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ABSTRACT

We consider the problem of testing bivariate symmetry in matched pair expen-
ments where (X1,X2) are time measurements such as failure or survival times. The
observations are subject to random right censoring so that what is observed is
Yj = min(Xj, Zj) and 8j = I(Xj = Yj), j = 1,2, where (ZI, Z2) is a pair of censoring times
independent of (X1, X2). Tests that generalize the conditional Wilcoxon and the log-
rank tests are considered as well as general linear rank statistics. It is shown that suit-
ably standardized versions of these statistics are asymptotically normal under fixed and
converging alternatives and they are consistent against the alternative of ordered
hazards.

1. INTRODUCTION

Let Xi=(Xli,X2i) and Zi=(Z1i,Z2), i=l , * , n be mutually independent sets of
nonnegative bivariate random variables (rv) defined on a common probability space.
The Xi's and Z4's are independent identically distributed (iid) rv's with continuous
joint distribution functions (cdf) F and G, respectively, and marginal cdf's F1, F2 and
G1, G2. For each i = 1,--. , n, the observable rv's are given by Yi= (Yli, Y2) and
=i (Bli, 82), where Yji = min(Xji, Zji), 8- = I(Xji = Yji), and I(A) is the indicator function

of the set A. The variables Xli and X2i are thought of survival or failure times. For
each subject we observe his survival time Xji or censoring time Zji j = 1,2, whichever

*
This research was supported by the University of California Presidential

Fellowship and the National Institute of General Medical Sciences Grant SSS-
YlROI GM35416-02.



- 2 -

occurs first, together with a random variable 6ji indicating if he has left the study due
to death orwithdrawal. Examples of this kind of censoring mechanism have been
considered by several authors. Clayton (1978) for instance discusses a model to study
the famlial tendency in chronic disease incidence. For each father - son pair, X1 and
X2 denote the father's and his son's age at the onset of the disease. Then X1 and X2
are observable unless the father or his son withdraws from the study. Hanley and
Parnes (1983) report data from an experiment to investigate tolerance to two succes-
sive chemotherapy treatments for breast cancer patients. Each patient received treat-
ment I for a total of 8 cycles, unless prohibited by toxicity or disease progression.
Subsequently, she received treatment II for a total of 6 cycles, again unless prohibited
by toxicity or disease progression. Here X1 and X2 is the number of tolerated doses of
the respective treatment. The variables are observable unless the treatment has been
discontinued due to disease progression or other reasons. Further examples of this
type of censoring can be found in Langberg and Shaked (1982), Tsai et al. (1986),
Campbell (1981, 1982), Clayton and Cuzick (1985), Oakes (1982) and Wei and Pee
(1985).

The paper deals with the problem of testing the hypothesis of bivariate symmetry of
the survival times Ho: (X1, X2) has the same distribution as (X2, X1), against the alterna-
tive hypothesis that the distribution of (X1, X2) is asymmetric in such a way that X1
tends to assume larger values than X2. This testing problem was discussed extensively
by Schaafsma (1976), Snijders (1976, 1981), Bell and Haller (1969), Yanagimoto and
Sibuya (1972, 1976) and Doksum (1981) among others.

Here we consider tests based on ranks of Xli and X2i in the pooled sample
X11 X21,.. - Xin X2, These ranks arise from invariance considerations when we
tests the hypothesis Ho against the alternative H1: P(XIj < h(X20)) 2 P(X2 . h(Xli) for all
continuous increasing functions h. In Section 2 we discuss a Hoeffding type formula
for the distribution of the censored data rank vector under arbitrary bivariate distribu-
tion. This leads to construction of locally most powerful conditional rank tests. The
resulting tests are based on the same statistics as in the case of univariate two-sample
problem (see e.g. Prentice (1978) and Kalbfleisch and Prentice (1980)). However, the
critical values are obtained by conditioning on the particular configuration of ranks.
This leads to conditional similar rank tests.

In the presence of censoring, the practical evaluation of exact critical values of
these conditional tests does not seem to be feasible especially when the censoring is
heavy. In Section 3 we discuss asymptotic distribution of the corresponding uncondi-
tional tests and show that these unconditional tests are consistent against the alternative
of ordered hazards.
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Our approach to the asymptotic distribution theory patterns the Chernoff - Savage
(1958) and Pyke and Shorack (1968) approach to the asymptotic distribution of two-
sample rank statistics for uncensored data. Suitably standardized versions of the test
statistics are shown to be asymptotically normal under arbitrary fixed and converging
alternatives. The results are used to derive efficacies of the tests under contiguous
altematives. An estimator of the asymptotic null variance is provided.

2. CONDITIONAL CENSORED DATA RANK TESTS

We start with uncensored data and follow the ideas of Snijders (1976, 1981) and
Doksum (1980). Let RI,, ... , R and R21, * ,R2n denote the ranks of

Xl,9 ,X1n and X21,, .,X2m among X11,X21,.Xin. X2, Further, for each
i=l, * , n set R(1)i=max(Rli, R2i), R(2)i= min(Rli, R2i). Suppose that the joint distri-
bution of (X1, X2) has density f8(s,t) where 0>0 and let the hypothesis of bivariate
symmetry correspond to 0 = 1. For 0 = 1, we have f1(s,t) =f1(t,s) and let h be the com-

mon marginal density of X1 and X2. Further, let H be the corresponding distribution
function. The following lemma provides a Hoeffding type formula for the conditional
probability of R given R( ).

LEMMA 2.1. If the family (f(s,t): 0 >01 is dominated by h(s) h(t) then
n

Pe(Rr=R( =r( )) =

2kE1_1i=1'O(H-I(U(r,i)), H-I(U(r2i)); 0)

Here U(1)<...<U(2) is an ordered sample of size 2n from the uniform distribution on
(0,1), (D(s,t;O)= h(s)-fh(t)-1f0(s,t), c1(s,t;O)= ({D(s,t; 0)+D(t,s;0))/2 and k=

#f,i: rli#r2i).
PROOF. We have P0(R=rr R( )=r( ))P(R = r) / Pe(R( )=r( )). Further, using

independence of order statistics and ranks corresponding to H-1 (Ut) i= 1,... , 2n,
n

P0(R=r) = E[Fli=. cD(H1 (U(rii)), H-1(Ur.); 0) IR=r] P(R=r)
n (2.1)

= E[Fli=1 d1 (H-1(U(ri)), H-1(Ur,); 0)] / (2n)!

Moreover
n

Pe(R( )=r( )) = 2kE[rIi=l cl (H1(U(ri)), H1(Ur()); 0) I R=r] P(R=r)
n

- 2k E[Fli=I ' (H-1(U(r,i)), H-1(U(r2i)); 0)] / (2n)!

To verify the first of the above equalities, consider first the case of n= 1. Then from
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(2.1) we have

PO(R( )=r( )) = P0(Rll =r(l)l, R21 =r(2)1) if k=O

= P(R1I =r(1)1, R21 =r(2)1)+Po(R11 =r(2)1, R21 =r(I)I) if k= I

- 2k E[( (H_1(U(rli)), H-'(U(r2i)); 0)] / 2!

Similarly, for general n, PO(R( )=r( )) is a sum of 2k terms corresponding to 2k possi-
ble arrangements of r(I)i and r(2)i.

Tests for bivariate symmetry can be now based on scores statistics corresponding
to P0(R=r). In particular, if (XI, X2) are independent under the null hypothesis (O= 1)
the resulting tests reject the hypothesis for large values of

n
Z; [a(R1I) - a(R20)I
i=1

where a is an appropriate score function. The resulting tests look like tests for the
usual two sample problem with equal sample size, the difference is that the critical
values are determined now from the distribution of R( ). The tests are conditionally
distribution free in the sense that given the values of R( ), under the hypothesis r(1)i is
equally likely to be the rank of Xli or the rank of X2i. (See Snijders, (1976, 1980) and
Doksum (1980)).

In the presence of censoring, we define censored data ranks as in Prentice (1978)
and Kalbfleisch and Prentice (1980). More precisely, let

n
Rli = Z [8lj1(Y1j<YI)+82jI(Y2j'Yl)]j=1

n
R2 = jl [81jI(Y1j ' Y2i)+8Y2I(y2j' Y1;)].

j=1

Thus uncensored observations are ranked among themselves and each censored obser-
vation is assigned the same rank as the nearest uncensored observation on the left. For
j=1,2, let ni =£ ji be the observed number of uncensored observations among Yji's,
i=1 * - - n. Further, for each d=(dI,d2), dj=0 or 1, let Ad= {i: Ii=d1,82i=d2). The
values of nii and Ad characterize the observed pattern of deaths and withdrawals. The
censored data rank set is now thought of as the collection R of all possible rankings
(R*1, R2*) of (X1i, X2i) in the uncensored version of the experiment that is compatible
with the observed values of n- , Ad and (ri, r2i), i = 1, - * , n. Let R( ) be the set of all
possible ordered rankings (R(1)i, R(2)i) of (X l, X2i), where ((Rn,R2*): i= 1, * , n) R
The conditional distribution of R given R( ) depends in a complicated way on the dis-
tribution of both survival and censoring vanables. Following Prentice (1978) and
Kalbfleisch and Prentice (1980), we give a Hoeffding type formula for the conditional
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distribution of R given R( ) appropriate for the uncensored version of the experiment,
i.e. given the observed pattern of deaths and withdrawals.

LEMMA 2.2. Let the assumption of Lemma 2.1 be satisfied. In the uncensored
version of the experiment, the conditional distribution of R given R( ) and given the

observed pattern of deaths and withdrawals is

E rI ri ()d (H-1(U(r,i))q H-1(U(r2i)); 0)
PO(RIR( ) k

d Ad
2 E''2Dd(H -(U(r,i)), H'(U(r2i)); 0)

Here U(1) < ... < U(nl+n2) is an ordered sample of size n1 + n2 from uniform distribution

on (0,1) and k=#(i: rli.r21). Furthermore, (Dd(s,t; 0) ={d(S,t; 0) + Dd(t,s; 0)1/2 and

'Dd(5st; 0) = f (s,t)-1 f(s,t) if d= (1,1)
00

= f (s)1J fe(s,u) du if d = (1,0)

= fl2 (t1Jfo(u,t)du if d=(0,1)

= J f fo(u,v) dudv if d= (0,0).
s t

Here f11 and fl2 denote the marginal densities of X1 and X2, respectively correspond-
ing to the density fl(s,t).

The lemma follows from Lemma 2.1 and arguments similar to Kalbfleisch and
Prentice (1980, p. 154). We omit the details.

Tests for bivariate symmetry can be derived as scores statistics corresponding to
(2.2). Following Doksum (1980), we consider the generalized scale model as a special
example. Here

Xli = Ti+(0-(l)ei X2i = 0'ni+(0-l)ei (2.3)
where rli and Th, i = 1,* , n are mutually independent samples from distribution func-
tion H, H(0)= 0, and ej, i= 1, ,n is a sample from the distribution function M,
independent of mli's and mli's. A straightforward calculation shows that the joint den-
sity of (X1i, X2i) is given by

fo (s,t) = 0-1 h(s - (0- 1) e) h(O [t- (0- 1) e]) dM(e)

where h is the density of H. For 0= 1, fl(s,t) = h(s)h(t). Under suitable regularity con-
ditions (Hajek and ;idak, 1967, p.70), the scores test corresponding to (2.2) rejects the
hypothesis for large values of
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n

z [a(R11,lj) - a(R2l, 2i)]
i=l

where

a(i,d) = 21E J (U(i), d)r4k= mk(1 - U(k)) k, (2.4)

Here ak=#(i: R=k, 8ji=Oi = 1,2),Mk=#ti: Rji k,j=1,2} and

J(u,d) = -[l+H-l(u)h'(H-l(u))/h(H-1(u))] if d= 1

= H-1(u)h(H-1(u))/(i-u) if d=0.

This type of scores was extensively studied in the survival analysis literature in the
context of the usual two-sample problem. See for instance Prentice (1978), Kalbfleisch
and Prentice (1980). It can be easily verified that the score generating function J
satisfies

u

JJ(v,1) dv = -(I - u) J(u,0). (2.5)
0

The choice of standard exponential H, leads to J(u,d) =-d - ln(1- u). The resulting
test is the log-rank test based on the statistic

TN = 2-1 [A(Y2i)-2i-A(Yjj)+8jj]
where A is the Aalen - Nelson estimator (Aalen (1978), Nelson (1972))

AK(s) (2.6)
1 -H(s-)

where AK=(AK+AK2)/2, H=(H1+H2)/2, AKj(s)=n-11I(Yji=s-ji=l), Hj(s)s
n1 Y, I(Yji<5 s). The choice of loglogistic H, leads to J(u,d) = (1+ d)u - d. The result-
ing test is the censored data analogue of the conditional Wilcoxon rank test based on
the statistic

n
Un = 2-1 I; [( + 82i) ^(Y2i) - 82i + 81i) S(y1i)+ 81ii=l

where S is an estimator close to the Kaplan - Meier (1958) estimator

S(t) = 1- (1- AK(s) (2.7)
s!st 1 - H(s-) + (2n)-1

In general the exact scores (2.4) might be hard to compute. Therefore, following
Prentice (1978), Kalbfleisch and Prentice (1980), Cuzick (1985) and Dabrowska
(1986), we shall consider approximate scores statistics

UN = 2-1 i [J(S(Y2i), 62i) - J(S(Yli), ii)I
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where S is given by (2.7) and the score functions J satisfy the integral equation (2.5).

The practical evaluation of exact critical values of these conditional tests does not
seem to be feasible. In the following section, we discuss the asymptotic distribution of
the unconditional tests and show that these unconditional tests are consistent against
the alternative of ordered hazards.

3. ASYMPTOTIC DISTRIBUTIONS: ASSUMPTIONS AND RESULTS

First let us introduce some assumptions to be used throughout this and subsequent
sections.

A.J. For each n = 1,2,..., (Xli X20) and (Zli Z20), i = 1, * ,n are mutually
independent sets of iid nonnegative bivariate rv's with continuous joint cdfs
Fn and Gn=G and marginal cdfs F,1, Fn2 and G1, G2.

For each n define Ln(s1t1d,d2),=dP(Y1 s, Y2i . t, 6lj . dl, 82 =d2) and for j = 1,2
let Lnj(s,d) = P(Yji .s 8.is d), Hnj(s) = P(Yj1 s s) and Knj(s) = 1 - P(Yji> s, 6ji= 1). Under
assumption A. 1, these cdf's may be easily expressed in terms of Fn and G. Moreover,
L,Lj, H1 and Kj, their limiting distributions, exist and depend on F and G only.
Finally, let L, Lj, Hj and Kj denote the corresponding empiricals.

The proof of the asymptotic normality of suitably standardized versions of Tn and
Un rests on a decomposition into sums of leading terms which are asymptotically nor-
mal, and remainder terms, which are asymptotically negligible. As regards the statistic
Un, we assume that the score generating function J satisfies the following smoothness
and boundedness conditions.

A.2. For d=0,1, J(u,d) is a continuously differentiable function on [0,1)
such that IJ(u,d)1 cr(u)a and IJ'(u,d)I < cr(u)b where r(u) = (1 - u)1 and c> 0,
0<za, b< 1/2.

Define

t dKn
An(t) = H

and

Sn(t) = 1-exp{-An(t))
where Kn = (Knl + K2) /2, Hn = (Hnl + Hn2) /2. Furthermore, let A(t) = lim An(t) and
S(t) = lim Sn(t). Set
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Ain = n1/2 2-1 J(Sn(y), d) d(L2 - Ln2)(y,d)

A2n = -n1/2 2-1f J(Sn(y), d) d(LA - Lnl)(y,d)

A3n = n112 2-1 Wn(y) (1 - Sn(y)) J'(Sn(y), d) dLn2(y,d)
A4n = -nl/2 2-1'Wn(y) (1-Sn(y)) J'(Sn(y),d) dLn1(y,d).

Here
y Y.

Wn(Y) = f(Hn--H) r(Hn)2 dKn + fr(Hn) d(K -Kn)
0 0

LEMMA 3.1. Let the assumption A.1 be satisfied and let J be a function such that
4

A.2 holds with O<bc 1. Then with probability 1, nl12 X,, Ak is a sum of iid rv's with
mean zero and absolute moment of order 2+ ril, uniformly bounded above for some
j>O0.

The proof is deferred to Section 4. To standardize Tn and Un for location and
scale, define

= (FnG) = 2-E[J(Sn(Y2),82)-J(Sn(Y1),81)I
-n2= 2(Fn, G) = var(X=1 An).

Under conditions of Lemma 2.1, 2 is well defined and converges to
a2= a2(F,G) = var(4=1 Ako) where the variance ao is evaluated under F and G and the
terms Ako are defined as Akn with Sn, Hn, Kn and Lnj replaced by their limiting distri-
butions. Further, with probability 1

4
n 2(Tn-n)= 41Akn+Bn (3.1)
n12 (Un- tin) = 1 Akn+ Cn (3.2)

where Bn and Cn are remainder terms.

THEOREM 3.1. Let the assumptions A.1 and A.3 be satisfied. Suppose that
Y2> 0 for J(u,d) = -d - ln(I - u) or J satisfying A.2. Then n1/2 (Tn- jn) and respectively
nl'2 (Un- jn) converge in distribution to N(O,ao).

The proof of the theorem is given in subsequent sections. In general, the asymp-
totic variance of Tn and Un depends in a complicated way on the underlying joint dis-
tributions of both survival and censoring times. We consider now the case of the null
hypothesis Ho: F(s,t) = F(t,s) in more detail.

Under the null hypothesis, if the integral equation (2.5) is satisfied then Lemma 4.1
and assumption A. 1 entails S =F1 = F2 and E[J(S(Y), 5j) I Zj]= 0, so that the asymptotic
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null mean is equal to zero. Furthermore, a simple calculation shows that if (2.5) holds
then in the case of the statistic Un the asymptotic null variance is equal to

u= 471 E [J(S(Yli), 81i) - J(S(Y2i), 62i]2
- 4-1 EJ (S(Yl))2 51i + EJ (S(y2i))2 82i - 2 E [J(S(YIi), 81i) J(S(Y2i), 82d)] 1.

Here J (u) = J(u, 1) - J(u,O) and S = F1 = F2. If in addition F(s,t) = Fl(s) F2(t) then the last
expectation is equal to 0. In the case of the log-rank statistic the asymptotic null vari-
ance is equal to

ao02T = 471 {P(81i = 1) + P(62i = 1) - 2 E [(A(Yli) - Bli) (A(Y2i) - 62)1)

where A is the cumulative hazard function corresponding to S = F1 = F2. If in addition

F(s,t)=FI(s)F2(t), then aoT=4-1(P(6 i=1)+P(62i=1)). In practice, we have to esti-
mate the asymptotic null variance from the data. In the case of the approximate scores
statistic Uw, set

n

2= (4n)1 { l f (S(Y 1))2 61i + Xj=1 J (S(Y2i)) 62i

-2 XA I J(S(Y1, I J(S(Y2i), 62d)]
In the case of the log-rank statistic, set

2
n n n

&T = (4n) (2li=1 1i+li=1 62i-21i=1 (A(Yli)-Bli) (A(y2i)-82i))
THEOREM 3.2. Let the assumptions of Theorem 3.1 be satisfied. Under the

hypothesis of bivariate symmetry, d 2 and dT are consistent estimators of aiu and G&T,
respectively.

The Proof is deferred to Sections 5 and 7.

The following corollary establishes the consistency of the tests against the alterna-
tive of ordered hazard functions H1 : X1 2 X2, where Xi=fi/ (1 -Fi) and fi is the density
of Fi, i = 1,2.

COROLLARY 3.1. In the case of the statistic Un, assume that the conditions A.1
and (25) are satisfied and let J (u) = J(u, 1) - J(u,0) be a nondecreasing function. The
tests n1/2 U td/ and n112 Tn / ET are consistent against H1.

The proof is given in Section 5.

Finally, we consider efficacies of these tests. Let F(s,t) be a symmetric cdf and
consider the sequence of contiguous alternatives Fn(s,t) given by

dFn(s,t) = f 1 + n-1/2 4n(s,t)) dF(s,t)

where 4,n is a sequence of functions converging to 4, 4n(s,t) . 4n(t,s), 0(s,t) . 4(t,s) and
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J 4(s,t) dF(s,t) = f4(s,t) dF(s,t) = 0.

Set

=n(f) O(s,t) dFt(s,t)
0
00

42n(t) = JPn(st) dFs(s,t)
0

where dt F(s,t) and ds F(s,t) stands for integration with respect to t and s, respectively.
Then the marginal cdf's Fnl and Fn2 of Fn are of the form

dFni(x) = (1+ n124ni(x)) dS(x)

where i = 1,2 and S = F1= F2. Set
x

(Dni(x) = fni(u)dS(u).
0

Finally, let Oi and (i be the limits of oni and (Dn, i= 1,2.
COROLLARY 3.2. In the case of the statistic Un, assume that the conditions A.J

and (2.5) are satisfied and let J (u) = J(u,1) - J(u,0). The efficacies of the tests based on
Tn and Un are given by

eT(°) = {0H +HD }1 D2) S1dA

and

eu(4) = J (S) - I 2+((D1- '2)IS]dA /(You

where sav and &U are the asymptotic null variances of Tn and Un.

4. PRELIMINARY LEMMAS

In this section, we give a few lemmas which characterize the behaviour of
processes A and S.

LEMMA 4.1. For n = 1,2,... and all t

(i) Sn(t) = J- Sn(x-)) dAn(x)
0
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S(t) 1(1 - S(x-)) (1 - H(x-) + (2n)-1) dK(x)
0

(ii) Sn(t) < Hn(t) and S(t) < 2n H(t) / (2n + 1)

(iii) For all t such that Sn(t) < 1

S(t)-~(t) j. -S(X-) ( dK(x) dnX]
o - Sn(x) 1 -H(x-)+(2n)]

PROOF. The proof rests on a repeated application of the following result due to
Liptser and Shiryayev (1978, p. 255) and Gill (1980, p. 153). If A and B are right
continuous nondecreasing functions on R+, zero at time zero, and AA < 1 and AB < 1,
then the unique locally bounded solution Z of

Z(t) = J 1 (dA(x)-dB(x))

is given by

[1(1 -AA(x)) exp(-Ar()
Z(t) = 1 - ( (x)) (4.1)11I(1 -AB(x)) exp(-B,,(x))

where the products are taken over x < t,

(i) The choice of A(t) = An(t), B(t) 0 and an argument similar to the proof of
Lemma 3.2.1 in Gill (1980) shows the first part of (i). The second follows by setting

A(t) = f [1 - H(x-) + (2n)f1]-l dK(x) and B(x) 0.
0

(ii) Since dKn < dHn, we have by (i) Sn(t) = 1 - exp(-An(t)) <
t dH,I

1- exp(-J ) = Hn(t). Further, a straightforward calculation shows that
0

2n AAH(xW
2n+1 x5t 1 - 1H(1x-I(2n)-'

Comparing each term of the product with terms appearing in the product defining S(t),
we obtain S(t) . 2n H(t) / (2n + 1).

(iii) This follows from (4.1) by setting

A(t) = [1 - H(x-) + (2n)t] dK(x) and B(t) = An(x).
0

LEMMA 4.2. For t such that H(t) < 1, suptIA(t) - An(t)I : 0°.t `) - 0 a.s. and

supt IS(t) - Sn(t)1 : 0 < t < r) e~O a.s.
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The proof is similar to Shorack and Wellner (1986, p. 305). We omit the details.

LEMMA 4.3. For X such that H(t) . 1, the processes Wn and (1-Sn)Wn con-
verge weakly in D[O,t] to mean zero Gaussian processes W and (1 - S)W, respectively,
and sup[0,J tA- An -WnlW -p 0 SUP[O,tJ IS- Sn - (1 - Sn)Wnl -*p 0.

The proof of this Lemma can be carried out in a fashion similar to Breslow and
Crowley (1974). Note however, that since (X1n, X2n) and (Zn, Z2n) may be pairs of
dependent random variables, the covariance structure of W and (1- S)W depends on
the joint distributions F and G.

5. PROOF OF THEOREMS 3.1 AND 3.2: LEADING TERMS

The proof of Lemma 2.1 rests on a repeated application of inequalities

I(Yji<x)-Hj(x) 1 -I(Yji>x,8i= 1) Kj(x) 1, sr(Hn,j(Yji))'-'Yr(H,,j(x))-"-Y) (5.1)

for 7E (0,1), j= 1,2 and i= 1, . . * ,n. Further, Lemma 4.1 (i) and A.2 imply

I J(Sn(x), d) < cr (Hn(X))a
| J'(Sn(x), d) | < cr (Hn(x))b. (5.2)

PROOF OF LEMMA 2.1. We shall show that each of the tenns Akn, k= 1,2,3,4
is a sum iid rv's with mean zero and finite absolute moment of order 2 + rj uniformly
bounded from above for some rl > 0. By symmetry, it is enough to consider the terms

Ain and A3n. In what follows, M denotes a generic constant independent of n and the
underlying cdf's.

Set Jln=EJ(Sn(Y2i), 82). We have nl/2A1n=£in= [J(Sn(y2i)1,62i)- ln] which is a
sum of iid mean zero rv's. Further, by (5.2)

E I J(Sn(Y2i), 82i)2+1 < cEr (Hn(Y2i))(2+1)a
= c r(Hn(x))(2+fl)a dHn2(X) < M r(u)(2+TI)a du < co

provided Tl> 0 is chosen so that a(2 + Ti)< 1. This however can be always achieved
since a< 1/2. Further, we have n12A3A=X1 l A3i, where

A = JWni(x)( 1- Sn(x)) J'(Sn(x), d) dLn2(x,d).
The process Wni is defined as Wn except that H and K are replaced by

Hi=(Hjj+H2j)/2 and Ki=(Kli+K2i)/2, where Hji(x)=I(Yji<x) and Kji(x)=
1-I(Yji>x,iji=1),j=1,2, i=1, * . . ,n. By (5.2) we have

IA3il < c I Wni(x) I r(Hn(x))a dHn2(x).
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Integration by parts and a little algebra entail that with probability 1, this bound is
bounded from above by XAl A3ik, where

x

3= 2-ic f [J j Hn I I r(Hn)2 dHnI r(H (x))a dHI2(x)
0

x

A3i2 = 2-ic f [J I Kjj-Kn1 I r(H )2 dHl] r(Hn(x))a dHn2(x)
0

3 = 2-ic J i K11(x) - Kn1(x) I r(Hn(x) dHn2(X)
A3i4= A3M8 = M r(Hn)a dHn2.

The terms A3M5, A316 and A307 are defined in the same way as A3M1, A32 and A3i3,
respectively, except that IH2i-Hn2j and IK2i-Kn2I replace H1j- Hnjl and iK1j-Knj1I
By symmetry, it is enough to consider the terms A3M1, A3M and A313.

Applying (5.1) with = 1/2+r1, we obtain
x

A3i < 2-1cr (Hi1 (y1i))1I2-,l |[r(Hnl)-1/2+ r(Hn)2dH] r(Hn(x))adHn2(x)
0

< Mr (Hn1(Yjj))1'2-'1 |r(u)'-'ldu Ir(u)a+1/2+211 du.

The 2+ il moment of the random part on the right hand side is finite and independent
of n because (1/2 -ri)(2 +TI) < 1 for all rt. The deterministic part is uniformly bounded
from above provided a+1/2+2rj<1. The same argument shows that the 2+Ti
moment of A3M is uniformly bounded from above provided a+ 1/2 + 2rj < 1. Further,
applying (5.1) with y= 1/2 +TI

AM < 2-lcr (H,1j(Yjj))l1/2- Jr(Hn)a+l r(Hnl)-2' dHJ,2
< Mr (Hn, (Yl1))1/2- fr(u)a+l/2+71 du

and the same argument as in the case of A3il shows that the 2+ Tl moment of A3M3 is
uniformly bounded from above provided a+ 1/2+TI < 1. Finally,

A4= A3i8' M r(u)a du < oo

since a< 1/2.

PROOF OF THEOREM 3.1. The proof of the asymptotic negligibility of the
remainder terms Bn and Cn is given in Section 6. With an appropriate choice of the
function J, Lemma 2.1 and Esseen's theorem imply n1/2 (Tn - gn) /In and
nl2(Un- ) /Iok converge weakly to a standard normal distribution, provided
liminfa2>0. Finally, a lengthy algebra and Theorems 5.5 and 5.4 in Billingsley
(1968) show that asn-*a as n-oo.
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PROOF OF THEOREM 3.2. Let L(x,y,dl,d2) be the joint distribution function of
(Yli, Y2i, 1i, 2i) and let L be the corresponding empirical distribution function. We
can write

6U -YU = 4-1 {J2(S)d(L1-L1) +J 2(S)d(L2-L)
-2 J(S(X) d1) J(S(y), d2) d(L - L) (x,y,dl,d2) + Dn (5.3)

where Dn is a remainder term. Similarly

a,T-(f = 4 1(Jd(L1-L1)+fd(L2-L2)
- 2 |(-ln(l -S(x)) -dl) (-In(I- S(y)) -d2) d(L- L)(x,y,dl,d2) +En (5.4)

where En is a remainder term. The asymptotic negligibility of the terms Dn and En is
shown in Section 7. The leading terms are sums of iid mean zero rv's so that the con-
clusion follows from the law of large numbers.

The following lemma is needed to prove Corollaries 3.1 and 3.2. For i = 1,2 let
H = 1 - Hni and let

t

Ani(t) = f(Fni)-1 dFni
0

be the cumulative hazard functions corresponding to cdf's Fni.
LEMMA 5.1. Let (2.5) and the assumptions of Theorem 3.1 be satisfied. Then

g(Fn,G) = IJ (Sn) Hni Hn2 (Hnl + Hn2)1 d(Anl- An2)
Here J (u) = J(u, 1) - J(u,O) for J satisfying condition A.2 and J (u) 1 for the log-rank
statistic.

PROOF. The equation (2.5) entails J(u,O) =0 for u = 0 and

J(u) = J(u,1)-J(U,O) = -(1- U)J'(U,O).
Integration by parts and Lemma 4.1 yield for i = 1,2

i= J(Sn,1)GnidFni+ J(Sn,0)FnidGn
= JJ (Sn) Gni dFni + JFin Gin J'(Sn,0) dSn
= JJ (Sn) Gn1 dFni + Fni Gni J'(SnO)( 1- Sn) dAn
= J (Sn) Gni dFni-J (Sn) Fni Gni dAn-

Using dKn= Gni dFni and Hni = Fni Gni, we obtain

p.1 = fJ(Sn)HInH2n(Hln+H2n)l d(A1n-A2n).
and
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2= J (Sn)H1nH2n(H1n+H2n) d(A in)
The conclusion follows by noting that g(Fn,G) = (2- 1)/ 2.

PROOF OF COROLLARY 3.1. Consider a fixed alternative F(s,t) such that

I X2. By Theorem 3.1 nl/2(Un- (F,G)) and nl/2(Tn- (F,G)) converge weakly to
mean zero normal distributions. Furthermore, by Lemma 5.1 n1/2 g(F,G) -- oo. To
complete the proof, it is enough to note that du and d4 converge in probability to a
finite value. This can be established along the lines of the proof of Theorem 3.2.

PROOF OF COROLLARY 3.2. The proof follows directly from Theorem 3.1,
Lemma 5.1 and some simple algebra.

6. PROOF OF THEOREM 3.1: REMAINDER TERMS

We now give the decomposition of the remainder terms B and Cn. Set

A=[O,maxY2j] and A'=[0,rmaxYjj]. The remainder term Cn in (3.2) is given by
Cn= Cin+ C2n, where

C= 2-1 J n12 [J(S(X),d) -J(Sn(x),d)] dL2(x,d)-3n
A

C2n = -2-1 J n112 [J(S(x),d)-J(Sn(x),d)] dL,(x,d)-A4n.
At

The remainder term Bn in (3.1) is given by Bn=Bln+B2n, where Bkn are defined as
Ckn with J(u,d)=-d-ln(l -u) and S replaced by 1 -exp(-A). The terms Cin and C2,
Bin and B2n are symmetric so in what follows we consider Cin and Bin only. For any

4
X E (0,1), let A= [0,y,] where y}=inf(s: H2(s) > 1 -t}. Then C1n=kY Clk where

k=1

Cl1 = 21 fn1"2Wn(x) (1 - Sn(x)) J'(Sn(x),,d) d(L2 - Ln2)(x,d)
ArsA

C12 =21 J nl/2Wn(x) (1 - Sn(x)) J'(Sn(x),d) dLn2(x,d)
AcuAf

1/2

C13 = 2-1 n112 [J(S(x),d) - J(Sn(x),d) -(1 - Sn(x)) Wn(x) J'(Sn(x),d)] dL2(x,d)

C14 = 2- n112 [J(S(x),d) - J(Sn(x),d)] dL2(x,d).
AnAc

4
Analogously, Bin= F BIk where BIk are defined as CIk with J(u,d)=-d-ln(l-u) and

k=1

S replaced by 1- exp(-A). The asymptotic negligibility of these terms will be proved
by a sequence of lemmas showing that Cll, C13, B11 and B13 converge in probability
to 0 for any fixed e (0,1) and n-4 oo, whereas the terms C12, C14, B12 and B14
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converge in probability to 0 as T 1 0 and n - oo.

LEMMA76.1. Forfixedte (0,1), Cll-*p0andB11--pOas n--oo.

PROOF. Assuming that the function J satisfies assumption A.2 with b < a+ 1, it is
enough to consider the term C11 only. Let re (0,1) and F>0 be fixed. For any posi-
tive integer m define Xm(x) =Y(k - 1) /m for yt(k - 1) < x < yrk/ m, k= 1, - - - , m. For

3
arbitrary m, we have ICIlIl < E Cllk where

k=1

Cilim = J nl2lWn(x)-Wn(Xm(x))l I4)n(x,d)Id(L2+Ln2)(x,d)
AnAl

Cl12m = J n IWn(Xm(x))l 1n(xd)-n(Xm(X),d)I d(L2+ L2)(x,d)
Ar%At

Cl13m = I J nl12 Wn(Xm(X)) 4n(Xm(X),d) d(L2 - Ln2) (x,d)I

and 4n(x,d) = (1 - Sn(x)) J'(Sn(x),d).
There exists a constant M1=MM(t) such that for n large enough supjSn-SI< r/2

and supAj1( -,d)I<Mj. Further, there exists a constant M2=M2(,e) such that for n
sufficiently large the sets 01= I supA n12 lWnl< M2} and Q22 = (A. cA) have probability
at least 1-e.

By Lemma 4.3, the process n1/2Wn converges weakly in D(A.) to a Gaussian pro-
cess W. Therefore, by employing a Skorokhod construction,
supk n1/2 lWn-W n o XmI -pO as n,m -o and there exists a sequence rt,, T1, -+0 as

m,n -4 oo, such that the set Om =SUPA, lWn - Wno0 Xml<ln) has probability at least
1 - e for all m and n sufficiently large. It follows that
-I42, r) Q2 n K2m)Cl 1 lm < M il mn 0°

Further, for d = 0,1 the function J'(u,d) is uniformly continuous on [0, 1 -X/2] so
that for n sufficiently large n = supA,, I(x,d) - 0(Xm(x),d)I -- 0 as m . It follows
that I(MI nC 2) C1 12m < M24. -< 0 as m,n -oo.

Finally, for n sufficiently large, on the event Q I 2 the integrand of Cll3m is a
step function assuming value akmd for d = 0,1 and x belonging to R, =(y (k -1) / m,
y,k/m, k= 1, * * , m. Therefore

m1
I(QInQ2)C113m = I Y 0akd |d(L2-Ln2)

. 4m M2(M1+ 4.) SupIL2 - L,1j-*p 0 as n - c*.

Since P(921)> 1- e and P(422)> 1-E and e was arbitrary, the conclusion follows.
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LEMMA 6.2. Forfixedte (0,1), C13-p0 and B13--pO as n--oo.

PROOF. By the mean value theorem, under condition A.2

J(S(x),d)-J(Sn(x),d) = (S(x) - Sn(x)) J'(Dd(x),d)

for xe A and d = 0,1. Here Dd is a random function assuming values between S(x) and
Sn(x). We can write C13 = C131 + C132, where

Cl31 = 2-1 J n112 Wn(x) (1 - Sn(x)) [J'((Id(x),d) -J'(Sn(x),d)] dL(x,d)
An.A&

C132 = 2-1 n2 [S(x) - Sn(x) - Wn(x) (1 - Sn(x))] J'((Dd(x),d) d(x,d).
AnAv

Let re (0,1) and c>0 be fixed. For n sufficiently large supISn-Sj< /3. Further, there
exist constants M1 and M2 such that for n sufficiently large, the sets

Q,= sup(IJ'(Dd(x),d): xe A,,d=0,1)<Mj) and Q2=(supAnl/2IWnI<M2) have pro-
bability at least 1 -e. For n sufficiently large, the sets Q3= (A.cA) and
Q4 = (supA, IS - Snl <t/3) have probability at least 1 - e.

We have

Q1 n f22n Q4) 1C1311 < M2[SUPA, IJ'(QIl(x),1) -J'(Sn(x),I)
+ supA, IJ'Q:o(x)0)-J'(Sn(x),0)l]1

For d=0,1, the function J'(u,d) is uniformly continuous on [0, 1- t/3] so that
lDd - Snl < IS - SI and Lemma 4.2 imply that this bound converges in probability to 0 as
n -- oo. Further

I(k- 1 Kk) 1C132I < M1 supAr nn2 IS-Sn-Wn( 1-Sn)I
By Lemma 4.3 this bound converges in probability to 0. Since
k= 1,2,3,4 and c was arbitrary, it follows that C13 -p 0 as n - oo.

The proof of the asymptotic negligibility of B13 follows immediately
4.2 and 4.3.

LEMMA 6.3. C14-4p 0 and B14-p 0as t I O and n- oo.

PROOF. Assuming that the function J satisfies condition A.2 with
4

enough to consider the term C14 only. We have IC141 ' kI C14k, where
x

C141 = J n1/2 ( IH1-Hnll r(Hn)2 dHn) r(Hn(x))a dHn2(x)
A& Ar 0

P(k) > 1-8,

from Lemmas

b.a+l, it is

x

C42 = 2-1 f n(Jn IHj - Hn2I r(Hn)2 dHn) r(Hn(x))adHn2(x)
AcuAr 0
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x

£143 - 2-1 f n1"2r(Hn)d(Ki -Kil)lr(Hn(x))adI71n2(x)
A,CuA 0

x

C144 = 2-1 ' n112 IJr(Hn) d(K2 -Kn2)1 r(Hn(x))a dHn2(x).
ACuA- 0

Let us consider the term C141. Let e>0 and rX, O<21< 1/2-a be fixed. Corollary 1.1
in van Zuijlen (1978), there exists M1 = M1(e) such that the set
Qi= (sup n12HI -Hn1Ir(Hnl)1/2-1l<Ml) has probability at least 1-e uniformly in n.
Therefore

x

4921) C141 < 2-'M1I (r(HJul)-1/2+'l r(Hn)2dHn) r(Hn(x))adHn2(x)
ACAtAC 0

<MM, r(Hn)1-l dH, J r(Hn2)a+l/2+11 dHn2 (6.1)
AcuA c

for some constant M. The first integral in this bound does not depend on n and the
underlying cdf's. To handle the second term, consider the integral

|r(H2)'1/X2+n dH2.
AfC

Applying dominated convergence theorem, we can find t =t(e) such that for all t . t
this integral is less than c/2. For this X there exists n such that the set !Q2= (A CA
has probability at least 1 - e and

f [r(H2)a+1n211 dHn2- r(H2)a+l/2+n dH2j < e/2
Ac

for all no. n. It follows that the second integral in (6.1) is less than e with probability
at least 1-efor tstand n2n, ie C141pP0 as TIOand n oo.

The proof of the asymptotic negligibility of the remaining terms is similar.
LEMMA 6.4. For any 0 5 c < 1/2

Jln= J n2 A - AnI r(Hn2)c dH2
x

J2= nl (fr(F)r(H - (2n)l) dK) r(Hn2(x))c dH2(x)
0

converge in probability to 0 as t X 0 and ne co.
PROOF. Let e>0 and , 0<2,< 1/2-c be fixed. We have

I r(H,)C+l/2+2dH2 ->P 0. (6.2)
arAnA
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as 'r I 0 and n -+ . This holds since
r ~~~~~~~~c+1/2+E j r(H,)D dH2.s r(Hn 2+2) dHn2

and we can apply to this bound the arguments used in Lemma 6.3.

Let A.= (x: 1-Hn2(X) > l/n) and A.'= (x: 1- Hr1(x) > £/n}. By Theorem 1.4 in
van Zuijlen (1978), the sets £lE= (AcAF) and Q,'= (A'cA,'} have probability at least
1 E.

We have I(9.E)Jln'JII+J12, where
x

J1 = nl"2 f (J 1W - Hnl r(Hn) r(H) dK) r(Hn2 (x))c dH2(x)
AnAf 0

x

J12 = nl"2 f IJr(H.) d(K1 - Knl)l r(Hn2(x))c dH2(x)
AnAc 0

By Corollary 1.1 in van Zuijlen (1978) there exists a constant MI=Ml(e) such that the
sets H H= Isupn"2 HT-Hn1r(Hn1)"2 <M} and
(supn2 H - Hn2lr(Hn2)12-'l<Ml) have probability at least 1 - e/2 uniformly in n.
Set M2 = 2-1/2- Ml and let Q3 = 1supn112 nW - HnI r(H:)112- <M2 }. Since
Q21 rn Q2 C Q3, the set Q3 has probability at least 1 - e. We have

x

I(Q£En Q3)Jl 1 < M2 |[r(Hn)l+n H(r dK] r(H,n2(x))c dH2

< 2-1 M2 f [Jr(Hn)u/2+11 r(HT) dH1] r(Hn2(x))C dH2AnA c o

x

+ 2-1 M2 J [Jr(Hn)l/2+`1 r(H) dH2] r(H:2(x))c dH2
AnAf 0

= jlll+JI12-

By Theorem 1.1 in van Zuijlen (1978), there exists a constant M3=M3(e) such that the
sets C24 = (sup r(Hj (u))r(H Wl(uX < M3, 0. u s maxyl) and

s= (supr(H2(u))r(Hn2(u)y <M3, 0. u . max Y20) have probability at least 1- .

Since r(W) c 2r(Hi) and r(Hn) < 2r(Hnj), i = 1,2
5

We3havelJr(H)ldH~ r(u)1 d st (2 al1OndHA r(Hn2)c+at2+dH0a

We have |r(Hni)'-dHqd r(u)l-'Idu, so that (6.2) entails Jll1 >OP as cI0 and
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n -* oo. A similar argument, coupled with integration by parts, shows J12 -+pO as Jt10
and n -4.

Further,
5

I(nk=3 fk n O)J2n<
x

2-1 f np12 (Jr(W) r(FF - (2n)f1) dH1) r(Hn2(x))C dH2(x)
ArAf 0

x
+ 2-1 J if12 (Jr(HT) r(H - (2nfl) dH2) r(Hn2(x))CdH2(x) = J21 + J22.

AncAN 0

For some constant M, we have

I(Q.'J21. MnJf12 J r(Hnl)3 2'1 dHI J r(Hn2)C+ dH2

< Mn 1/2 (n/e) 1/2- Jr(Hn ) 1/2 dl' I r(Hn2)c+1+2 d '2

and

J2 < Mn-f2 f r(Hn2,)3'2- dH2 J r(Hn2) +2n dH2
Ae Ar,Af

. Mn-112 (n/e)l/2-11 Jr(Hn2)l2-1 dH2 J r(Hn2)c+1/2+2 dH2.
AnAW

Since Jr(Hnj)l/2'ldi-->p fr(u)1/2-l du (6.2) entails J2n--pO as t I 0 and n-oo.
LEMMA 6.5. B14 --P0 and C14-0pO as t IO and n - oo.

PROOF. Setting c=0 in Lemma 6.4, we have IB141 < 2JIn so that B14-p 0 as t40O
and n -> oo.

Let QE and Q2k, k =1, , 5 be defined as in Lemma 6.4. By the mean value
theorem, condition A.2, Lemma 4.5 and in van Zuijlen (1978)

( h ¢rs 3 S2k) C14 cn1/2 f IS(x)-Sn(x)l IJ'(Dd(x),d)l dL2(x,d)

< nl12M s - Snl r(Hn2)b dL2
AcSA

for some constant M. Applying inequalities IxI- x21 < lln x, - In x21 for 0< xl,x2 < 1 and
0<-ln(l-(1+xy1 )-(l+x-( )<(x(x+l))-I for x>0, it can be verified that for xeA,
on the set Q. we have

x
S(x) - Sn(x)l < IA(x) - An(x)I + nl fr(HY) r(Hf - (2nY"1) dK.

0
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Therefore I((k%=3S2k C .)C14 .M(Jl,+J22) where JIn and J2n are defined as in
Lemma 6.4 with c = b. It follows that C14 -p 0 as t I 0 and n -* oo.

7. PROOF OF THEOREM 3.2: REMAINDER TERMS

We give the decompositon of the remainder terms Dn and En. As in Section 6, let
A = [0,maxY2JI and A'= [0, max Yli]. The remainder term Dn in (5.3) is given by

4
Dn= £ Dkn where

k--~1

Din = 4-1 (J (S) - J (S)) dL2

D2n = 4-' (J(S)-J(S))dL1

D3n = -2-1 (J(S(x),dl) - J(S(x),dl)) J(S(y),d2) dL(x,y,dl,d2)
AXA'

D4n = -2- f (J(S(x),dl) -J(S(x),d2)) J(S(y),d2) dL(x,y,dl,d2).
AxA'

4
The remainder term En in (5.4) is given by E = £ Ekn, where Ekn are defined as Dkn
with J(u,d)=-d-ln(I -u) and S replaced by 1 -exp(-A). The terms Din and D2n, Ein
and E2n are symmetric so in what follows, we consider D1n and E1n only.

3
For tE(0,1), let A.=[0,yT] where y,=inffx:H2(x)>1-t). Then D1i=n Dlk,

k=1
where

DI = 4' f (J (S)-J (S))dL2
MAnA

D12= 4-1 J (S) dL2
AnAW

D3=41 1 J J(S) dL2.
Ar1.ACI

LEMMA 7.1. Forfixed t (0,1), D 1->p0 as noo.

PROOF. The function f is uniformly continuous on A,. The conclusion follows
from Lemima 4.2.

LEMMA 7.2. D12-*pO and D13-p Oas X1LO and n-*oo.
PROOF. Let e>0 be fixed. Let A£= (x: 1 -H2(x) >e/n). By Theorem 1.4 in van

Zuijlen (1978), the set E={CAcAe) has probability at least 1-e. Further, by
Theorem 1.1 in van Zuijlen (1978), there exists a constant Ml=MI(e) such that the set
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[={sup, r(nH2 /(n+ 1)) r(H2)-l<Ml) has probability at least 1 - c. Assumption A.2
and LemmaA.41 entail

I(iE ' Qi) D12 ' MM1 J r(H2)b dH2
AnAsc

D13 M J r(H2)bdH2

for some constant M. As in Lemma 6.4, the bound converges in probability to 0 as
tr I0 and n -* oo.

LEMMA 7.3. Bin -p O as n4 oo.

PROOF. We have Bin=n-l#i: 62i= 1) -P(82= 1), so that the conclusion follows
from the law of large numbers.

We proceed to consider terms D3n, D4n, E3n and E4n. Let A. =[0,], where
3

,y'= inf(x: HI(x). 1-'I , and let B =A'x A. Then D3n= k DA, where
k=1

D31 = 2-1 f [J(S(x),dl) - J(S(x),dl)] J(S(y),d2) dL(x,y,dl,d2)

D2= -2-1 f J(S(x),d1) J(S(y),d2) dL(x,y,d1,d2)
Y'xAnB,

D32 = 2-1 f J(S(x),dl) J(S(y),d2) dL(x,y,dl,d2)
Y'xAnBc

D41 = 2-1 f [J(S(x),d1)-J(S(x),d2)JJ(S(y),d2)dL(x,y,dpd2)A'xAnB c

D42 = -2-1 J(S(x),dl) J(S(y),d2) dL(x,y,dl,d2)

43= 21 J(S(x),dl) J(S(y),d2) dL(x,y,dl,d2).
AYxAr~3¶c

3 3
The remainder terms E3n and E4n are given by E3n= I ER and E4n= Z, E4k where

E3k and E4k are- defined as D3k and D4k with J(u,d) = -d - ln(1- u) and S replaced by
1 - exp(-A).

LEMMA 7.4. For fixed t e (0,1), D31, D41, E31 and E41 converge in probability to
O as n - .

PROOF. The function J(u,d) is uniformly continuous on A, and At'. By Lemma
4.2, D31 -p 0 and D41 -p 0 as n co. The asymptotic negligibility of E31 and E41 fol-
lows directly from Lemma 4.2.
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LEMMA 7.5. The terms D32, D33, D42 and D43 converge in probability to 0 as

tdI 0 and n - oo.

PROOF. We consider the term D32. Let -> 0 be fixed. Let A. and Q£ be defined

as in Lemma 7.2. Further, let A '=(x: 1-Hl(x)>e/n). By Theorem 1.4 in van

Zuijlen (1978), the set QK'= (A'cAe'} has probability at least 1 -e. Further, let M1

and f1 be defined as in Lemma 7.2. By Theorem 1.1 in van Zuijlen (1978), there

exists a constant M2=M2(c) such that the set Q2=(supAr(nHl/ (n+ 1))r(HjF1 <M2)
has probability at least 1- e. Assumption A.2 and Lemma 4.1 entail

I(2 In Q£'r).01 r^ n2) ID321 < M J r(H1)ar(H2)a dL
AxA'nBI

for some constant M. By Holders inequality this bound is bounded from above

M [ f r(H1)2adH |f r(H2)2adH2jlI2+

M [ J r(H1)2adH1 J r(H2)2adH2]112+
APriA'c AnAT

M [ J r(HI)2a dH1 J r(H2)2a dH2]112
Yn^Ar' AnA c

As in Lemma 6.4 Jr(H2)2adH24p0 and J r(Hj)2adHj -*pO as 40 and n-moo,
ArC AC

which completes the proof of the asymptotic negligibility of D32. The remaining terms

can be treated in a similar way.

LEMMA 7.6. The terms E32, E33, E42, and E43 converge in probability to 0 as
t4 0 and n ->oo.

4
PROOF. We consider the term E32. We have 1E321 ' k, E32k, where

k=1

E321 = 271 J A(x) A(y) dL(x,y,dl,d2)
A'xAnB c

E322 = 21 A(x) dL(x,y,dl,d2)
A'x(ArBt

E323 = 2-1 f A(y) dL(x,y,dl,d2)
A'xAnBc

E324 = 2-1 dL(x,y,dl,d2).
A'xArnBo

Let e>0 and a< 1/2 be fixed. Further, let Q£ Qi.', Qf and Qi2 be defined as in Lemma

7.5. Then

I(Q£ r)>l r) f22) E321 ' M [Jr(Hr)ia dH2 x J r(Hj)ar(H2)adL
A'xAnBt
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for some constant M. Since fr(W)l~adH pJr(u)la du <oo, the same argument as in
Lemma 7.5entails E321 -op0 as t I0 and n -+ oo. The asymptotic negligibility of
terms E32k, k = 2,3,4 follows from a similar argument combined with the fact that the
L1 measure of A' APc and L2 measure of A r A4 converges in probability to 0 as
X X 0 and n -4 oo. The proof of the asymptotic negligibility of the remaining terms fol-
lows in a similar fashion.
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