Go to main content

PDF

Description

For population genetics models with recombination, obtaining an exact, analytic sampling distribution has remained a challenging open problem for several decades. Recently, a new perspective based on asymptotic series has been introduced to make progress on this problem. Specifically, closed-form expressions have been derived for the first few terms in an asymptotic expansion of the two-locus sampling distribution when the recombination rate rho is moderate to large. In this paper, a new computational technique is developed for finding the asymptotic expansion to an arbitrary order. Computation in this new approach can be automated easily. Furthermore, it is proved here that only a finite number of terms in the asymptotic expansion is needed to recover (via the method of Pade approximants) the exact two-locus sampling distribution as an analytic function of rho; this function is exact for all values of rho from 0 to infinity. It is also shown that the new computational framework presented here is flexible enough to incorporate natural selection.

Details

Files

Statistics

from
to
Export
Download Full History
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS