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Abstract

Simple renormalization arguments can often be used to calculate
optimal rates of convergence for estimating linear functionals from in-
direct measurements contaminated with white noise. This allows one
to quickly identify optimal rates for certain problems of density es-
timation, nonparametric regression, signal recovery, and tomography.
Optimal kernels may also be derived from renormalization; we give
examples for deconvolution and tomography.
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1 Introduction

Let f = F(t), t € R?, be an unknown “object” (signal, intensity,
density, ...), a real valued function on R?, and suppose we are in-
terested in recovering the linear functional T'( f), for example f(0)
or f®(0), k > 0. We know a priori that f € F, a certain convex
class of functions (e.g. a class of smooth functions). Depend-
ing on the type of measurements we are able to make, problems
of this form arise in statistical settings, such as nonparametric
density estimation and nonparametric regression estimation; but
they also arise in signal recovery and remote sensing.

In such problems it has been observed that there exists an
“optimal rate of convergence” at which the mean squared error
in estimation of T from n data can go to zero as n increases. For
example,suppose we are in the density estimation problem, where
we observe data X,,...X, which are random samples from an
unknown density f on R!, and we wish to estimate T'(f) = f(0).
We know a priori only that f € Fooo = {f : |||l < L, [|flloo <
M}. Define the minimax mean-squared error

R(n) = inf sup E(T(X1,...,X,) — T(f))*.
T F

Rosenblatt (1956) showed essentially that R(n) < Cn~%/5; and
Farrell (1972) proved that R(n) > cn™*%; thus n=*/ is the opti-
mal rate at which the mean-squared error of an estimate can go
to zero with increasing n. See Wahba (1975) and Stone (1980) for
optimal rate calculations in related density estimation problems
with various choices of T and F. In nonparametric regression
estimation, we gather n observations y; = f(¢;) + z;, with (¢;) and
(2:) i.i.d. sequences; optimal rates of convergence n="T%) for es-
timation of functionals T'(f) under various smoothness classes F
have been established by Stone (1980), Brown and Low (1989),
among others. In tomography and problems of remote sensing,
one observes a finite number n of noisy, indirect observations;
these also give rise to optimal rates n="(T*) for the minimax
mean squared error. Finally Hall (1988) considers a signal re-
covery problem - removal of out-of-focus blur in images - and,
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modelling it with a sequence of approximating problems, indexed
by n, finds again that the minimax mean-squared error goes to
zero at a definite rate n="(T%), depending on the function class
to which the unknown object belongs, and on the extent of out-of
focus blurring.

The rates phenomenon raises two immediate questions.

¢ What determines the value of (T, F)?
e How can one efficiently calculate it?

In this paper, we show that the notion of renormalization pro-
vides a convenient answer to both questions. For a certain class of
linear problems, we identify the existence of rates of convergence
with easily measured scaling properties of the function class F,
the functional T, and the observation scheme. Moreover, we de-
scribe a simple procedure which for many problems allows one to
calculate optimal rates easily and quickly. The procedure is to
identify the renormalization exponents s in relations of the form

J(af(b-)) =ab®J(f(-))

for three key homogeneous functionals J associated with the esti-
mation problem. The rate functional is then a simple combination
of the three exponents.

A second use for renormalization is in the derivation of opti-
mal kernels, i.e. of minimax mean square linear estimators. In
essence the optimal kernel is identified as the solution of a certain
extremal problem, and the optimal bandwidth as the renormaliza-
tion constant which obtains this extremal problem from the same
extremal problem in “normal form”. In this paper we derive opti-
mal kernels for some problems of tomography and deconvolution.

Here we develop both aspects of renormalization — determining
rates and determining optimal kernels - into a smoothly function-
ing tool. The first explicit use of renormalization in identifying
optimal rates occurs in Low (1989b). The first mention of renor-
malization for obtaining optimal kernels appears in Donoho and

Liu (1989).



2 The Optimization Problem

We first turn to an apparently special observation scheme. Sup-
pose that K is a linear operator taking functions f(z) into func-
tions g(t), both functions with arguments in R?, and suppose
that W is a Brownian sheet - i.e. the integral of a standard
white noise. We observe a process Y characterized by

Y(dt) = (K f)(t)dt + eW(dt) t € R%. (1)

Roughly speaking, Y consists of measurements of K f with added
white noise. We suppose that we wish to estimate T'(f) and we
have knowledge that f € F, a convex class of functions. The
above setup we term the Gaussian Experiment (T, K, F,W).

Below, we will relate this “White-Noise” model to a vari-
ety of problems in statistics and other fields: density estima-
tion (sections 4,5); nonparametric regression (section 6); tomog-
raphy (section 4); signal recovery (section 7). In all these cases,
the problems reduce asymptotically to a Gaussian Experiment of
the above form, with K and € chosen appropriately. The liter-
ature on this convergence to Gaussian experiments is vast and
we just mention a few articles that make use of it in some way:
see Brown and Low (1989), Donoho and Liu (1989), Donoho and
Low (1990), Efroimovich and Pinsker (1982a,b), Golubev (1989),
Low(1988,1989), and Nussbaum (1985).

We are specifically interested in explicit relations between the
minimax risk R(n) for estimation of T’ based on n observations in
a model such as density estimation or regression and the minimax
risk R*(¢) for estimating T from the observations (1). Such rela-
tions have been developed in Donoho and Liu (1989) and Donoho
and Low (1990), who show that in certain cases we have

R(n) ~ R*(€,) n — oo,

provided e, is calibrated appropriately, generally as ¢, = ¢/\/n;
in other cases their arguments show that at least

R*(cen) < R(n) < R*(Ce,).
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Such relations immediately reduce rate calculations for R(n) to
rate calculations for R*(¢). (See also sections 4 and 6 below).

Rate calculations for R*(¢) are made easy by the considerable
body of results on the white noise model, beginning with Ibrag-
imov and Has'minskii (1984) and Donoho and Liu (1989), both
in the case K = I, the identity operator. Donoho (1989) studies
Gaussian experiments of the above type, and shows that if we
define the modulus of continuity of T over F by

w(e) = sup{|T(f1) = T(fo)| : IKfi — Kfoll2 < ¢, fi € F}
where H : ”2 = II : ”Lz(R“)y then

4
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so that the rate in turn reduces to calculation of the modulus of
continuity of T over F. Moreover, the exact minimax risk, among

affine procedures, of estimating T from data (1) over the class F
is

*(e) < R*(€) S w(e)

2(6).2
Ry() = sup 1y 0 (2)
[In the special case where K = I, the identity, and F is cen-
trosymmetric, so that f € F implies —f € F, there is a formula
for the linear minimax risk due to Ibragimov and Has’minskii
(1984), which, although it does not mention the modulus of con-
tinuity, may be seen to be a special case of this formula. Again
in the case K = I, but without assuming symmetry, this formula
as given above is established in Donoho and Liu (1989).]

Now if F is a centrosymmetric class of functions, a further
reduction is possible, and we get

w(e) =2supT(f) subject to ||Kf|| <¢€/2
and fer.

Let us now suppose that membership f € F is determined by a

functional J2(f), which, roughly, measures the size of a certain
derivative of f:

F={f:Nh(f)<C}
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Then the optimization problem posed above can be written as

-

w(e) = 2val(P(/2,C)
where val(P, ¢) is the value of the optimization problem

(Pe,c) : sup Jo(f) subject to Ji(f) <e
and Jo(f) < C

with Jo(f) = T(f), and J1(f) = ||K f||2- Thus, in a certain sense
issues of optimal rates of convergence reduce to the properties of
certain constrained optimization problems.

3 Renormalization

While for general Jy, J;, and J;, one cannot expect the value of
Pe.c to be easily available, in the cases of interest to us, a certain
homogeneity of these functionals with respect to dilation makes
the problem solvable.

Definition 1 Let a > 0 and b > 0; U, denotes the “renormal-

ization operator” that takes the function f = f(t) with domain
R? into the function U, f = af(bt).

We note that U, is a bijection of the common function spaces
L,(R*), W™?(R%), CP(R?). In fact, Uyp)~! = Uy-14-1 so that
(Usp: @ > 0,b>0) is a group of transformations of the measur-
able functions with domain R®.

Definition 2 The functional J is homogeneous with dilation ez-
ponent s if, for every f € Dom(J),

J(Uap f) = ab®J(f).

Homogeneous functionals occur naturally in analysis; we record
a few examples here. The most basic is differentiation at 0. Let



i=(¢1,...,14) denote a multi-index, let |i| = ¢; +...7; denote its

order, and set (Dif) = m,f"; sreges/- Then

(DU, £)(0) = ab!( D £)(0)

and so for the functional J(f) = (Dif)(0) we have exponent
s = |i|. For the L, norm, we have

|Uapfllp = ab= || f1], 3)

and so the exponent is s = —d/p.
Homogeneous operators also occur naturally.

Definition 3 A linear operator L which takes measurable func-
tions with domain R® into measurable functions on R® is said to
be homogeneous, with dilation ezponents d and e, if

LUyp =Ugpaype L.
Of course differentiation is homogeneous:
D'ty f =U,y5, D' f;
this implies that every ‘Sobolev’ functional
1/p
N p(f) = (”Z wiIIDifllﬁ)
il=m

(here the weights w; > 0) is homogeneous, with dilation exponent
s =m — d/p. One also sees that the Lipschitz-a seminorm

,a(f) rnaxsup |le(t) — le(u)l
il=m u,t It - U'a

is homogeneous, with exponent s = m + a.
The Fourier transform (f)(\) = [ e™*<M> f(t)dt is also homo-

geneous: .
(ua,bf)/\ = uab-d,b-l f;



this implies that the functional
T M) = (f IFOPIAEA

is homogeneous, with exponent s = m — d + d/p.
We now turn to more specific cases. The first is the Riesz
transform [28, 32]:

Lo fw

(Raf)(t) = l"(a) |t — u|d"°' .

From the Fourier transform of its kernel, we get

(Raf)"(A) = FOV)IA™.
It follows that the Riesz transform is homogeneous:

Rolap = Usp-ap Ra (4)
and in particular that the functional ||R.f||; has exponent s =
——aF-inci,/llzy;, we consider the Radon transform for functions on R?;
let

(Pof)(u) = /_o:o f(ucos(8) — ssin(8),usin(f) + s cos(8))ds.
Define the functional P by
P = [" [ (P (wduds.

The 1-dimensional Fourier Transform of (P, f)(-) is related to the
2-dimensional Fourier Transform of f by the so-called “Projection
Slice” theorem [4], which says that

(Pof)M(v) = f((vcos(8),vsin(0))); (5)

Using this we have
2= L[ Lz
() = 52 fra OO0,
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and so P is homogeneous with exponent s = —3/2.

Table I presents a list of functionals, classified as candidates
for Jo, J; and J;, and their homogeneity indices.

We now justify our interest in homogeneity. Let F, ¢ denote
the set of functions feasible for program (P.¢). Let (P;;) be the
program defined above, with parameters C = 1, ¢ = 1. Define
a(e,C) and b(e, C) as the solutions to the system of equations

ab™ = ¢

ab? = C.
Then, because of the homogenity of J; and J,, we have
ua,bfl,l = -7:6,C (6)

and .
L(a-l’b-x «&C = fl,l- (7)

In short, this particular U, is one-one and onto between F,c
and F7,;. Now the value of (P.c) may be written

sup{Jo(f) : f € Fec} = sup{JoUapUap)™'f): f € Fec}
= SUP{Jo(ua,bg) g = (ua,b)—lf7f € }-C,C}
= sup{ab®Jo(g): g € F1.1}

Hence

Val(PC,C) = ab’°val('Pm).
Taking into account the definition of a and b

a=Cb™*, b=(/C)77,
we have proved

Lemma 1 Let Jy, J; and J; be homogeneous of degrees sg, s,
and 3,, respectively. Then

val(’Pe,c) = Cl-rér val('Pm) (8)
where
_ So — S2
r= o (9)
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Even if we do not know the constant val(P, ), equation (8)
gives us the complete qualitative behavior of val(P, ). Of course,
if val(P11) = 400 it tells us merely that val(P.c) = oo also.
From the monotonicity of val(P.c) in both ¢ and C, r < 0 is
possible only if val(P;,;) = oco. Also, as the problem arises from
calculating the modulus of continuity of a linear functional, if the
feasible class F, ¢ contains at least two elements, r < 1.

Combining the results of the last two sections and noting (2)
we have the following.

Theorem 1 Let Jo(f) = T(f), Ji(f) = ||Kf|l2, and F = {f :
J2(f) < C}. Suppose the J; have dilation exponents s;, and that

Sg — 82

r=
81— S2

takes a value in [0,1]. Then
w(e) = val(P;,)(2C) 7€

The minimaz risk, among affine estimates, of estimating T from
observations (1), is

Ry(e) =272 (1 — )77 wi(e)

and the minimaz risk among all estimates is at least 4/5 of this
quantity.

In particular, the existence of uniformly consistent estimates
of T from the observations Y is completely equivalent to the as-
sertion that both » > 0 and val(P;;) < oo; and if the minimax
risk goes to zero at all, it must go at rate €*.

4 Applications

The results above immediately identify the rates of convergence
for estimating point functionals in the White Noise model. Sup-
pose we observe data according to (1), and we know that N, ,(f) <
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1, and we are interested in T'(f) = (Di£)(0), with k = [i| < m.
Then Jo(f) = (D'f)(0), so so =k, Ji(f) = [|fll2, s0 1 = —d/2,
and Jo(f) = Npp(f) so s; = m — d/p. Hence the optimal rate
isr = (m—k—d/p)/(m +d/2 —d/p). On the other hand,
if we varied the smoothness assumption to L,, o(f) < 1, the
rate would be r = (m + a — k)/(m + a + d/2). Finally, with
the frequency domain constraint M, ,(f) < 1, we would get
r=(m—-d—-k+d/p)/(m—d+d/p+d/2).

The same pattern of argument can treat much more involved
problems with essentially the same ease. Suppose we observe the
Radon transform of an unknown function f,

Y (d8, du) = (Ps f)(u)du + €W (d8, du) (10)

for 8 € [0,7] and u € R. We wish to estimate T(f) = f(¢o) and
we assume that F is the class of f on R? which are absolutely
continuous and have absolutely continuous partial derivatives of
all degrees through m — 1, and for which (say) Nn,,(f) < C.

First consider the case where t, = 0. Then Jo(f) = f(0),
so so = 0; Ji(f) = P(f), so s; = —3/2, and, finally, J5(f) =
Np2(f), so s, = m —2/p. We conclude that

m—2/p
TS m—2/p+3/2 (11)

For the more general case where ¢y # 0 the functional T'(f) =
f(to) is not homogeneous with respect to dilation, but the mod-
ulus of continuity is the same as when to = 0. To see why, let 74
denote the translation operator 7of(:) = f(- + to). Note that J;
and J; are translation invariant. Still letting Jo(f) = f(0), and
letting F, c denote the feasible f for problem (P, ¢), we note that
the modulus of T(f) = f(to) is exactly twice the supremum of
Jo(7of) over F.c. But

sup{Jo(rof) : f € Fec} = sup{Jo(rof): f € 1oFec}
= sup{Jo(9):9 € Fec}

where we used 7o F,c = F.c twice. The final quantity is just the
case where to = 0, where renormalization holds exactly.
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These results have concrete applications to problems in sta-
tistical estimation, via the following

-

Lemma 2 Let T(f) = f(0) or T(f) = (D'f)(0) and let F

be a class of smooth functions defined by one of the conditions

Nop(f) SC,0r Lino(f) S C or My o(f) < C. Let Ry (¢; T, K, F)
denote the minimaz risk for recovery of T from observations (1).

Let G be the (convez) class of all densities ¢ = Kf, with K a

bounded linear operator of Ly, f € F, and ||g||eec < M. Suppose

we have observations X,,... X, i.i.d. g, where g € G. For the

minimaz risk R(n,T,G) for estimating T(f) from these observa-

tions

|
R(n,T,G) < RA(W, T,K,F).
This is proved in Donoho and Low (1990).

We first apply this to density estimation. Let D be the class of
all densities f satisfying || f||oc < M and f € F, where F is one of
the three types of smoothness classes mentioned earlier. We are
interested in estimating T(f) = (Dif)(O) from data X;,..., X,
ii.d. f. The above lemma applies with K = I, the identity
operator, and g = f. We therefore have that the optimal rates
for the Gaussian experiments calculated in the first paragraph
of this section are also optimal rates for the density estimation
problem.

In this way we may recapture optimal rate results of, for exam-
ple, Stone (1980), who studied density estimation at a point over
the class defined by L, o(f) < C. We also get previously unpub-
lished results, by considering other classes, such as N, ,(f) < 1.

We turn now to an application to an (idealized) form of Positron
Emission Tomography (compare Johnstone and Silverman, 1990).
In PET we (ideally) observe (6;,u;) ¢ = 1,...,ni.i.d. from a prob-
ability density g(8,u) which is the Radon Transform of a density
f(t). We wish to estimate T'(f) = f(to). Our a priori class D is
the set of densities supported on all of R, satisfying Ny, ,(f) < C
and ||g|lc £ M < co. Applying the above lemma with K = P,,
we see that the optimal rate of convergence of the minimax risk
to zero is simply n~", where r is the rate exponent calculated for
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the corresponding Gaussian experiment. (The same rate holds
if we consider only functions and densities supported in the unit
disk). This result on optimal rates at a point from Radon density
data appears to be new.

5 Inhomogeneous K

The homogeneity of the Radon Transform is rather special. For
most operators K the functional J,(f) = ||K f||; will not be ex-
actly homogeneous. This is an apparent obstacle to our approach.
Actually, however, many such functionals are asymptotically ho-
mogeneous; and if we analyze the problem which arises by replac-
ing the original operator K by its homogeneous approximation
K™, we get the right answer.

We describe the idea in the deconvolution problem. Suppose
that our observations operator has the form

(KF)() = [ k(t = w)f(u)du

where the kernel k has Fourier Transform IAc(A) Suppose in addi-
tion that R
k()] ~ AIAI=* [A] = oo,

Thus, at high frequencies, lk(A)I behaves like a power law. Equiv-
alently )
I!C(—A)I—»A as |A| = oo. (12)
|Ra(A)]

The operator K* = AR, is therefore asymptotically equivalent
to K, and it renormalizes exactly. Let us suppose A = 1.

If, instead of Y we had observed the process Y* characterized
by

Y*(dt) = (R, f)(t)dt + eW(dt)

we would be in an exactly renormalizing situation. ||R,f]|, is
homogeneous with exponent —a — d/2. Hence if our goal were
to estimate T(f) = f(0), and our a priori information were
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N o(f) < C, we would have the J; all homogeneous, with expo-
nents sp =0, s; = —a—d/2 and s; = m —d/p. The optimal rate
of convergence for this problem would be

_ m—d/p
" m-—d/p+a+d/2

=

r

It turns out that under sufficient regularity of K, r* = r;
hence this rate calculation, made assuming that K*, rather than
K, generated our observations, nevertheless applies to the inho-
mogeneous experiment using K.

Theorem 2 Suppose that k is asymptotically equivalent to the
Riesz Kernel, so that (12) holds. Let w(e) denote the modulus
of continuity of T over F = {Np,(f) < C} with respect to the
distance ||K fi — K fo||2 and let w*(€) denote the modulus with
respect to ||Ra fi — Rafollz-

Define

. lk(V)|
M(A) = sup{——22 . [A| < A).
(A) p{IRa(A)I Al <A}

If M(A) < oo for each positive A, then
w(e) 2w (e)(1+0(1)) as e — 0.
Deﬁne.
m(A) = inf{[|k(A)] : || < A}/|Ra(A)].
Ifm(A) = 1 as A — oo then
w'(€) 2 w(e)(1+0(1)) as e—0

The proof is given in the appendix.

For an elementary example, let d = 1, and we observe X1,..., X,
i.i.d. g. Suppose the density g is known to be the convolution
of a density f, the object of interest, with a mean-1 exponential
waiting time density. We suppose that f € F, where F is one
of our three types of smoothness class, and that ||g||.c < M for
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some positive finite constant M. We are interested in recover-
ing T(f) = f(to). We may apply Lemma 2 to this situation,
and reduce the problem to calculations in the white noise model.
As the Fourier Transform of the standard exponential density is
(1 4+1X)/(1 + A?), we easily see that the modulus is equivalent
to R,. Hence for the associated renormalizable Gaussian experi-
ment, we get the exponent r = s,/(s; — 3/2), where s, is the ex-
ponent of the smoothness functional we have chosen. By Lemma
2 the rate in the density deconvolution problem is therefore n=".

6 Inhomogeneous Domains

In a number of practical cases we are interested in functions f
defined not for all ¢t € R?, but only for ¢ in a certain domain D.
If D is a standard halfspace {t; > 0} or orthant N, {t; > 0}
then U,; is a one-to-one mapping of measurable functions on
D onto itself. In that case, renormalization continues to work
smoothly. But if D is some bounded region of R?, U,; is not
domain-preserving. However, renormalization may continue to
apply in an asymptotic sense.

For a concrete example, suppose that d = 1 and that D =
[—a,a] with 0 < @ < co. We observe a process Y characterized
by

Y(dt) = f(t)dt + eW(dt) te D

where W (dt) is a white noise. Suppose we know that [p, | f(™(t)|Pdt <
C? and we wish to estimate T'(f) = f(0). This leads immediately
to the optimization problem

(Pec,p) : sup f(0) subject to /I;ﬁ < é
d (m)p < P
an /le P<C

Let (P.c) denote the value of the corresponding problem with
D replaced by (—o0,00) throughout. While for finite € > 0, we
must expect that val( P, ¢ p) # val(P.c), there is still asymptotic
agreement.
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Theorem 3 Let a € (0,00) and C € (0,00).

N Val(Pe,C,D )
val(P.c)

—1 as e—=0

The proof is in the appendix.

It follows that if w denotes the modulus of continuity of T in
the problem with domain D and if w* the modulus in the problem
with homogeneous domain (—o00, 00), then

w(e) ~w*(e) ase— 0.

This fact has been stated, but no proof given, in Donoho and
Liu (1989, Lemma 11).

For an application, consider the problem of random-design
nonparametric regression. We wish to recover T'(f) = f(0) from
observations y; = f(u;)+zi, with u; i.i.d. uniformon (—-1/2,1/2),
and z i.i.d. N(0,0?) independently of the (u;). We suppose that
Npo(f) £ C, and that || f|leo < M.

The problem of determining the optimal rate of convergence
reduces to determining that in a Gaussian Experiment, by the
following result of Donoho and Low (1990).

Lemma 3 Let T be linear, F convez, and ||f|loc < M < oo for
every f € F. Then the minimaz risk R4(n) for estimating T from
n observations in the random design nonparametric regression

problem is related to the minimaz risk R} (¢) for estimating T
from observations Y (dt) = f(t)dt + eW(dt), t € [-1/2,1/2] by

Ry(a/v/n) < Ra(n) < Ry(7/ V),

with 2 = 02+ M?. If the optimal rate of convergence in the white
noise problem is €2 then the optimal rate in the nonparametric
regression problem is n~".

This reduces us to rate calculation in a white noise problem
with inhomogeneous domain [-1/2,1/2]. Applying Theorem 3
above reduces us to a calculations in a white noise problem with
homogeneous domain. Applying renormalization, we get the rate
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in the white noise problem, and hence the optimal rate for non-
parametric regression with random design. For the smoothness
class L o(f) < C, therateis r = (m +a)/(m + a+1/2). This
recovers results of Stone (1980). Other results are also easily
available. For smoothness constraint Nm,(f) < C, we get the
rater=(m-1/p)/(m-1/p+1/2).

7 The Renormalization Heuristic

From the authors’ point of view, the most significant contribution
of the renormalization idea is to quickly and easily identify a
candidate for the optimal rate of convergence in a wide variety of
problems. The steps involved in this process are:

1. Replace the model under study by the asymptotically equivalent white
noise model.

2. Replace that white noise model by an asymptotically equivalent white
noise model which renormalizes exactly.

3. Calculate the optimal rate for the renormalizable model via Theorem 1.

4. Justify the approximations in steps (1] and [2], and prove that the value
of (Py.1) is finite.

In many problems of which we are aware, identifying the cor-
respondences in Steps (1] and [2] take only a few minutes. One
of us (DLD] has succesfully taught steps [1]-[3] from a draft of
the present manuscript in a graduate course at Berkeley. Step (4)
takes more time and effort; see the proofs of Theorems 2 and 3
in this paper and also the paper Donoho and Low (1990).

In our opinion, the four step process described above can be
used to clarify and simplify the literature on optimal rates of con-
vergence. Many papers in this subject have the flavor of involving
lengthy and arcane calculations. and the rate emerges only “after
the dust settles”. The reader is left with no way to derive the
rate for himself, or study the effect of variations in the assump-
tions. In contrast, renormalization allows one to validate, in a
few moments, the plausibility of such rate results. [t also allows
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the reader to consider variations on the choice of F and T, and
see how these affect the optimal rate.

In this section we present a few examples to give the flavor of
renormalization-based reasoning in action.

7.1 Hall’s Signal Recovery Model

Hall (1988) considers a model for recovery of an image from out-
of-focus, noisy data. The model is rather involved to state in
its original form; but Step [1] of our heuristic reduces it to the
following problem. Suppose we observe

Y(dt) = (k* f)(t)dt + eW(dt), t € R? (13)

where W is the integral of a standard white noise on R%, and
k x f is the convolution product [ k(- — u)f(u)du. About the
out-of-focus filter k¥ we know that in the Frequency domain,

(X)) = T, (1 + ¢!

and about the function f we know that J>(f) < 1, where Jo(f) =
sup, | f(1)|(1 + |t|) We are interested in recovering T(f) £(0).

Now ||K f||; is not exactly renormalizable, but k is visibly
asymptotic to

k() = I h| =

as |A\| = oo. Now ||k* x f||; is renormalizable, with exponent
81 = —2dv —d/2. Also, J, is not renormalizable, but it is visibly
asymptotic to My,  at high frequencies, and M,, o is renormal-
izable. We expect that for recovering T'(f) = f(0) from obser-
vations Y(dt) = (k* = f)(t)dt + eW(dt), the optimal rate will be
=

Al?hguzgh k* is not Riesz, we may expect that a result parallel
to Theorem 2 applies in this case, and so for recovering T'(f) =
f(0) from data (13), the optimal rate r = r*. Translating back
to Hall’s original model requires the calibration €? = "n—2 Under
this calibration, we get the prediction that the minimax mean

squared error goes to zero at a rate n™" . This agrees with the
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result established by Hall from lengthy calculations. The heuristic
allows mere mortals to see easily that this ought to be the correct
rate; and it allows them to calculate rate heuristics under e.g.
variation of the smoothness class easily and naturally.

7.2 Partial Deconvolution

There has been considerable interest in deconvolution problems
and associated optimal rates recently (Rice and Rosenblatt, 1982),
(Ritov, 1986), (Stefanski and Carroll, 1987), (Carroll and Hall,
1987), (Fan, 1989). In general, deconvolution is quite difficult, in
the sense that the rate r is typically close to 0. Renormalization
ideas allow one to easily explore related problems which are much
better behaved. The first author’s attention to the general idea
of partial deconvolution was stimulated by a Berkeley seminar of
Ya’acov Ritov, who first suggested and obtained results for the
problem of partial Gaussian deconvolution.

Suppose we are given convolution data as in (13) and we know
that f € F. For the problem of recovering f(0), these data are
less useful than we might desire, for the reason that sharp delta-
like features in f are blurred out in the observations k * f, and
so a loss of resolution occurs.

As an alternative to total deconvolution, consider the idea
of partial deconvolution. Let kx(t) = k(t/h)/h? be the rescaled
kernel - we think here of positive h, h << 1. Consider recov-
ering Th(f) = (kn * f)(0). This is a local average of f in the
neighborhood of 0, and it is an attempt to estimate the data we
would have recovered with an improved instrument, which had a
narrower “pulse width”.

According to the Heuristic, suppose that k is actually the Riesz
kernel R, for some a. Then for Jo = T), we get so = —a; for
Ji = ||k * f||2 we have s; = —a — d/2; and for F defined by the
constraint Ny, ,(f) < 1, we have s, = m — d/p. It follows that
the rate for partial deconvolution is

. m+a-—dfp
partial — m+a—d/p+d/2
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In contrast the rate for total deconvolution would be

. m—d/p
"total = m+a—d/p+d/2

If the problem is highly ill-posed, so that « is large, then the
rate of convergence for partial deconvolution can be considerably
better than the rate for total deconvolution. Thus a reasonable
response to the ill-posedness of deconvolution would be to de-
mand compression, rather than removal, of the convolution filter.

7.3 Non-Renormalization

Of course, not every problem admits of renormalization or even
approximate renormalization. The canonical example is Gaussian
Deconvolution. Suppose we observe

Y(dt) = (% f)(t)dt + eW(dt) te€ R

where ¢ denotes the Gaussian density 71276—t2/ 2, Because ¢(A) =

e M2 g is inequivalent to any Riesz kernel or other renormalizing
kernel. It turns out that no algebraic rate €* typically holds
for this problem; instead, a logarithmic rate log®’(1/€) obtains
(Ritov, 1986), (Hall and Carroll, 1987). Other examples where
renormalization fails can be constructed by modifying this basic
example.

8 Optimal Kernels

Renormalization may also be used to derive optimal kernels: i.e.
kernels of linear estimators which are minimax for mean-sqaured
error among linear estimates. Several notions of optimality of
kernels have been considered — compare for example Gasser and
Miiller (1979), Miiller (1984). An explicit statement of the notion
of minimax mean-squared error optimality which we consider here
is due originally to Sacks and Ylvisaker (1981).

20



In the general, not necessarily renormalizing case, Donoho
(1989) shows that if we put

w*(6)
4€? + 67’

and if F is centrosymmetric, with f,, solving the problem

supT(f) subject to ||Kf|| < €/2

€0 = arg max

and ferF
then 20 (co)
bult) = == (K (1)

is an optimal kernel, in the sense that

1Y) = [wdbY(d)

is minimax linear for T at noise level e.
Using the scaling relations of this paper, if f, denotes a solu-
tion to (Py 1), then f,, = U, fi for appropriate a, b; moreover

T
€0=2

€ (14)

1-r
and so

r

wc(t)zzval(ﬂl)cl-f( l_re) ) (KUopfi)(t).  (15)

In short, the optimal kernel at any given noise level derives from
the solution to the single optimization problem (P; ;) and rescal-
ing.
In the special case where K = I, the identity operator, this
fact has been noticed before. Donoho and Liu (1989, section 4.3)
show that the optimal kernels in a family of estimation prob-
lems derive from scaling and dilation of the extremal functions
for the Kolmogorov-Sobolev-Landau-Hardy inequalities between
functions and their derivatives. Those extremal functions derive
from a problem of the form (P, ;) with certain homogeneous func-
tionals.
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8.1 Kernel for Deconvolution

We give specifics for d = 1 only. Suppose we observe a process Y
characterized by

Y(dt) = (R.f)(t)dt + eW(dt) t € R (16)

and that M, ,(f) < C. We wish to recover T(f) = f(0). The
corresponding functionals renormalize exactly. The exponents of

these functionals have been derived in section 3 and are recorded
in Table I. The problem (P; ;) becomes

1 ¢ : -2a| £12
sup2—7r/f(/\)d)\ subject to /|A| If2(0)dA < 27
and /1A|2'"|f|2(x)dx < or.

The three functionals are invariant under the reflection f(t) —
f(—1); by convexity, a solution f; may be taken to be even; hence
its Fourier Transform f will be even and real. A standard varia-
tional argument says that a solution must satisfy

/ h(A\)dA <0 whenever / IAI72 fu(\)A(A)dA < 0
and /lz\lszl()\)iz()\)d/\ <0

for every real, even h € Cg. We conclude that for some nonneg-
ative a;, b, we must have

A = (@l + by AR,

By a rescaling argument, the extremal function must attain both
constraints

Jr=Aroa = 2n
AR = 2.
Using the tabled definite integrals

° _ghdz — g 1+pp-(p+1) _PT
/0 TET S = (17)
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valid for p € (0,1), and

/ > (ﬁ‘fz— =a T IN(g+ 1)I(1-¢)  (18)
0

a + bz)?
valid for ¢ € (—1,0), we get the following conditions:
~l4pp=(p+1)  _ (2m + 2a) sin(pr)
4 1 = P
al—l+qb;(0+l) - (2m + 2a)m

g+ 1I(1—4q)
where p = 224l and ¢ = 722tl The value of the problem is

2m+2a 2m+2a’
then
1 [, o [® dA
val(P) = o [fydr=+ [ TR T
= 1 —q+laq 1 .
2m +2a ' ! sin(|q|7)

To complete the analysis, we derive the optimal kernel. Define
1 [ A~%d)
t) = — tA .
bam(t) = = [ cos(th) ey
From the homogeneity (4) of the Riesz transform, we have that

the term R,U,,f, demanded by (15) is the same as Ugp-a sPa,m-
With additional calculations we arrive at

Theorem 4 The optimal kernel for recovery of f(to) from Riesz
data (16) for objects known to have m L, derivatives is

"l’t(t) = (u‘y.6¢a.m)(t - tO)

with scale factors

and

In Figure 1, we display the kernel ¢, for three combinations
of a and m.
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8.2 Kernel for Tomography

We now assume that f is a function on R?, and we observe Radon
data (10). We wish to estimate T(f) = f(to) and assume that
f belongs to the class F of functions on R? which are absolutely
continuous and have absolutely continuous partial derivatives of
all degrees through m — 1, and for which N, , < C, where the
weights w; = m!/(z;!(m—1,)!). The corresponding problem (P, ;)
is then

sup(27)"? / e <Mo> F(A)dA  subject to / IATUAPR(A) < 27
JIAPmIFR () < (2m)2

Letting f; = e™*<*%> f, we get that f: does not depend on the
choice of ¢y and, by a variational argument, must satisfy

Fr0) = (ay|A|™Y + by | APy

where a, and b, are nonnegative constants which satisfy

JINTIAROEA = o
SRR = (2m)2,
or equivalently

/w(alr'l+b1r2’")'zdr =1
0

/“ rim g et 4 byr?™)"%r = 2r
0

The tabled integrals (17)-(18) allow us to reduce this to the sys-
tem

_1+pb_(p+1) _ (2m + 1)sm(p7r)
a, 1 = ?
_1+qb-(q+1) - (2m + 1)27!’
b [(g+1)T(1-q)

a
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where p = 2= and ¢ = 32252, The value of the problem is then
dr

val(P,,) = (27r)-2/f1‘()‘)d/\ =2"17r‘2/oo

o (air=!+ byr2m)

1 -9+l 9 1 .
2m 41 ! Lz sin(|q|7)

To get the optimal kernel, we use the Projection Slice Theorem
to simplify computation of Pyld, 4 f;.

Lemma 4 Let f()) = p(|A])e=i<Mo>. Then
(Poldapf)(u) = (Uap-159)(u — to,1 cos(8) — to 2 sin(8))

where

o(u) =771 /Ooo p(v) cos(vu)dv

Proof. By the projection-slice theorem (5), putting us = (cos(8), sin(8))T
1 [ .
(Pithasf) = 5= [ e™(Uap )0+ ug)dv
— i ot ivu —iv<u9,to>a’ Ivl dv
T or /_oo © e Ay
al [ v |v], dv
= Z;/o cos(-g -b(u— < uy, to >)p(T 5

= %¢(b(u— < ug, to)).

Applying this lemma, we define the auxiliary 1-d function
1 o0
Om(u) = 7—r-/ cos(uv)(av™! + byv*™) 1dv.
0

Theorem 5 The optimal kernel for recovery of f(ty) from Radon
data (10) is

Ye(0,u) = (Uys0m)(u — to,1 cos(d) — to2sin(6))

y = 2va1(7>1,,)(,/§(m - 1)-2-)%‘1%71r
2 €. _=1
§=(3m-Dz)m7
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The theorem shows that for each fixed 4, the optimal kernel
has the form of a rescaled, dilated version of ¢,,, which is trans-
lated by the value to; cos(8) + to2sin(d). In tomographic terms,
this is an instance of “filtered backprojection”, and we have de-
rived the optimal filter kernel ¢,,. See Figures 2 and 3.

8.3 Boundary Kernels

Heuristic reasoning based on renormalization applies in finding
kernels as well. Suppose that D is a convex subset of R?, and we
observe

Y(dt) = f(t)dt + eW(dt) te D.

We know that N, ,p(f) < 1, say, and we are interested in re-
covering T(f) = f(to), where to € D. This is a model for
recovering a function at the boundary; such boundary problems
have attracted considerable interest recently (Gasser and Miiller,
1979), (Rice, 1984), (Shiau, Wahba, and Johnson, 1985), (Utr-
eras, 1986), (Eubank and Speckman,1989).

Without loss of generality, choose coordinates so that to = 0.
If D is a cone, so that aD C D for every a > 0, then the problem
renormalizes exactly, and one derives rates from Theorem 1, and
optimal boundary kernels from solutions to

(P11,p)sup f(0) subject to Nn,,p(f) <1
and / fi<1
D

If, however, D is not a cone, the problem does not renormalize
exactly. Renormalization ideas suggest the following conjecture.
Suppose that D* is the tangent cone to D, i.e. the set of all
t € D such that at € D for all sufficiently small @ > 0. Then
the optimal rate for D ought to be equivalent to the optimal rate
for D*, and the optimal kernel for D asymptotically equivalent
to the optimal kernel for D*.

The reader may find it amusing to work out optimal kernels for
some particular cones D*. The computations are often straight-
forward for N2 p(f) with D a half line, a halfspace, and an
orthant.
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We sketch an example for the half line. We are interested in
the problem:

(P11,p) sup f(0) subject to /oo(f")2 <1

[ <
and / <.
0

For an appropriate Lagrange multiplier u, the solution to this
problem is also a solution to

inf /0°° F2(t) + u(f"(t))* dt subject to  F(0) =1

after a rescaling . By a variational argument and integration by
parts, f is extremal for the latter problem if for all A € C*°[0, o)
vanishing at 0 and oo, we have

L +urO@mma = o

FRR = 0.
An f satisfying these conditions is the solution of the differential
equation f(t)+uf®(t) = 0 on the positive half-line, with bound-
ary conditions f”(0) =0, f(0) = 1, f(oo) = 0. From the theory

of linear, constant coefficient ordinary differential equations, we
are led to the closed form

fu(t) = cos(wt)e™*

with w = (44)"/%. One sees that [{°(f"(t))%dt = w®/2 and
Jo? f2 = 3/(8w); hence picking 4 = 3/16 we have that 2:(3/4)7%4 f316
is the solution of the original problem (P, p).

8.4 Non-Renormalizable Kernels

Of course, the lack of renormalization does not prevent one from
solving for the minimax kernel. Return to the Gaussian decon-
volution example of section 7.3. Suppose that N, ;(f) < 1; then

27



the solution f; to the relevant optimization problem obeys, in the
frequency domain,

FiA) = (aX™™ 4 be /7)1
for certain constants a,b; and
$(A) = ce™ M2 (aX¥™ 4 be=¥/2)71

for a certain constant c. Renormalization is a convenience, but
not a necessity.
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9 Proofs

9.1 Proof of Theorem 2

We divide the proof into two parts.

9.1.1 Proof that w* > w(1 + o(1))

Let (P;c) denote the problem based on the functional ||R, f||2
rather than ||K f||;. Because (P;;) is exactly renormalizable,
there exist a = a(¢,C) and b = b(e,C) so that U, maps the
solution to (P} ) onto the solution of (P} ,), and vice versa. Using

the same transformation, and defining K,(\) = b*K (b)), we map
a solution of (P, ¢) into a solution of

(Prac)sup Jo(f) subject to [ IR(NPIF()PdA < 1
and Npik(f) < 1.
As
U)(C) = (2C)1"'e’val('P1,1,c)

and

W™ () = (20)" e val(P;,),
this half of Theorem 2 follows from

limsup val(Py ) < val(Py;) (19)

e—0

To prove this, note that our hypotheses imply that for each
6 > 0 there is Ao(6) for which

m(A) 2 \(1=8) A> Ao

and also )
RO 2 A2(1=6) A > Ao

Define
ps(A) = min(|6]7%(1 = 8),|A[7*(1 = ¢))
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Now b — 0o as € — 0, so for € < €, we have b6 > Ag, and so
. |K.(X)| > ps(A) for all A

as soon as € < €(6). It follows that for € < €(6), then

JIENPFOPD 2 [0 (20

Now define the optimization problem

(Qs) : sup Jo(f) subject to /pg(/\)lf()\)|2d/\§1
and  Np,(f)< 1.

As (20) implies that every function feasible for (Qjs) is also feasible
for (Py1.c), we have val(Py 1) < val(Qs), € < €.

The Lemma to follow shows that val(Qs) — val(P;,) as § —
0. The desired relation (19) follows.

Lemma 5 val(Qs) is an increasing function of §, hence lims_o val(Qs)
ezists; it equals val(Py,).

Proof. A

Let J15(f)? = [ p3(MN)|f(A)|>dX. Note that J; s(f) is decreas-
ing in é, for each f. Also, note that given J15(f) < 1 and
Nnp(f) < 1, there exists an absolute constant B such that
[|fll2 < B. This is most easily seen for N, (f).

Let fs be a solution to problem (Q;s) and let F; be the feasible
set. Then Fj is a norm-closed, norm-bounded, and convex subset
of L;. Let (fi/n)n>s be a sequence of solutions of Q,/n. As Fiss
is thus weakly compact, we can extract along a subsequence ny a
weak limit fo. As Ji is increasing in 6, fo € NgFy/n,, from which
it follows that Jy/n,(fo) < 1 for all k. As ps — R, a.e. Fatou's
lemma gives Ji(fo) < liminfr—oo J1,1/n,(fo) < 1. In other words,
fo is feasible for Py ;.

Notice that on the set F;, Jy is a uniformly continuous func-
tional with respect to L, distance. Hence, by Lemma 5 of Donoho
(1989)

Jim T(f,) = T(fo)
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As val(Qi/n,) = T(fa,), we get
val(Qs) — Jo(f)

as 6 — 0. But then
val(P;,) > Jo(fo) = limval(Qy)

and so
val(P;,) = }ir%val(Qg).

9.1.2 Proof that w* < w

It is enough to show that for each § > 0, then for all € < ¢y(8) we
have
val(P ¢) < val(P.c)

where ¢ = €¢//1 +28. So, let f* be a solution to P} . Then

J(f*) <1 Pick A so large that |i1'24(—)\)3|] < (14 6)2 for |A| > A.

SRR = [ RO+ [+ [T RQ)P R
< M) [ 1ROl

+148) [+ [TIRNPIFPar

By renormalization, we may write this as

A/b
"2 2
(¢) (M(A)/_MIR PIfddr+(1+6) [ +/ ||f|dA)
(21)
with f; = U, f* a solution to (Pyc). Now [ |A|=2%|f*|?d)\ < oo,
SO

6 o
[ = ian - 0

as 6 — 0. The term in brackets in (21) is smaller than (1 + 6 +
M(A)o(1)). For small enough e,

(€)1 + 6+ M(A)o(1)) < €.
This implies that f* is feasible for P.c and so val(P;.) =
Jo(f*) £ val(P.¢). Q.E.D.
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9.2 Proof of Theorem 3
Every function feasible for (P, c) is also feasible for (P.,c,p); hence
val(P.cp) 2 val(Pec). (22)
We will show in a moment that
val(P.c') 2 val(Pc.p) (23)

where C’(e) = C(1 + 0(1)) as € — 0. The result follows from this
pair of inequalities, and the explicit dependence of val(P,¢) on
C stated in Lemma 1.

To establish (23), let ¥ be a C*° “window” function satisfying

Yv=1 on [—a/4,a/4]
=0 off [-a/2,a/2]

Without loss of generality, suppose that a solution to (P.c,p)
exists. Let f. be a solution to (P.c,p); and let ¢ f. denote the
function equal to ¥(t) fe(¢) for |t| < a and equal to zero elsewhere.

T(¥f) =T(f) and [[¥fellz < |Ifell2

where here and throughout the proof the norms || - ||, refer to
L,(—a,a] or to L,(—00,00) according to the domain of the argu-
ment. It follows that 9 f, is feasible for P, ¢/, where

C" = 1 )™ -

Hence
val(Pcc) 2 T(¥f) = T(f.) = val(Pec,p)-

Now we bound C":
(BF)™ = BfI 4 s [ 4+ emat® D 44 g
with ¢,y = m!/(I'(m — I)!); hence

15 s < 18l 1y + emally oo LA™ Vllp + -...
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As |[9]lo = 1 and ||f{™]], < C, we get

C' < C+ Y emallPllool LS.

=1

Now we apply the lemma following to conclude
1D, =0 as e—0
forl=1,...,m, and so
C' < C(1+0(1)).
This completes the proof of (23).

Lemma 6 Suppose that (f,) is a sequence of C*°[—a,a] func-
tions with ||fullz = 0 and ||f{™)]|, < C, with 1 < p < oo; then
|| fim=D||, = 0, forl=1,...,m.

The lemma may be obtained by combining compact embed-

ding results in Sobolev Space theory with standard inequalities;
compare for example Adams (1975), Ziemer(1990).
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Table I:
Homogeneous Functionals and their Exponents
J Name Ezxponents
Jo . £(0) so=0
(Di)(0) 50 =
Ji 1 f1lL, sy = —df2
||Ro ]2 5= —a—dJ2
P(f) $1 = —3/2
J2 | Nmp(f) s =m—d/p
M p(f) s2=m—d+d/p
Lm.a(f) S =m+a

Figure Captions

Figure 1 Optimal Kernels For Deconvolution of Riesz Trans-
form. (a) a=.6,m=3. (b)a=5m=3. (c)a=2,m=1.

Figure 2 Optimal Kernel ¢,, For Tomography. (a) m = 2. (b)
m=3. (c) m=4.

Figure 3 Optimal Kernel ¢ For Tomography. t, = (1,0),
e=.001, m = 3.
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Optimal Kemel for Recovery from Radon Data; m=3, eps=.0001
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