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ABSTRACT

We consider the problem of testing bivariate symmetry in matched pair experi-
ments where (X;,X,) are time measurements such as failure or survival times. The
observations are subject to random right censoring so that what is observed is
Yj=min(Xj, Zj) and 5j=I(Xj=Yj), j=12, where (Z,,Z,) is a pair of censoring times
independent of (X;,X,). Tests that generalize the conditional Wilcoxon and the log-
rank tests are considered as well as general linear rank statistics. It is shown that suit-
ably standardized versions of these statistics are asymptotically normal under fixed and

converging alternatives and they are consistent against the alternative of ordered
hazards.

1. INTRODUCTION

Let X;=(Xy;, X)) and Z;=(Z;,Zy), i=1, - - - ,n be mutually independent sets of
nonnegative bivariate random variables (rv) defined on a common probability space.
The X;’s and Z;’s are independent identically distributed (iid) rv’s with continuous
joint distribution functions (cdf) F and G, respectively, and marginal cdf’s F;, F, and
Gy, G,. For each i=1, - - ,n, the observable rv’s are given by Y;=(Y}; Yy;) and
8;=(8y;, 85), where Y;;=min(X;;, Z;), 6;=1(X;;=Yj), and I(A) is the indicator function
of the set A. The variables X;; and X,; are thought of survival or failure times. For
each subject we observe his survival time Xj or censoring time Z; j=1,2, whichever
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occurs first, together with a random variable Sji indicating if he has left the study due
to death or withdrawal. Examples of this kind of censoring mechanism have been
considered by several authors. Clayton (1978) for instance discusses a model to study
the familial tendency in chronic disease incidence. For each father - son pair, X; and
X, denote the father’s and his son’s age at the onset of the disease. Then X, and X,
are observable unless the father or his son withdraws from the study. Hanley and
Parnes (1983) report data from an experiment to investigate tolerance to two succes-
sive chemotherapy treatments for breast cancer patients. Each patient received treat-
ment I for a total of 8 cycles, unless prohibited by toxicity or disease progression.
Subsequently, she received treatment II for a total of 6 cycles, again unless prohibited
by toxicity or disease progression. Here X; and X, is the number of tolerated doses of
the respective treatment. The variables are observable unless the treatment has been
discontinued due to disease progression or other reasons. Further examples of this
type of censoring can be found in Langberg and Shaked (1982), Tsai et al. (1986),
Campbell (1981, 1982), Clayton and Cuzick (1985), Oakes (1982) and Wei and Pee
(1985).

The paper deals with the problem of testing the hypothesis of bivariate symmetry of
the survival times Hy: (X, X,) has the same distribution as (X, X;), against the alterna-
tive hypothesis that the distribution of (X, X,) is asymmetric in such a way that X,
tends to assume larger values than X,. This testing problem was discussed extensively
by Schaafsma (1976), Snijders (1976, 1981), Bell and Haller (1969), Yanagimoto and
Sibuya (1972, 1976) and Doksum (1981) among others.

Here we consider tests based on ranks of X,; and X,; in the pooled sample
Xi11>Xa1, 0 X Xon. These ranks arise from invariance considerations when we
tests the hypothesis Hy against the alternative H; : P(X;; < h(X5;)) 2 P(X, < h(X;) for all
continuous increasing functions h. In Section 2 we discuss a Hoeffding type formula
for the distribution of the censored data rank vector under arbitrary bivariate distribu-
tion. This leads to construction of locally most powerful conditional rank tests. The
resulting tests are based on the same statistics as in the case of univariate two-sample
problem (see e.g. Prentice (1978) and Kalbfleisch and Prentice (1980)). However, the
critical values are obtained by conditioning on the particular configuration of ranks.
This leads to conditional similar rank tests.

In the presence of censoring, the practical evaluation of exact critical values of
these conditional tests does not seem to be feasible especially when the censoring is
heavy. In Section 3 we discuss asymptotic distribution of the corresponding uncondi-
tional tests and show that these unconditional tests are consistent against the alternative
of ordered hazards.
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Our approach to the asymptotic distribution theory patterns the Chernoff - Savage
(1958) and Pyke and Shorack (1968) approach to the asymptotic distribution of two-
sample rank statistics for uncensored data. Suitably standardized versions of the test
statistics are shown to be asymptotically normal under arbitrary fixed and converging
alternatives. The results are used to derive efficacies of the tests under contiguous
alternatives. An estimator of the asymptotic null variance is provided.

2. CONDITIONAL CENSORED DATA RANK TESTS

We start with uncensored data and follow the ideas of Snijders (1976, 1981) and
Doksum (1980). Let R;;,-::,R;; and Ry, -::,Ry, denote the ranks of
Xip 05Xy and Xpy, v 00, Xp, among X1, X5y, ¢ ¢, Xy Xop.  Further, for each
i=1, - - ,n set Ryy=max(Ry;,Ry), Ryp);=min(Ry;, Ry). Suppose that the joint distri-
bution of (X;,X,) has density fg(s,t) where 6>0 and let the hypothesis of bivariate
symmetry correspond to 8=1. For 6=1, we have f,(s,t)=f;(t,s) and let h be the com-
mon marginal density of X, and X,. Further, let H be the corresponding distribution
function. The following lemma provides a Hoeffding type formula for the conditional
probability of R given R ).

LEMMA 2.1. If the family {fg(s,t): 6>0} is dominated by h(s)h(t) then

n
Ell_ @H'(Ug ), H(U,,); 6)

Pe(RzrlR()=r( )) = n .
2XEITi, ®H (U, ), H1(U,)); 0)
Here U(;)<...<Uyy, is an ordered sample of size 2n from the uniform distribution on
0,1), @(s,;0)= h(s)Th(®)y  fy(s,t), P(s,5:0)= (D(s,50)+D(1,5;0))/2 and k=
#{i: r1i¢r2i}.

PROOF. We have Po(R=r | R( j=r( ))=Pg(R=1)/Py(R( y=r( ). Further, using
independence of order statistics and ranks corresponding to H™1(U)) i=1, - - - ,2n,

PeR=1) = E[ll, @ (H!(Ug, ), H'(U,,); )[R =1] PR =1)
n 2.1
E[[Tiey @ (H'(U,y), H'(U,,); 6)1/ 2n)!

Moreover

PeR( y=1( y) = 2XE[IT;, ®H (U, H(U, ,);8)|R=1] PR=T)

T2y
= 2KE[II;., ® H (U, ), H'(Ug,); 0)1/ (2n)!

To verify the first of the above equalities, consider first the case of n=1. Then from



(2.1) we have

Po(R¢ =1 )

PO(RII =I‘(1)1, R21 =I'(2)1) if k=0
= Po(Ryy=r(1)1, Ry =1(2)1) +Po(Ryy =103y, Ry =11y if k=1
= 2XE[®@H (U, H (U, 0)]/2!

Similarly, for general n, Pg(R( y=r( ) is a sum of 2¥ terms corresponding to 2¥ possi-
ble arrangements of r;y; and rpy.

Tests for bivariate symmetry can be now based on scores statistics corresponding
to Pg(R=r). In particular, if (X;, X,) are independent under the null hypothesis (8=1)
the resulting tests reject the hypothesis for large values of

i=21 [a(Ryp) —a(Ry)]

where a is an appropriate score function. The resulting tests look like tests for the
usual two sample problem with equal sample size, the difference is that the critical
values are determined now from the distribution of R( ). The tests are conditionally
distribution free in the sense that given the values of R ), under the hypothesis r;; is
equally likely to be the rank of X;; or the rank of X,;. (See Snijders, (1976, 1980) and
Doksum (1980)).

In the presence of censoring, we define censored data ranks as in Prentice (1978)
and Kalbfleisch and Prentice (1980). More precisely, let

n
R, = 7-31 [8y;1(Y 15 Y1) + 85 1(Yo5< Y]
F

n
Ry = zl (815 1(Y 152 Yo) +85 I(Yoy < Yyl
J:

Thus uncensored observations are ranked among themselves and each censored obser-
vation is assigned the same rank as the nearest uncensored observation on the left. For
j=12, let n=X9; be the observed number of uncensored observations among Yj's,
i=1"--- n. Further, for each d=(d),d,), d;=0 or 1, let Ay={i: 8;;=d,,85=d,}. The
values of n and A4 characterize the observed pattern of deaths and withdrawals. The
censored data rank set is now thought of as the collection R of all possible rankings
(R;, R;) of (Xj;, Xy;) in the uncensored version of the experiment that is compatible
with the observed values of ny, A4 and (r;, 1), i=1, - - ,n. Let R( ) be the set of all
possible ordered rankings (R(’:)i, R();)i) of (Xy;, X5;), where {(R;;,R;;): i=1,---,n}eR
The conditional distribution of R given R( ) depends in a complicated way on the dis-
tribution of both survival and censoring variables. Following Prentice (1978) and
Kalbfleisch and Prentice (1980), we give a Hoeffding type formula for the conditional
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distribution of R given R ) appropriate for the uncensored version of the experiment,
i.e. given the observed pattern of deaths and withdrawals.

LEMMA 2.2. Let the assumption of Lemma 2.1 be satisfied. In the uncensored
version of the experiment, the conditional distribution of R given R y and given the
observed pattern of deaths and withdrawals is

EITIT, (H'(Ug,y), H'(Ug,y: )
Pe(RlR( )) =

2EMIOH " (Ugy), H ' (Ugey); ©) .
d

Here U(;y< * * - <Ugq4ny is an ordered sample of size ny+ny from uniform distribution
on (0,1) and k=#{i: r;#1y;}. Furthermore, Ed(s,t; 0) = {Dy(s.t; 0) + Dy(t,s; 0)} /2 and

D (s,:0) = fi(s,D) fp(s,0) ifd=(1,1)

= fi; (57" [fo(s,u)du if d=(1,0)
t

= fi, (07! [fondu if d=(0,1)

©o co

[ [ foCu,v) dudv  if d=(0,0).
st

Here f|, and £\, denote the marginal densities of X, and X,, respectively correspond-
ing to the density f,(s,t).

The lemma follows from Lemma 2.1 and arguments similar to Kalbfleisch and
Prentice (1980, p. 154). We omit the details.

Tests for bivariate symmetry can be derived as scores statistics corresponding to
(2.2). Following Doksum (1980), we consider the generalized scale model as a special
example. Here

Xy = m+O-1g Xy = 60;+(0-1Dg 2.3)
where 1; and M;, i=1, + * + ,n are mutually independent samples from distribution func-
tion H, H(0)=0, and g, i=1,---,n is a sample from the distribution function M,

independent of n;’s and ﬁi’s. A straightforward calculation shows that the joint den-
sity of (X;, Xy;) is given by

fo(s,) = 67! [h(s—(6-1)e)h(®~'[t—(8—1)e]) dM(e)

where h is the density of H. For 6=1, f;(s,t) =h(s)h(t). Under suitable regularity con-
ditions (Hajek and Sidak, 1967, p.70), the scores test corresponding to (2.2) rejects the
hypothesis for large values of -



T=Zl [a(Ry;, 511) —a(Ry;, 521)]

where
a(i,d) = 27'EJ(Ug), d) Mty > my(1 = Uge)™. 2.4)
Here oy =#{i: Rji=k,8ji=0j= 1,2}, my=#{i: R;2k,j=1,2} and
Jud) = ~[1+H ) h'(H'(w)/hH'@)] ifd=1
= Hlu)hH(u))/(1-u) if d=0.

This type of scores was extensively studied in the survival analysis literature in the
context of the usual two-sample problem. See for instance Prentice (1978), Kalbfleisch
and Prentice (1980). It can be easily verified that the score generating function J
satisfies

[Iv.Ddv = ~(1-u)J@,0). 2.5)
0

The choice of standard exponential H, leads to J(u,d)=—d-In(1—-u). The resulting
test is the log-rank test based on the statistic

Ty = 2! z [A(Y4) =85 - A(Y ) +8y]

where A is the Aalen - Nelson estimator (Aalen (1978), Nelson (1972))
AK(S)
1-H(s-)
where AK=(AK;+AKp)/2, H=(H;+Hy)/2, ARj(s)=n"'ZI(Y;=5,8;=1), Hs)=
1

A = I (2.6)

n‘IZiI(ins s). The choice of loglogistic H, leads to J(u,d)=(1+d)u—d. The result-
ing test is the censored data analogue of the conditional Wilcoxon rank test based on
the statistic

n A
U, = 27! 21 [(1+85) S(y2;) =82 = (1 +8;;) S(yyy) + 83
1=
where § is an estimator close to the Kaplan - Meier (1958) estimator

$G) = 1-1 (1- —2K6) ),
sst 1-H(s=)+(2n)~

In general the exact scores (2.4) might be hard to compute. Therefore, following
Prentice (1978), Kalbfleisch and Prentice (1980), Cuzick (1985) and Dabrowska
(1986), we shall consider approximate scores statistics

Un = 27 5 35(Yq), 82) - J8(Y 1), 81)]

2.7
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where $ is given by (2.7) and the score functions J satisfy the integral equation (2.5).

The praaical evaluation of exact critical values of these conditional tests does not
seem to be feasible. In the following section, we discuss the asymptotic distribution of
the unconditional tests and show that these unconditional tests are consistent against
the alternative of ordered hazards.

3. ASYMPTOTIC DISTRIBUTIONS: ASSUMPTIONS AND RESULTS

First let us introduce some assumptions to be used throughout this and subsequent
sections.

A.l. For each n=1.2,..., (Xy;, Xy) and (Zy;,Zy), i=1, - -+ ,n are mutually
independent sets of iid nonnegative bivariate rv’s with continuous joint cdf s
F, and G,=G and marginal cdf's F,,, F,; and G,, G,.

For each n define L (s;t;d;,d))=P(Yy;<s, Yp<t, 8;;<d;, 85=d;) and for j=1,2
let Lpyi(s,d)=P(Yj;< s Sﬁ <d), Hy(s) =P(Yj, < 5) and K(s)= 1 -P(Yj;>s, Sji= 1). Under
assumption A.1, these cdf’s may be easily expressed in terms of F, and G. Moreover,
L.L;, H; and K;, their limiting distributions, exist and depend on F and G only.
Finally, let L, L;, H; and K; denote the corresponding empiricals.

The proof of the asymptotic normality of suitably standardized versions of T, and
U, rests on a decomposition into sums of leading terms which are asymptotically nor-
mal, and remainder terms, which are asymptotically negligible. As regards the statistic
U,, we assume that the score generating function J satisfies the following smoothness
and boundedness conditions.

A2. For d=0,1, J(ud) is a continuously differentiable function on [0,1)
such that |J(u,d)| < cr(u)® and )J’(u,d)| < cr(u)® where r(u)=(1-u)"! and ¢>0,
O<a, b<1/2.

Define

t
A = |
0

and
Sa® = 1-exp{-A,®)

where K;=(K,; +Kp)/2, H,=(H,;+Hy,)/2. Furthermore, let A(t)=limA,(t) and
S(t)=lim S,(t). Set
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A = 0227 X(S,(y), d) d(Ly - Lp)(y.d)
Ag = —nV2271 [ 3(S(y), d) d(L; ~ Lp)(y,d)
Azy = 0227 W (5) (1= S, () V'(Sn(y), d) AL (y.d)
Agy = 0227 Wo(y) (1= S,(y) V(Sa(y).d) ALy (y.d).-

Here
y . y R
Woy) = [@ =Hy) r(H)? dK,+ [r(Hp) d(R - K.
0 0

LEMMA 3.1. Let the assumption A.l be satisfied and let J be a function such that

4 .
A2 holds with 0<b< 1. Then with probability 1, nV2Z,_, Ay, is a sum of iid rv’s with
mean zero and absolute moment of order 2+m, uniformly bounded above for some
n>0.

The proof is deferred to Section 4. To standardize T, and U, for location and
scale, define

Mo = H(Fp,G) = 27 E[I(Sy(Y2), 82) = J(S4(Y1), 8]

02 = o*F,,G) = var(Zh, A

2

Under conditions of Lemma 2.1, o is well defined and converges to

0‘3=02(F,G)=var(2f=l Ayo) where the variance 0'3 is evaluated under F and G and the
terms Ayg are defined as Ay, with S, H, K and L,; replaced by their limiting distri-

butions. Further, with probability 1

4
n"2(T,-H) = I A+ B, (3.1)
2 (U, -1 = T4, AL +C, 3.2)

where B, and C, are remainder terms.

THEOREM 3.1. Let the assumptions A.l and A.3 be satisfied. Suppose that
6¢>0 for J(u,d)=—d-In(1-u) or J satisfying A.2. Then n¥2(T,—,) and respectively
nl2 (U, —W,) converge in distribution to N(0,6Q).

The proof of the theorem is given in subsequent sections. In general, the asymp-
totic variance of T, and U, depends in a complicated way on the underlying joint dis-
tributions of both survival and censoring times. We consider now the case of the null
hypothesis Hy: F(s,t) =F(t,s) in more detail.

Under the null hypothesis, if the integral equation (2.5) is satisfied then Lemma 4.1
and assumption A.1l entails S=F;=F, and E[J(S(Yj, 8;)1Z;]1=0, so that the asymptotic
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null mean is equal to zero. Furthermore, a simple calculation shows that if (2.5) holds
then in the case of the statistic U, the asymptotic null variance is equal to

4VE[IS(Yyy), 81) — J(S(Yay), 8512
= 47HET (S(Y )% 8y, + ET (S(Y5))? 8 =2 E[J(S(Y 1), 81;) J(S(Yoy), 8201}

Here J (u)=J(u,1)-J(u,0) and S=F,=F,. If in addition F(s,t) =F,(s) F,(t) then the last
expectation is equal to 0. In the case of the log-rank statistic the asymptotic null vari-
ance is equal to

obr = 4HPGy;=1)+PBy=1)-2E[(A(Yyy) - 815 (A(Y2) = 82)1)

2
Cou

where A is the cumulative hazard function corresponding to S=F; =F,. If in addition
F(s,t) =F,(s) F5(t), then o¢r=4"1{P(8;;=1)+P(8,;=1)). In practice, we have to esti-
mate the asymptotic null variance from the data. In the case of the approximate scores
statistic U, set

6% = @n)y =R, T Y 028+ 2, T S(Y )28,

=228, JS(Y 1), 8;) IS (Y, 851

In the case of the log-rank statistic, set
n n n n ~
8f = () MEim) 83+ iy 8525 (A(Y 1) = 81) (A(Y) - 83))

THEOREM 3.2. Let the assumptions of Theorem 3.1 be satisfied. Under the
hypothesis of bivariate symmetry, 66 and 6% are consistent estimators of 6&; and oér,
respectively.

The Proof is deferred to Sections 5 and 7.

The following corollary establishes the consistency of the tests against the alterna-
tive of ordered hazard functions H; : A; 2A,, where A;=f;/ (1 —F,) and f; is the density
of F;,i=1,2.

COROLLARY 3.1. In the case of the sutistic U,, assume that the conditions A.l
and (2.5) are satisfied and let J (u)=J(u,1)~J(u,0) be a nondecreasing function. The
tests nV2U, /&, and n'2 T,/ &1 are consistent against H;.

The proof is given in Section 5.

Finally, we consider efficacies of these tests. Let F(s,t) be a symmetric cdf and
consider the sequence of contiguous alternatives F,(s,t) given by

dF(s,t) = {1+n7Y2¢_(s,0)} dF(s,t)

where ¢, is a sequence of functions converging to ¢, ¢n(s,t) # dn(t,s), O(s,t) #d(t,s) and
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[ousDdFG) = [oGsDdFGY = 0.

Set

O1a(®) = [0(s.0)dF(s,0)
0

02® = [n(s,t)dF(s,t)
0
where d, F(s,t) and d; F(s,t) stands for integration with respect to t and s, respectively.
Then the marginal cdf’s F;,; and F, of F, are of the form
dF(x) = {1+n712¢,(x)} dS(x)
where i=1,2 and S=F;=F,. Set

D(x) = [¢(u)dS(u).
0

Finally, let ¢; and ®; be the limits of ¢,; and D, i=1,2.

COROLLARY 3.2. In the case of the statistic U,, assume that the conditions A.l
and (2.5) are satisfied and let J (u) =J(u,1)-J(u,0). The efficacies of the tests based on
T, and U, are given by

2
> H,H, _ ,
er(9) = £ﬁ1+ﬁ2 (01— 0y + (D, —D,)/SIdA ¢ / oép
and
2
_ “... Hlﬁz —_— 2
ey(9) = gJ(S) F+E, (01— 0o+ (@ - D) /SdA ¢ /6y

where c& and ody are the asymptotic null variances of T, and U,,.

4. PRELIMINARY LEMMAS

In this section, we give a few lemmas which characterize the behaviour of
processes A and .
LEMMA 4.1. Forn=1_2,... and all t

t

@ Sy® = [(1-S,(x-))dA )
0
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t
S = [(1-8(x-) (1-Hx-)+2n)™) dK(x)
0

(i) S, <Hy ) and $@t) <2nH(t)/2n+1)
(iii) For all t such that S (t)<1

t

A 1-8§(x-) dK(x)
SM-S,1® = 3
® =S, g 1-8,(x) | 1-H(x-)+2n)!

—dA(x) |.

PROOF. The proof rests on a repeated application of the following result due to
Liptser and Shiryayev (1978, p. 255) and Gill (1980, p. 153). If A and B are right
continuous nondecreasing functions on R*, zero at time zero, and AA<1 and AB<1,
then the unique locally bounded solution Z of

t

_ o 1-Z(x-) _
z( = { 1= ABGY (4AG)—dB()
is given by
-AA -A
70 = I(1 (x)) exp(=A(x)) @1

~ TI(1 - AB(x)) exp(~B,(x))
where the products are taken over x < t,

(i) The choice of A(t)=A,(t), B(t)=0 and an argument similar to the proof of
Lemma 3.2.1 in Gill (1980) shows the first part of (i). The second follows by setting

t

A= j [1-H(x-)+n)"1]"1 dK(x) and B(x)=0.
0

(i1) Since  dK,<dH,, we have by 1) Sa()=1—exp(=A,(D) <

t

l—exp(—j-l——) = H,(t). Further, a straightforward calculation shows that
0 1-
20\ = 1-11 |1- —2H® .
2n+1 xst 1-H(x-)+(2n)!

Comparing each term of the product with terms appearing in the product defining S(v),
we obtain S(t) < 2n H(t)/ 2n +1).

(iii) This follows from (4.1) by setting
t
A® = [[1-Hx-)+@2n)"]1dK(x) and B(t) = Aq(x).
0

LEMMA 4.2. For t such that H(t) <1, sup{lf\(t) =AM :0<st<t}>0as. and
sup{IS®) -S| : 0st<T) >0 as.
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The proof is similar to Shorack and Wellner (1986, p. 305). We omit the details.

LEMMA 4.3. For t such that H(t) < 1, the processes W, and (1-S,)W, con-

verge weakly in D[0,7] to mean zero Gaussian processes W and (1 - S)W, respectively,
and supjo. A= Ay =W, =p0 supp IS = Sp = (1= S)YW,| —50.

The proof of this Lemma can be carried out in a fashion similar to Breslow and
Crowley (1974). Note however, that since (X;,,X,;) and (Z,,,Z,,) may be pairs of
dependent random variables, the covariance structure of W and (1—S)W depends on
the joint distributions F and G.

5. PROOF OF THEOREMS 3.1 AND 3.2: LEADING TERMS

The proof of Lemma 2.1 rests on a repeated application of inequalities
1Y <) —Hy(®)|, 11-10Y;> %, 8;= 1)~ Kp(0) | < i(H (Y)Y, )0 (5.0)

for ye (0,1), j=1,2 and i=1, - - - ,n. Further, Lemma 4.1 (i) and A.2 imply
1J(Sn(x),d) | < cr (Hy(x))*

5.2
13°(S,(x), d) | < cr (H,(x))P. (5.2)

PROOF OF LEMMA 2.1. We shall show that each of the terms A, k=1,2,3,4
is a sum iid rv’s with mean zero and finite absolute moment of order 2+1 uniformly
bounded from above for some 11>0. By symmetry, it is enough to consider the terms
Ay, and Ay, In what follows, M denotes a generic constant independent of n and the
underlying cdf’s.

Set W1, =EJ(Sy(Y4),85). We have n!2A, =2, [J(S,(Yq:), 85;) —My,] Which is a
sum of iid mean zero rv’s. Further, by (5.2)

E[J(Sp(Ya), 82)% M < cEr (H,(Y)) @2
= of H, ()2 dH,(x) < M [r(u)*M du < oo

provided >0 is chosen so that a(2+m)<1. This however can be always achieved
since a<1/2. Further, we have n'2 A5 =Z1, A, where

Agi = [Wri(x)(1=S,(x)) J(Sy(x), d) dLp(x,d).

The process Wy is defined as W, except that H and K are replaced by
ﬁi = (ﬁli+ ﬁZi) /2 and Ki = (K1i+ f(zi) / 2, where FIJI(X) = I(Y_]l <x) and f(p(x) =
1-I(Y;>x,8;;=1),j=1,2,i=1,- - - ,n. By (5.2) we have

|A3l < ¢ [|Wy(x) [r(Hy(x))® dHpo(x).
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Integration by parts and a little algebra entail that with probability 1, this bound is
bounded from above by Z2; As;., where

Ay = 27'c[[fIHy - Hyy | r(H,)? dH,] r(H,(x))* dH,(x)
0

27 [ [ 1K 3~ Kny | 1(H,)? dH,] r(H, (x))* dH,5(x)
0

Agg = 270 [IK () = Kqy (%) | r(HL(x) dH,p(x)
Ay = Azg = M [r(H,)*dH,p,.

The terms Agjs, Az and Ay are defined in the same way as Ag;, Asp and Agg,
respectively, except that |Fy—H,,| and |Ky—K,l replace |Hj;—Hy| and |Kj;—K_,|.
By symmetry, it is enough to consider the terms Ags;;, Az and Ajys.

Applying (5.1) with y=1/2+m, we obtain
Agyy <27%er (Hyy (Y1) 27 [[[r(Hp) ™21 r(Hp)? dH,) r(HL(x))* dHpp(x)
0

<Mr (Hnl(Yli))llz—n jr(u)l‘n du J'r(u)a+1/2+2'r| du.

The 2+ moment of the random part on the right hand side is finite and independent
of n because (1/2-m)(2+m)<1 for all . The deterministic part is uniformly bounded
from above provided a+1/2+2n<1. The same argument shows that the 2+m
moment of As; is uniformly bounded from above provided a+1/2+2n<1. Further,
applying (5.1) with y=1/2+7n

Agig < 27'er (Hyy (Y1) [x(H) ™ r(H,) ™1 dH,
< Mr (I.Inl(Yli))l/Z—‘n J'r(u)a+l/2+1] du

and the same argument as in the case of A3; shows that the 2+1 moment of Ay is
uniformly bounded from above provided a+ 1/2+n< 1. Finally,

Asiy = Ayg<M[r(u)du<es
since a<1/2.

PROOF OF THEOREM 3.1. The proof of the asymptotic negligibility of the
remainder terms B, and C, is given in Section 6. With an appropriate choice of the
function J, Lemma 2.1 and Esseen’s theorem imply n2(T,-p,)/c, and
n'2 (U, -,/ Oy converge weakly to a standard normal distribution, provided

liminf o,f>0. Finally, a lengthy algebra and Theorems 5.5 and 5.4 in Billingsley
(1968) show that c,f—-) 0‘3 as n— oo,
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PROOF OF THEOREM 3.2. Let L(x,y,d;,d;) be the joint distribution function of
(Y13 Yoi 015 025 and let L be the corresponding empirical distribution function. We

can write
8G-of = 4 H{T%S)d@,-Lp+[TXS)d(L,-Ly
=2 [J(S(x),d}) J(S(y), d) d(L ~ L) (x,y,d,dp) + Dy, (5.3)
where D,, is a remainder term. Similarly ’
6f-of = 4([d@,-Ly+[dL,-Ly
=2 [ (=In(1=S(x)) - dy) (-In(1 = S(y)) ~ dp) d(L. - L)(x,y,d1.d) + Er, (5.4)

where E, is a remainder term. The asymptotic negligibility of the terms D, and E, is
shown in Section 7. The leading terms are sums of iid mean zero rv’s so that the con-
clusion follows from the law of large numbers.

The following lemma is needed to prove Corollaries 3.1 and 3.2. For i=1,2 let
I-_Ini= 1 _Hni and let

t
Ay® = [Fp)™ dFy;
0

be the cumulative hazard functions corresponding to cdf’s F,;.

LEMMA 5.1. Let (2.5) and the assumptions of Theorem 3.1 be satisfied. Then

R(F,,G) = [T(Sp) Hy Hop (Hy +Hpp) ld(Agy _ Apy).

Here J )=J(u,1)=-J(,0) for J satisfying condition A.2 and J (w)=1 for the log-rank
statistic.

PROOF. The equation (2.5) entails J(u,0)=0 for u=0 and
J) = Ju)-Jw0) = ~(1-u)J(u,0).
Integration by parts and Lemma 4.1 yield fori=1,2
W = [J(Sp1) Gy dFy+ [3(S,,0)F,; dGyy

[T 5 GyidFy + [F, Gy J'(S,,0) dS,

[T (S2) Gy dFy+ [Fri Gy J'(S,,00(1 - Sp) dA,,
[7(82) G dFpi— [T (Sp) Fy Gy dA,
Using dK,;=G,;dF,; and H;=F,;G,;, we obtain

K = jj (Sp l-:I-ln ﬁ2n (-ﬁln + _ﬁZn)—l d(Ajn—Agp).

and
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Hy = Jj(sn) ﬁln _H_Zn (-ﬁln'*'ﬁ_2n)_l d(AZn_Aln)~
The conclusion follows by noting that u(F,,G) = (p, — 1)/ 2.

PROOF OF COROLLARY 3.1. Consider a fixed alternative F(s,t) such that
A, 2Ay. By Theorem 3.1 n'2(U,-u(F,G)) and n(T,-pu(F,G)) converge weakly to
mean zero normal distributions. Furthermore, by Lemma 5.1 nY?2pu(F,G) = . To
complete the proof, it is enough to note that 66 and 6% converge in probability to a
finite value. This can be established along the lines of the proof of Theorem 3.2.

PROOF OF COROLLARY 3.2. The proof follows directly from Theorem 3.1,
Lemma 5.1 and some simple algebra.

6. PROOF OF THEOREM 3.1: REMAINDER TERMS

We now give the decomposition of the remainder terms B, and C,. Set
A=[0,max Y,] and A’=[0,maxYy;]. The remainder term C, in (3.2) is given by
C,=Cin+Cy,, Where

Cin = 27 02 IS (x).d) - J(S,(x).d)] dLy(x,d) - Asy
A

Con = 27 [ 012 [I(§(x).d) - J(S,(x),d)] AL (x,d) — Ay,
S

The remainder term B, in (3.1) is given by B,=B;,+B,,, where B, are defined as
Ciq With J(u,d)=—d—In(1 —u) and S replaced by l—exp(—f\). The terms C;, and C,,,
By, and By, are symmetric so in what follows we consider C;, and B, only. For any

4
T (0,1), let A;=[0,Y,] where Y, =inf{s: Hy(s)>1-1}. Then Cm:kZl Cix where

Cpy = 27" | nM2W,(x) (1 - S,(x)) V' (S,(x).d) d(L; ~ L p)(x.d)
ANAq

Cp = 271 [ n2W,(x) (1-5,(x)) J'(Sp(x),d) dLp(x,d)
AVAS

Ciz = 270 | n"2[I(S(x).d) - J(Sp(x),d) = (1 = S(x)) Wy(x) J'(S(x),d)] dL,(x,d)
ANA,

Ci = 278 [ n"2[J(S(x).d) - J(S,(x),d)] dL,(x,d).
ANAS
4
Analogously, B1n=kZlBlk where B,y are defined as C;; with J(u,d)=-d-In(1-u) and
S replaced by l-exp(—f\). The asymptotic negligibility of these terms will be proved
by a sequence of lemmas showing that Cy;, C;3, By; and B3 converge in probability
to O for any fixed T (0,1) and n— oo, whereas the terms C;5, C;4, B;, and By,
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converge in probability to 0 as t4 0 and n — o
LEMMA 6.1. For fixed t¢ (0,1), C;; =p0 and By; =p0 as n — oo.

PROOF. Assuming that the function J satisfies assumption A.2 with b<a+1, it is
enough to consider the term C;; only. Let te (0,1) and €>0 be fixed. For any posi-
tive integer m define ¥,,(x)=Y,(k—1)/m for y,(k—1)<x<y,k/m, k=1,---,m. For

3

arbitrary m, we have |Cy,| < k§1cukm’ where

Ciim = [ "2 IWo(x) = Wm0, d(L, + Lip)(x,d)

ANA,

Ciizm = [ 0" IWo0tmCO) 105(x,8) = (Xm0, )l d(Lg + Lip)(x,d)
ANA,

Cll3m =

| | 02 Woam00) 0,(tm(,d) ALy~ Lig) (x,d)]
ANA,

and ¢,(x,d) = (1= 5,(x)) J'(S,(x),d).

There exists a constant M; =M;(7) such that for n large enough sup|S,—S|<1/2
and supp |¢(-,d)|<M,;. Further, there exists a constant My=M,(t,€) such that for n
sufficiently large the sets € = {sup,, n'2|W,_|<M,} and Q,={A;<A)} have probability
at least 1 —¢.

By Lemma 4.3, the process n!> W, converges weakly in D(A,) to a Gaussian pro-

cess W. Therefore, by employing a Skorokhod construction,
supA1n1’2 IWn—=W, 0 Xml =p0 as n,m — o and there exists a sequence Mg, Ny — 0 as

m,n — oo, such that the set Q = {supa IW,—=Wp 0 Xml<Mmn) has probability at least
l1-¢ for all m and n  sufficiently large. It follows that
QNN Q)C11m S MMy — 0.

Further, for d=0,1 the function J'(u,d) is uniformly continuous on [0,1—-1/2] so
that for n sufficiently large &, =sup,_[¢(x,d) — (Xn(x),d)] >0 as m— . It follows
that I(Q; N Q,) Cj 1o < MoE ., =0 as m,n > oo,

Finally, for n sufficiently large, on the event Q; N Q, the integrand of C,;s,, is a
step function assuming value a4 for d=0,1 and x belonging to R, =(Y.(k—1)/m,
Y.k/m, k=1, - - - ,m. Therefore

m 1 R
(N 2QCi3m = 12 dgoakmdk{m d(L,-Ly)

< dmM,M,; +&,,) suplf.z =Ll —p0asn—ee,

Since P(€2))>1—¢ and P(,)>1-¢ and € was arbitrary, the conclusion follows.
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LEMMA 6.2. For fixed 1€ (0,1), C;3—=p0 and Bj3—p0 as n > oo,
PROOF. By the mean value theorem, under condition A.2
IEM),) =S = ($K)=S,(0)) V(Pg(x),d)
for xe A and d=0,1. Here @, is a random function assuming values between §(x) and

Sn(X). We can write C13=C131 +C132, where

Cia1 = 270 | n"2W,(x)(1-5,(x) [0(Dg(x).d) = (S, (x),d)] dL(x,d)
ANA,

Cizz = 270 | nM2[8(x) = Sp(x) = Wy(x) (1 = S,(x))] V' (@a(x).d) dL(x,d).
ANA,

Let te (0,1) and €>0 be fixed. For n sufficiently large sup|S,—S|<1/3. Further, there
exist constants M; and M, such that for n sufficiently large, the sets
Q= {sup{J'(Dy(x),d): xe A,d=0,1}<M,;} and Q,= {supa, nl2 IW.l<M,} have pro-
bability at least 1-&. For n sufficiently large, the sets Q3={A;<A} and
Q4= {supa, IS — Syl <t/3} have probability at least 1 —&.
We have
I(Ql N Qz N Q4) |C131| < I\’Iz[SUpAt 'J’((DI(X),I) - J’(Sn(X),l)l
+ supp V' (D(x),0) = J'(S,(x),0)l].

For d=0,1, the function J'(u,d) is uniformly continuous on [0,1-71/3] so that
[Dg— Sl < IS—S| and Lemma 4.2 imply that this bound converges in probability to O as
n — oo, Further

(1 Q0 ICy30l s My supy n2|S -8, - W, (1-S))l.
By Lemma 4.3 this bound converges in probability to 0. Since P(Q,)>1-¢,
k=1,2,3,4 and € was arbitrary, it follows that C;; —5p0 as n — oo,

The proof of the asymptotic negligibility of B3 follows immediately from Lemmas
4.2 and 4.3.

LEMMA 6.3. C;4—p0and B;;—p0 as 140 and n— .

PROOF. Assuming that the function J satisfies condition A.2 with b<a+1, it is
4
enough to consider the term C,4 only. We have |Cy4] < T _; Ciax, Where

n'’2 (1A} — Hy| r(H,)? dHy) r(Hy(x))* dHpp(x)
AVAE 0

]
—
o
=

Il

Cig = 271 [ nV2([IH7 ~ Hypl r(H,)? dH,) r(H, (0))* dHop(x)
AVAS 0
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Ciz =27 [ 0" |fr(Hy) d(K; - Kyl 1(H,(x))* dH,p(x)

A°UAS 0

0
S
|

X

= 270 [ n2|frHy) d(K; — Kol r(H, (x))* dHpp(x).
A°VAS 0

Let us consider the term Cy4. Lete>0and n, 0<2n<1/2—a be fixed. Corollary 1.1

in van Zuijlen (1978), there exists M;=M,;(€) such that the set

Q, = {sup nl’2 II:II_—H,,lIr(H,,I)Uz’“<M1} has probability at least 1—¢& uniformly in n.

Therefore

IQ)Crars27My [ (Jr(Hy) "M r(H)? dH,) r(H,(0)* dH,5(x)
AVAE O

< MMI Ir(Hn)l_n dHn J' r(I_Inz)a-i-I/ZH'] d.an

AVAZ

6.1)

for some constant M. The first integral in this bound does not depend on n and the
underlying cdf’s. To handle the second term, consider the integral

J‘ r(Hz)a+1/2+11 de.

Ag
Applying dominated convergence theorem, we can find T=7%(g) such that for all T<z
this integral is less than €/2. For this T there exists n such that the set Q,={A;cA}
has probability at least 1 —¢ and

J’ [r(an)lH-l/ZH'] dan_r(Hz)a+l/2+n dH,] <&/
Ag
for all n>n. It follows that the second integral in (6.1) is less than € with probability
at least 1-€ for t<T and n2n, ie Cj4; »p0 as T4 0 and n — oo,
The proof of the asymptotic negligibility of the remaining terms is similar.
LEMMA 6.4. For any O<c<1/2

Jn = [ n"2)A-Agr(H,,)°dA,
ANAY

X
Jn = [ o72(fr( ) r(A - 2n) 1) dR) r(H,5(x))° df,(x)

ANA¢ 0
converge in probability to 0 as TL 0 and n — o,

PROOF. Lete>0and 1, 0< 2,] <1/2-c be fixed. We have

[ r® )™ df, —p0. (6.2)
ANAF
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as T4 0 and n > . This holds since

E I r(an)c+llz+2" df:Iz < J'l_(an)c+1/2+2,1 dH,,
ANA¢ A7

and we can apply to this bound the arguments used in Lemma 6.3.

Let Ag={x:1-Hp(x)>€/n} and A/=(x: 1-H;; (x)>¢/n}. By Theorem 1.4 in
van Zuijlen (1978), the sets Q.= (A< A;} and Q;"={A’cA,’} have probability at least
1-¢.

We have I(Q)J;, < J;1+7J12, where

n'2 [ (JIH = Hyl r(Hy) (D) dK) r(H,; (x))° dFy(x)
ANAf O

In

n'2 [ r(H,) d(K; = Kol r(Hp(x)° dHp(x)

ANAS 0

Ji2

By Corollary 1.1 in van Zuijlen (1978) there exists a constant M; =M;(€) such that the
sets Q, = (supn/ 2 |A] —H, | r(H,)"> "< M, } and Q,=
{supn2|H; —H,,|r(H,»)Y? <M, )} have probability at least 1-&/2 uniformly in n.
Set M,=2"V2MM, and let Q;={supn?|H -H,r(H)"*"<M,}. Since
Q; N Q,<=Q;3, the set Q3 has probability at least 1 —e. We have

QN QI <M, | [[r(H)Y2 r(F) dK] r(Hp(x))° dF,
ANA§ 0

<27'M, | [fr(HY Y (D) dF ) r(Hp(x))° dA,
ANAf 0

+27 1M, [ [ rH) V2N r(FT) dFLp) r(H,p(x))° dF,
AnA§ O

= Jin+Jne

By Theorem 1.1 in van Zuijlen (1978), there exists a constant M3 =M3(g) such that the
sets Q4= (sup r(H; (u)) r(H,,, (W)~ < M3, O<usmaxYy) and
Qs = {sup r(Hy(u)) r(H,(u)) ' <M;, 0<us<max Y,;} have probability at least 1-e.
Since r(f) < 2r(H;) and r(H,) < 2r(H,y), i=1,2

5 ke A
(i3 QN QT M [rHDMAH; | r(H)* V22 gH,.
AAAS

We have [r(H,)'""df; —p[r(u)!du, so that (6.2) entails J;; —p0 as tl0 and
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n—>eo. A similar argument, coupled with integration by parts, shows J;, =p0 as Tl 0
and n oo, —
Further,

5
I(k=3 N Q) <

270 [ V2 (fe(ED) (AT - 20)7h) dF) r(Hp(x))° dELy(x)
ANAZ 0

X

+270 [ o V2 ([r(f0) v - 20) 1) dA) rHp(0))° dHp(x) = T +Tp.
ANAZ 0

For some constant M, we have

Q)] <Mn~12 f l.(Hnl)3/2-2n dI:Il J’ r(Hn2)°“’2+2" dﬁz
A/ ANA¢

< Mn—l/Z (n/E) 1/2-n Ir(Hnl)I/Z—n dI:II J’ r(an)c+l/2+2'l‘| dﬁZ
ANAZ

and

I <« M2 [ 1Y df, [ rH™ A,
A, ANA$

< Mn—l/2 (n/e)l/Z—nj'r(an)l/Z-n dﬁz J’ x_(I_Inz)c-i-l/2+2ﬂ dﬁz.
ANAF

Since j r(H,)*"dH; —>l;jr(u)1’2'n du (6.2) entails J,, »p0 as T4 0 and n — eo.
LEMMA 6.5. By4;—p0 and C;4—p0 as 110 and n— oo.

PROOF. Setting c=0 in Lemma 6.4, we have |B,| < 2J;, so that B;; —»p0as tl0
and n — oo,

Let Q. and Q,, k=1,---,5 be defined as in Lemma 6.4. By the mean value
theorem, condition A.2, Lemma 4.5 and in van Zuijlen (1978)

QN3 Q) Crasn!? | 18(x) = Sp(x)] I1(@g(x),d)| dLy(x,d)
ANAZ '

<n"2M | |S-S,Ir(Hp)PdL,
ANAS

for some constant M. Applying inequalities |x; —x,| < |lnx; —In x,| for 0<x;,x,<1 and
0<-In(1-(1+x)™)-(1+x)T<(x(x+1))7? for x>0, it can be verified that for x € A,
on the set . we have

1500 = 8,0 < JA() = Ay ()l + 07! [r(F) r( - 20) ™) dR.
- 0
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Therefore I(m,f’=3 QN Q) Cry s MUy +Jp,) where Jy, and J,, are defined as in
Lemma 6.4 with c=b. It follows that C;4 —=p0 as T4 0 and n — o,

7. PROOF OF THEOREM 3.2: REMAINDER TERMS

We give the decomposition of the remainder terms D, and E,. As in Section 6, let
A=[0,max Y] and A’=[0,maxY;]. The remainder term D, in (5.3) is given by
4

D,= k§1 Dy, where
D,, = 47 { d@)-Ts)dL,
Dy, = 471 [T S)-T(S)ydL,
AI

Dy, = =271 [ (AEx).d) -J(S(x).d) I(S(y).dy) dL(x.y.d;.dp)
RN !

Dgp = =271 [ GSX),d) -I(S(x).d2) J(S(y)dp) dL(x,y.d},dy).
R

4
The remainder term E, in (5.4) is given by E = k§l E\n, where E,, are defined as Dy

with J(u,d)=—d-In(1-u) and § replaced by 1-exp(-A). The terms Dy, and Dy, E,,
and E,, are symmetric so in what follows, we consider Dy, and E;, only.
3
For te (0,1), let A;=[0,y,] where y,=inf{x: Hy(x)>1-1}. Then Dl,,=k§l D1,

where

Dy = 471 [ d®)-THdL,

AAA,
D12 = 4—l J' j'(é)dfq
ANAS
D;3; = 471 | KS)di,.

ANA¢

LEMMA 7.1. For fixed t< (0,1), D;; =p0 as n — oo,

PROOF. The function J is uniformly continuous on A.. The conclusion follows
from Lemma 4.2.

LEMMA 7.2. D;;—p0 and Dy;35p0 as 140 and n — oo,

PROOF. Let €>0 be fixed. Let Ag=(x: 1-Hy(x)>€&/n}. By Theorem 1.4 in van
Zuijlen (1978), the set Q.={A<A,)} has probability at least 1—¢. Further, by
Theorem 1.1 in van Zuijlen (1978), there exists a constant M, =M, (€) such that the set
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Q,={supy r(nﬁzl (n+1))r(H,)'<M;} has probability at least 1—¢. Assumption A.2
and Lemma3.1 entail

QN QD1 <MM,; [ r(HyPdH,
ANAS

Di3sM | r(Hy) dH,
ANAE
for some constant M. As in Lemma 6.4, the bound converges in prdbability to 0 as
110 and n— oo
LEMMA 73. B;,—=p0asn—ee,

PROOF. We have B, =n"'#{i: §,,=1) —P(§,=1), so that the conclusion follows
from the law of large numbers.

We proceed to consider terms Dj,, Dy, E;, and E,,. Let A;'=[0,y,"], where
3
Y. =inf{x: Hi(x) 21-1}, and let B;=A_x A;. Then D3, = k§1 Dsy, where

Dy = 270 [ X)) -ISx).d1 IS (y).dy) dL(x,y,d;,dy)

A’XANB;
Dy, = 277 | JSx).d)IS(y).dy) d(x,y.d;.dp)
A'XANB§
Dy; = 271 [ JSx).d) IS(y).dp) dL(x,y.d}.dp)
A'XANB§
Dy = =270 [ 1)) - J(S(x),d] J(S(y).dy) dL(x,y.d).dp)
A’XANB,
Dy = 270 [ JSx).d) I(S(y).dy) dL(x,y,d;,dp)
A'XANB§
Dy = 270 [ J(SX).dp)I(S(y).dp) dL(x,y,d;,dy).

A'XANB¢
3 3
The remainder terms Ej3, and E,, are given by E; = k§l E3x and E4 = kg.l E4 where
Ey and Eyy are defined as Dy and Dy with J(u,d)=—d~In(1 —u) and S replaced by
1- exp(—f\).
LEMMA 7.4. For fixed t€ (0,1), D3y, Dy, E3; and E,; converge in probability to
0 as n— eo.

PROOF. The function J(u,d) is uniformly continuous on A, and A/. By Lemma
4.2, D3; —»p0 and Dy) —p0 as n— . The asymptotic negligibility of E;; and E,; fol-
lows directly from Lemma 4.2.
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LEMMA 7.5. The terms D3, D33, D4y and D43 converge in probability to 0 as
tl0and n= oo,

PROOF. We consider the term D;,. Let €>0 be fixed. Let A; and 2, be defined
as in Lemma 7.2. Further, let A;’={x: 1-H;(x)>¢&/n}. By Theorem 1.4 in van
Zuijlen (1978), the set Q/={A"<A;’} has probability at least 1—¢€. Further, let M,
and Q, be defined as in Lemma 7.2. By Theorem 1.1 in van Zuijlen (1978), there
exists a constant M, =M,(€) such that the set Q,=(sup, r(nI:II/ (n+1)) r(Hl)'1<M2}
has probability at least 1—¢. Assumption A.2 and Lemma 4.1 entail

(QNQ NQNQ)DylsM | r(H*r(Hy)*dL
AxXA'NB¢
for some constant M. By Holders inequality this bound is bounded from above

M[ [ rH)?dH; [ rHy)™dHy]"2+
A'NAS ANAS

M[ [ rH)™dH, [ r(H)?dH,)" 2+
A'NAE ANA,

M[ [ rHD™dA, [ r(H)?dA,)"2
A'NAY ANAS

As in Lemma 64 [ r(Hp)?df,—p0 and [ r(H;)*dH; 5p0 as T10 and n—ee,
As A¢

which completes the proof of the asymptotic negligibility of D3,. The remaining terms

can be treated in a similar way.

LEMMA 7.6. The terms Esj, Es3, Eqy, and Ey3 converge in probability to 0 as
td0and n— e,

4
PROOF. We consider the term E;,. We have |Es3,| < k):l E;,y, Where
Ey = 277 [ A@A@dLkxy.dpdy
A’XANB§

! [ A dLxy.d;dy)
A'XANB§

Epy = 27 [ Awdlxydidy
A’XANB{

E3p

27t [ dL(xy.d;dy).

A'XANB§
Let £>0 and a<1/2 be fixed. Further, let Q;, Q., Q, and Q, be defined as in Lemma
7.5. Then

Ezz4

QN QN Q NQY Bz <MD dHx | r(H))*r(Hy)*dL
A'XANB§
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for some constant M. Since J'r(l:I')l'adf{ —p j r(u) 2 du< oo, the same argument as in
Lemma 7.57entails E33; —5p0 as t10 and n—e. The asymptotic negligibility of
terms Espy, k=2,3,4 follows from a similar argument combined with the fact that the
I, measure of A’NA!® and L, measure of AN AS converges in probability to 0 as
110 and n— . The proof of the asymptotic negligibility of the remaining terms fol-
lows in a similar fashion.
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