. 
 

 
APPENDIX C: DERIVATION OF KRONECKER PRODUCT STRUCTURED 
COVARIANCE MATRIX OF GENE EXPRESSION MATRIX X UNDER OUR 

MODEL 
 

Theorem S1.  Given a p n×  matrix Λ  of i.i.d. elements with mean 0 and unit variances, 
the covariance matrix of    1/2 1/2 TX = U D Λ P V  is ⊗G EΣ Σ , where   =G TΣ U D U  and 

=G TΣ V P V  are the singular value decompositions of GΣ  and EΣ  respectively. 
 
Proof. Letting   1/2 TΩ = Λ P V , we have  1/2X = U D Ω . Since Λ  is a p n× matrix of i.i.d. 
elements with unit variances, the covariance matrix of Λ is ,pnI or 

equivalently ( )Cov vec( ) = pnΛ I , where pnI  is a ( ) ( )pn pn×  identity matrix. 
 Now we consider the covariance matrix of Ω .  Let  ijΩ  be the (i,j)th element in Ω , ie  
be a p-dimensional column vector of zeroes except a value of 1 at the ith element and jf  
be a n-dimensional column vector of zeroes except a value of 1 at the jth element. Then 
we have 
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Therefore, the covariance matrix of Ω  is ⊗ E
pI Σ . Furthermore, letting ijX to be the 

(i,j)th element in X , we have 
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Thus the covariance matrix of  1/2X = U D Ω  is ⊗G EΣ Σ .   ■  
 
 

APPENDIX D: DERIVATION OF MLEs IN EQUATIONS (4)–(6) 
 

Theorem S2.  Let the covariance matrices GΣ  and EΣ  be invertible. Given that vec( )X  
follows a multivariate normal distribution with mean vec( ( )) vec( )E = TX µ1  and 
covariance matrix ⊗G EΣ Σ , where 1  is a column vector of ones, the Maximum 
Likelihood Estimators (MLEs) of GΣ , EΣ  and µ  are given in equations (4)–(6) in 
Section 3 respectively. 
 
Proof.  By the assumed multivariate normal model, the log-likelihood function of an 
observed X  is  

( )( ) ( ) ( )( )1 11( ; , , ) log | | log | | .
2 2 2
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− −
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Then the first partial derivatives of ( ; , , )l E GX µ Σ Σ  with respect to GΣ , EΣ  and µ  are 
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 As the normal distribution belongs to the exponential family and its log-density 
function is concave, the MLEs can be obtained by equating the above derivatives to zero 
and solving for GΣ , EΣ  and µ , by which, we then obtain the MLEs of GΣ , EΣ  and µ  as 
given in equations (4)–(6) in Section 3.  Note that the EΣ  here is equivalent to the ER  in 
equation (5) as EΣ  is assumed to have unit variances in the main paper.    ■ 
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 Remark: When GΣ  and EΣ   are not invertible, we can use their pseudo inverses to 
estimate the parameters by equations (4)–(6).  Though the MLEs of the parameters will 
not be unique in this case, they are nevertheless solutions that satisfy the MLE estimating 
equations.  
 
 

APPENDIX E: PROOF THAT THE MLEs IN EQUATIONS (4)–(6) ARE 
CONSISTENT ESTIMATORS 

 
Theorem S3.  Let X  be a random matrix satisfying ( ) ( )vec vec( ),  N ⊗T E GX µ1 R Σ∼ .  

Let ,  ,…1 mX X  be i.i.d. observations of X .  Then when the covariance matrices are 
invertible, the MLEs of GΣ , ER  and µ  are consistent estimators.   
 Note that ER  is equivalent to EΣ ,  as EΣ  is assumed to have unit variances in Section 
3. 
 
Proof.  First, we derive the MLEs of GΣ , ER  and µ  using similar arguments as in the 
previous section.  Given i.i.d. observations ,  ,…1 mX X , the log-likelihood function is  
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 Equating the first partial derivatives with respect to GΣ , ER  and µ  to zero and 
solving the equations for GΣ , ER  and µ , we then have the following MLEs: 
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 Next, we prove that these MLEs are consistent estimators.  By the arguments in 
Section 3, we can express X  as    = +T 1/2 1/2 TX µ1 U D Λ P V  when we ignore the random 
noises, where Λ  is a matrix of i.i.d. elements with mean zero and unit variances.   Then 
we have 
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 From the last line in equation (A3), it is clear that µ̂  is a consistent estimator of µ  

since when m goes to infinity,
1

1 m

km =
→∑ kΛ 0  in distribution. 

 Finally we prove the consistency properties of ˆ GΣ  and ˆ ER .  By 
    = +T 1/2 1/2 TX µ1 U D Λ P V , we have 
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 When m goes to infinity, it is clear that 
1

1 1 m

kn m =
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⎝ ⎠
∑ k

T
k pΛ Λ I in distribution, and 

therefore G
1

1 1  m

kn m =

⎛ ⎞ → =⎜ ⎟
⎝ ⎠
∑ k

1/2 T 1/2 T 1/2 1/2 T
kUD Λ Λ D U UD D U Σ  in distribution. 

So ˆ →G GΣ Σ in distribution as m goes to infinity, or equivalently, ˆ GΣ  is a consistent 
estimator of GΣ . 
 Using similar arguments as above, we can prove that ˆ ER  in equation (5) is a 
consistent estimator of ER .         ■ 
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TABLES 
Table 1.  Percentages of known functionally related gene pairs among the top ranking 
gene pairs identified by Knorm correlation and the Pearson approach for the yeast 
and human microarray datasets separately. The gene pairs are ranked based on the 
absolute values of the correlation estimates. 

Yeast microarray dataset Human microarray dataset No. of top 
ranking gene 
pairs 

Knorm 
correlation 

Pearson 
coefficient 

Knorm 
correlation 

Pearson 
coefficient 

Top 10 30.0 10.0 10.0 10.0 
Top 30 36.7 20.0 13.3 3.3 
Top 50 38.0 26.0 8.0 4.0 
Top 100 27.0 21.0 5.0 2.0 
Top 200 23.0 21.0 3.5 3.0 
Top 300 22.0 20.3 4.7 3.7 
Top 400 22.3 21.8 4.0 3.8 
Top 500 21.8 21.8 4.2 3.4 
Top 1000 20.0 19.5 3.3 3.1 
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FIGURES, FIGURE TITLES AND LEGENDS 
 
Figures in the main paper 
 

Fig. 1.  Scatter plots of gene expressions of 532 GO annotated yeast genes (with high 
expression variations across experiments) between different experiments in a yeast 
histone mutation dataset.  Axes represent gene expression values.  
 

 
Fig. 2.  Correlation estimates of two simulated vectors by Knorm correlation (in red) and 
Pearson coefficients (in blue) in the presence of vector component dependencies at 
different levels. X-axis indicates the dependency level; Y-axis represents the estimated 
correlation.  The true correlation value is 0.17.  
 

 
Fig. 3.  Heatmap of our estimated experimental correlation matrix for the yeast 
dataset. 
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Fig. 5. Heatmap of our estimated experimental correlation matrix for the human 
microarray dataset. 

  
Fig. 4. Scatter plots of gene expressions for gene pairs (MCM1, SWI5) and (CKA1, 
PMC1), before and after the experimental dependencies are removed.  Each of the two 
pairs is known to be functionally related.  (a) and (c) are scatter plots for gene 
expressions before removing the experimental dependencies; each point represents the 
averaged expressions across replicates in each experiment.  (b) and (d) are scatter plots 
for gene expressions after removing the experimental dependencies; each point 
represents the averaged centered transformed expressions across 500 bootstrapped 
replicates under the proposed approach. Axes represent normalized gene expressions.  
For genes MCM1 and SWI5, (b) clearly shows a positive correlation of 0.47 after 
removing the experimental dependencies, in contrast to the Pearson coefficient of –0.08 
before removing the experimental dependencies in (a).  Similarly, for genes CKA1 and 
PMC1, (d) clearly illustrates a positive correlation of 0.62 after experimental 
dependencies are removed in contrast to the Pearson coefficient of –0.08 with 
experimental dependencies. 
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Fig. 6. QQ-plot of elements in Λ̂ , estimated from a randomly selected expression matrix 
constructed through a bootstrapping procedure for the yeast dataset described in Section 
3 against a standard normal distribution.   
 
Figures in the Appendices 

 
Fig. A1.  Adverse impact of increasing component dependencies on the distribution 
of the Pearson coefficients for a pair of uncorrelated vectors.  Each histogram consists 
of Pearson coefficients estimated from 5000 random pairs of uncorrelated vectors. 
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Fig. A2.  Scatter plots comparing gene correlation estimates by our approach and Pearson 
approach to the true gene correlations. (a) Pearson coefficients vs. true correlations 
between genes for a simulated dataset with uncorrelated experiments.  (b) Knorm 
correlation estimates (estimated using our estimated experimental correlation matrix, 
shown in (c), and iterative procedure) vs. true correlations between genes for a simulated 
dataset with correlated experiments.  (c) Our iterative estimate of experimental correlation 
matrix for a simulated dataset with correlated experiments. (d) Pearson coefficients vs. 
true correlations between genes for a simulated dataset with correlated experiments.  (e) 
Knorm correlation estimates (estimated using the true experimental correlation matrix, 
shown in (f), and iterative procedure) vs. true correlations between genes for a simulated 
dataset with correlated experiments.  (f) True experimental correlation matrix for 
simulated datasets with correlated experiments.  The same simulation dataset is used for 
(b), (c) and (e), and the same gene correlation matrix is used in all datasets for the plots. 
 


