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1) Introduction.

Let P; j=1,...,n be probability measures on a o-field A. Let F<A be a
Vapnik-Cervonenkis class. If &, . . ., &, are independent observations with P;=L ()
the empirical process Z is defined on A by

n
%n,Fl (1A &) - P;(A)].
Let G, be the Gaussian process that has mean zero and the same covariance structure
as Z,. Consider the space B of bounded functions on the V.C. class F with its uni-
form norm. It is well known that G, defines a probability measure, say M,, on B.
Similarly, under standard measurability conditions Z, will define a measure, say L , on
a reasonably big o-field of subsets of B.

Z,(A) =

We are interested in the Prokhorov distance m(L,,M,) between these two meas-
ures. Our purpose is to prove the following:

There exists a universal function (v,n) ~> ¢ (v,n) of the V.C. exponent v of F and
the integer n such that

1) ¢(v,n) > 0 as n > o

2) m@L,M,) < 6(v,n).

Actually this result is known. It has been proved by Pascal Massart in [5] and the
prdof given below differs little from that of Massart. The reason for rewriting it is to
emphasize the universality of the function ¢. It does not depend on the P, at all. It
depends on the class F only through the exponent v. The proof will supply a particu-
lar ¢. It is not necessarily the optimal one. The same technique can be used to obtain
other results, with bounds that depend on P and on the class F. The proof uses three
known results; a) The entropy bound of R.M. Dudley [2] with the chain argument; b)
a bound on the norm of empirical processes on V.C. classes consisting of sets with
small probability and c¢) a theorem of Yurinskii on the Central Limit theorem in RX.
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Measurability requirements are essentially ignored at first. They are discussed in
the last section.

One could let the class F depend on n. The measures P, j=1,...,n can also
depend on n in an arbitrary manner. One can also obtain results where the Vapniks
exponent v of F (and F) varies with n provided that one puts restrictions on the
K2 (x)

2x

that occurs in the

entropy integrals of the form J'Ln(xz)dx with L2 (x) = log
application of the chaining argument. For further results, see Massart [1986].

where

For applications and v fixed ¢(v,n) can be taken equal to C(v) )
n

and where C is a certain universal function of v.

]
Y™ = 550

Improvements in the exponent y(v) seem possible but they depend on improve-
ments in the Central Limit theorem in R¥ for the uniform norm and arbitrary covari-
ance matrices. The literature contains several such improvements. In Section /8/wc
discuss briefly the possible use of a theorem of Zaitsev (1987). /-

Y

2) A theorem of Yurinskii.
Consider the k-dimensional space R¥ and provide it with a norm ||-||. That norm

will be called ‘‘Hilbertian’* if it satisfies the median equality || —= y 1% + ||—X||2

E[IIXII2+I|YII2.

Theorem 1. Let X;, X,, . . ., X, be independent random variables with values in R,
Assume EX; = 0 and ElX; IP<e. Let F be the distribution of the sum
S =X+ X, +.+ X, and let G be the Gaussian measure with the same expectation
and covariance structure as F. Then:

1) If||-| is Hilbertian then

T(F,G) < 8((S[1+ %%uogsgkm““

2) If |-l is arbitrary, then

7 (F,G) < 8{<s3k4>[1+-§—%|log(ssk4>|]}“4

3) If |- |l is the maximum coordinate norm of R¥, then

(F,G) < 8{sgk5’2>[1+%i—|log<s3k5’2>|nl’4



where S3 = %}:Enxj P

Remark. Statement (1) is imitated from Yurinskii (1977). It is not quite the same as
Yurinskii’s because we had difficulties following some of his arguments and may have
redone them differently.

Statements (2) and (3) are obtained from statement (1), following a technique used
by Dehling (1983).

Proof. Take a function f defined on RX. Assume that f is twice differentiable. This

can be taken to mean that for each x € RK there is a vector A (x) and a matrix B (x)
1
y 2

I£(c+5) = £ = Ay - 2y B@y| tends to zero as [lyll - 0.

Assume in addition that B satisfies a Lipschitz condition
IBx) -B(@)| < Clix-z]
so that |2’ [B (x;) = B(xp) Iyl < Cllx; = %z [l Izl Iy II.

Let Y;,..., Y, be independent, independent of the X; with EY;=EX; and
EY;Y{ = EXX;". LetS = XX;, T=2XY,. Then Lindeberg’s argument shows that

such that

|Ef(S) - Ef(T)| < %{ZEHXJ-IF’ + ZENY;IP).

Now assume that ||- || is Hilbertian and Y; Gaussian. Then

ENY;IP < 4[EIY;IP1¥% = 4[E|X;|21%2
< 4E|IX;IP.
Thus
|EES) - EE(DI < = CZENX; P
j
Now, assuming again that ||-|| is Hilbertian, let us create some function f that

satisfy the above differentiability conditions.
Let F;, i=1,2 be two disjoint closed subsets of REK. Let p(x,F) =inf{|[x —yll;
ye F} and p=p(F,Fy = inf{p(x,F;): x € F;}. Then the function g defined by
X

p (x,Fp) . L .
g(x) = satisfies the Lipschitz condition |g(x)) — g(xy)| <

P (X, Fl) + P (x’ F2)

1 . . . .
—p——llxl - Xyl Let Hy be the Gaussian density whose exponential term is

1 2
exp {—— I xII*}.
P 202
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Consider the function f(x) = Eg(x + y) where y has distribution H,. This may
also be written

1
K[gx+y)exp(-—— llyl?} dy
20
1
= Kfg(y)exp (-7 lly - xIP}dy.

Look at f(x + Az) and take derivatives with respect to A. The second derivative of

exp{-2—12 ly = x -2z I} is given by the same exponential multiplied by
o
1 ’ ’_12 1 2
— [ -x"z2-22"2]" - —|z||
o o
1 ’, 2 1 2
= — [0 -&x+2A9))z]" - —lz|I"
o

(0

Taking as a new variable of integration y — (x + Az) one obtains
02 1 ,
—5fGx+22) = —Egly+x+19] x [(y'2? - o? ||z|].
oA o
Therefore
2 2

) 0
Imf(xi‘ )\.Z) - az-f(x+7\.z)l;v=0|

1 ,
< ?Elg(y+X+lZ) - gy +0ll[Z'y1* - o?llz]P|

A

1 ,
— MIZIEIZ y)? - o?|z|?]
pa

2 2
—AlzllllzI? s == [1zIP.
pa

IA

Thus the derivative B (x) of the function f will satisfy the Lipschitz condition

, 2
|y’ [B(x)) — B(xplyl < oo %y = %[l ly IR

Now take any arbitrary closed set A. Let AP = {x; p(x,A) < B}. Apply the fore-
going to F; = AP and F, = (AP*P)°. This will give a certain function f whose second

derivative satisfies a Lipschitz condition with coefficient C < In addition for

2
pa
x € A one will have f(x) > 1 - Pr[azxf > B?]. For x e (AZB+P)e one will have

f(x) < Prlo?y2 > B?]. If we let € = Pr[ a2 > B2] this will yield
P(Se A) < Ef(S) + ¢
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5 1

< Ef(T) + ——5 ZEIXIP + ¢
3 pa? j
< Pr[Te A*] + e+ > —_SEIXIP + €
3 pa2 i
< Pr[Te AZP+] + 2e+2L2E||xj||3.
3 pa? j

To obtain a bound it will be sufficient to select o, B and p in an appropriate
manner. To do this note that Pr[ a?y2 > B?] is the probability that a gamma variable,

1 EZ
¢*x2 be larger than 5+ To bound this probability

note that Ee!Y = (1 — ) ¥2 fort € (0,1). Thus Pr[V >v] < (1 — t)y¥2¢™™,

say V, with density

Write v = 5 z and minimize with respect to t. This gives

Pr[V>v] < exp{-k/2[z-1-1logz]}.

Treating z > 1 as fixed for the time being we get an inequality of the type

S
Pr[Se A] < Pr[Te AB*¥] +2¢ + ——

po
2
where — = kz and € = exp{-k/2[z—-1 —logz]} and S; = %EEIlXj I3. This sug-
o
gests taking
S3 S3 kz
2B + p = = .
T o T o
o 5 S3kz 5
This will give a value of p such that (p + B)° = 5 + B“ and
Sikz
W+p = B+ {—%2— + B2 < 2B+ —é—-(S3kz)1’2.

Minimizing with respect to B we obtain
B = %[331(2]1/4
and 7
2B+p < 3[S;kz]¥4
Finally we get
n(F,G) < 3[S;kz]"* + 2exp{-kR2[z-1-logz]}
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Since the Prokhorov distance never exceeds unity one can restrict all considerations to
the case where 3 (S;k)V/* < 1.

To select a value of z one can try to equate (S;kz)* and
exp{-k/2[z -1 -logz]}.

This yields the equality

z—-1-(1- —)logz = —IlogS3k|

2k-1 log(1+x) 1=
2k X

x =z - 1. Since i—log (1 + x) is decreasing, it follows that if x is substantial then it

This equality can also be written x[1 — illog&kl with

will be about equal to —2—112—|10g S3k|. We can assume, arbitrarily, x > 15. For such

values, x < 85_k |log S;k|. Then we shall have
S 14
n(F,G) < 8{(S;k)[1+ ™ |log S3k|[1}

For the second statement in the theorem one can proceed as follows. See [4] pages
16-17.

Let ||+ || be an arbitrary norm on R¥, Let B denote the unit ball of (RX, ||-||) and let
B* be the unit ball dual to B.

Take an arbitrary x; € B with ||x,]|=1. There is a y; € B* such that
<ynx;>=1. Let Bj={x:xe B,<y;,x>=0}. Take a x, € B; with ||x,]| =1
and a y, € B* with < ¥2,Xp> =1. Continue with B, = {x: xe B, < yi,x>~ 0,

i=1,2} and so forth. This gives a set of k pairs (x;,y; with < Yis Xj> = & 5
Kronecker 8.

lj’

Now consider the norm |- | defined by |x |? = %j§|< yj X > 2.

Clearly [x| < mjax|< ypx>| < |Ix]l. Also, by convexity [x|| < %|< yjpx>|
< k{%2|< ypx>P}2 = k|x|. Thus |x| < [Ix]| < k|x] and || is a Hilbertian norm.
The foregoing argument applies to |-|. Consider Ay = {x: }1’2{ ly=-x|l<y}). If
Y2 (@B +pk then A2 A®*. Thus we have P(Se A)<P[Te Ayl

Skz
+

+ 2exp{——k[z — 1 —-logz]} as before. Here

5 5
S3 = TZEIXP < 3 ZEIXIP < s



This suggest taking

S3kz .
2B + p)k = 5~ or equivalently
pp
S3Z
2B+ p)p = —EE_, which yields
W+p <2B + %(532)1/2

and, minimizing with respect to
2B + Pl < 3(S32)V4.
Thus we have
n(F,G) < 3k(S;2)* + 2exp(-kR2[z-1-logz]}.

Selection z by the same procedure as before we get

x(F,G) < 8(S;k*[1+ —58—%|log(s3k4)|]}1’4.

The same argument applies to statement (3) of the theorem except that now the sup
norm || x || = max | < y;, x >| satisfies the inequalities | x| < ||x]|| < | x Wk for the Hilber-
j

tian norm defined by |x|? = Tl(-Z|< yj,x>|2.

j
Remark. In the sequel we shall use statement (3) of the theorem under conditions
where the actual dimension of the space is not known but where it is known to be
bounded by a given k. The bounds are still applicable since the bound in statement
(3) is monotone increasing as function of k.

3) Reduction to the finite dimensional case.

In this section F will be a V.C. class of sets and Z, will be the empirical process
defined in the introduction. For each x > 0, F, will be a minimal subset of F with the
property that sgp il;f {P[FAS]; S € F,, F € F} < x. The cardinality of F, will be K (x)
12
K2 (x)

and L (x) will be [log ok

If v is the exponent of the V.C. class it is known (see Dudley (1978), Le Cam
(1986)) that

K(x) < exp{2v[logv + log2/x]}.



-8-
The following lemma is a version of a chain argument used by many authors

Lemma 1. Let m be an integer and let o € [0, 1/2] be such that 4L2(0) < no.. Then
there is a map < from Fy to F = such that

sup{|Z,(A) - Z,[t(A)]|; A e Fy}
2=-1)Vou
<32 [ L&)

\/ o
2
except for cases whose total probability does not exceed 4 (2™ — 1)V2a.

This will allow us to approximate the class F, by the class F 4 whose cardinality
is or can be very much smaller than that of F,.

It will remain to approximate F itself by F,. Later on the variable o will be made
to depend on n.

To pass from Fy to F, introduce the class D, of sets of differences S\&(S) or
€(S)\ S where & (S) is selected in F,, so that P[SAE(S)] < c.

It is known (see Dudley (1978)) that D, is a V.C. class of exponent at most 2v.

Consider a set of pairs W = {(x;,y;)):j = 1,2, ..., n} of points in the space X that
carries F. If S € D, it determines a ‘‘pattern’” on W as follows: The pattern of S on
W is a sequence {uj;j=1,...,n} with uj=l if X; € S, yjéS. It is u; =-1 if

X; €8, y; € S. Otherwise u; = 0.

The number of different patterns carved out on W by the elements S of D, will be
called M (D, W).

It is known (see Dudley (1978), Le Cam (1986)), that M (D, W) < (2n)%¥ where v
is the V.C. exponent of F.

Consider also the sum v (S,W) = Zluj (S)] for the pattern carved by S on W and
let N(W) = sup{Z|u;(S)|; S € Dg).
i

According to Le Cam (1986), Lemma 6 page 546

Lemma 2. Let conditions (A) and (B) of Le Cam (1986) page 545 hold. Let

2(2n)2"
£

xn (€) =2log ———. Then

1) Pr*(N(W) 2 2[x,(e) + Vno+1 1} < 8¢

2) Pr*{sup|Z,(S)|; S D
V2 x, (€) [ %, (€) + Vno+11]} < 20e.

>

1
2 —\/—H_[1+
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For this to be true one needs some conditions on D, but they are of the nature of
measurability restrictions. They are satisfied in most usual applications.

To combine Lemma 1 and Lemma 2 we need to select a value o, of o. According
to Lemma 1 one should take o, so that 4L2(a.,) < not,.
K

2x

<@2v+1) log;l(- + 2vlog2v. One can verify that

=2logK(x) + logL

R 2(x) =1
ecall that L*(x) = log =

o = 4Qv+ 1)1—°f£

will satisfy the desired inequality. If so the bound in Lemma 2, for the probability
(20)e will become

L
Vn
2

+ 2 [V3@v + Dlogn + 1] [4vlog2n + 2log > ]2,
\/—n €

Keeping ¢ fixed for the time being, assume that €2 > o, and let m be the smallest

2
log %ﬂ—] + 1. The class selected

+ % [4v]og2n + ZIOg%]

integer such that 4™ o > £2. That is m = int
g oy

log4

in Lemma 2 is a class F, . Lemma 1 can be used to pass to the class F,_;= selecting
eV2

sets &1 (S) € Fy 4u 50 that sups {1Z;(S) = Z,[§;(S)]1, S € F} <32 [ L(x»)dx. Since
0

L2(x) < 2v + 1)log + + 2vlog2v one has
X

L(x) < {(2v+1)10g%}1’2 + [2vlog2v]¥?

and
eV2 V2 !
JL&Hdx < (4v+2)12 | (log=)2dx + e[4vlog2v]'?
0 0 X
, 1 VN2 1
taking y = log — the integral | (log =)"2dx can be written
0 X

oo oo

[ ey =evyl o+ [ —evay
gL YT gl 2W
eV2 V2
5 1 12 1
< (e*/2){[log872] + 5}
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assuming eV2 < 1.
Combining the two maps § and §; one obtains a map t from F to F;, 4= such that
except for total outer probability at most 28 € one has

SgP{IZn(S) - Z,[t(®)]l; SeF}

1

) 1 1
< 64V2v+le{[4viog2v]? + — + —H)2y ¢ =
v+1 e{[4viog2v] > aoge*fi) } =

+ '\’ 3[4vlog2n + 210g2-]
n €

+ '\/%{[4(2v+ I)logn + 1] [4viog2n + 2log%]}1/2.

A similar argument can be applied to the Gaussian process, say Z,,, that has the same
covariance structure as Z,. However, here one can pass directly from F to F, 4= with

a map T such that, except for probability at most 8¢ will satisfy

SgP{IZ.»(S) -Z.[YS)]l: SeF}
n , 1 1 n
< (64) (V2v+1) e {[4viog2v]¥? + > + (log 8\/5) }.

Note that since a,4™ > €2 the cardinality of F,, 4= is at most

K < expl2viog2v + 4viog)
= ZVL
e

If one compares the bounds obtained above with the bound of theorem 1 with

k = K (€?) this suggest the choice of an € of the type € = —17 We shall make a partic-
n

ular choice of ¥ in the next section.

4) A bound on the Prokhorov distance.

We are now in a position to prove the following result:

Theorem 2. Let F be a V.C. class of subsets of X with exponent v. Assume that suit-
able measurability restrictions are satisfied. Let Z, be the empirical process for n

independent observations §,,&,, . . . , &, with arbitrary distributions L (§;) = P;.

Let Z_, be the Gaussian process defined on F with the same covariance structure

as Z,,.
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Then one can construct a probability space Q and processes Z: and Z: defined
on Q and such that
1) L(Z)=L(Z)) and L(ZZ) =L(Z..),
and
2) Pr* {(sup,|Z.(S) - ZX(S)| = 0 (v,n)} < 6 (v,n) where for y=[8 + 20v]™!
one has

n¢(v,n) < C3(v) + Cy(v)Vlogn
with C, (v) = (128)Vy(2v+1) and
C3(v) = C/(v) + max(36,92v)>"4,

(8+20v)

C/ (V) = (128)[@2v + D)aviog2v]? + (2)(4 +V2)(2v + 1) (3+10v) "

Proof. For the time being we shall not bother about fhe measurability restrictions.
They will be debated in the next section.

Choose ot as described in Section 3. Let &, = —.

n

Consider the empirical processes Z,, equal to Z, restricted to the class Fj 4m
described in Section 3. On this class the processes can be considered as random vec-
tors in R¥™ with a dimension k(n) < (2v)*' n*"Y. According to Theorem 1, and the
remark that follows its proof, one can match Z,, with Z_ . in such a way that, for the
uniform norm || - || on functions on Fo am,

Pr{"Z]Lr _Zoo,r" 2 \V(V’n)} < ‘V(V’n)

where y (v,n) is the function

5 [k(n) ]2 |v4
8k(n) |log vn 1

To obtain a Z: reconstruct all the Z (S) from the conditional probabilities of
{Z,(S); S € F} given {Z,(S); S € Fo 4}

Proceed similarly for y A According to Section 3 one will have

Pr{sgpIZ:(S) ~-ZX(S)|

\II(V,H) = 5(2v)5v/4n5v‘y/2—1/8 x [1 +

v

y(v,n) + v (v,n)}

IN

36e, + y(v,n)
for a function v, (v,n) equal to

(128)\/2v+1i{[4v10g2v]1/2 + Ly (ylogn + log —1—)1’2} + Y, (V,n),
nY 2 2
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W) = —= + \/—2-[(4\; +2)log2 + (4v + 2y)logn]
vn n

+ \/-Zn-{[l +4(2v + 1)logn] [(4v + 2)log2 + (4v + 2y)logn]}12.

Equating the powers of n in front of y(v,n) and Wy (v,n) suggests taking

Y= 3oy Note that then y (v,n) and the first part of y; (v,n) start with powers n™%.
. ~12 _ M _ 1 _ . _ 3+10v
By contrast W, (v,n) starts with powers n n where v, > Y 20

Using repeatedly the argument that for A<B and x € (0,1) the maximum of
x[ A — Blogx] is not more than B one obtains that

L [1+VZ@v +2)log2 + V2 (4v + 2p)logn] < }1—6(4\; +2y) and
1

n’Yx
' L1440y + logn] < L aav+.
n" M1
Thus
‘5 12
n'y,(v,n) < o (@v+2y) + [[4Q2v + 1)]V2[4v + 2y]]
1
< g[(2+‘/§)(2v+'y)+2(2v+ 1]
1
< ﬂ@ +V2)2v + 1).
"1
This yields
nYy; (v,;n) < C/(v) + Cy(v)Vlogn
where
C/(v) = (128)V2v+1 (4vlog2v)'? + g @+V2)2v+1)
1
and
C,(v) = 128Vy(Qv+l).
Finally

- Sv/4 S k@2 14
n'y(v,n) < 8Q2v)>V*[1 + 8k) |log Ve 1]

with k(n) < (2v)& n*, By the remark made after the proof of Theorem 1 one can
replace k(n) by that upper bound. Using the same argument about function of the
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type x [A — Blogx] and noting that (2 + Sv)y= 1/4 it can be seen that, whenever

, 5 1 (k(@)*? > 1
2% < n?, Il have 1+ = 1 aller than 1+ '
2v) n*Y, one will have 8 k@) |log o | smaller than 8 vv)¥

This will yield

1
nYw(v,n) < 8Q2v)PV4[1 + 2 14
Vy (v,n) vy’ [ 2 v(2v)2"]

Then
n’[y(v,n) + y;(v.n)] < C; (V) + Cy(v)Vlogn
with C, (v) = (128)yV2v+1 as above and
Ci(v) = C/W) + 92wy’

where we have replaced 1 + 2 1
8 v(2v

= by 41/36 for v > 1.

This yields a function ¢ (v,n) of the type described in the Theorem

(Note. The exponent y = obtained here seems smaller than the exponent

1
8+20v
in Massart [S]. However Massart 2d is the same as our 4v. Thus the rates of conver-
gence are about the same). (See Section 6 for modifications)

5) Measurability conditions.

The arguments of Section 4 require certain measurability restrictions for their vali-
dity. The conditions can be stated as follows:

A) Let D be the class of differences S;\S,, S;eF. Let
{€,82, ..., & MMy - .., My} =W be a sample of independent variables with
L(E,j) =L(M;). Let & j=12,...,n be independent variables, independent of W,
with Pr(€;=1] =Pr[g=-1]= 1/2. Then

(Te;(B, - 8,)(); S < D)

has the same distribution as {Z(ng - 811,-) (S); S e D} and that distribution can be
i

obtained by first conditioning on W.

B) Let m(S) be a median L E[Sg, S)-P:(S)]1=Z,(S). Then
Voo .

Pr{sups[1Z,(S) —m(S)|; S e S] 2 x} < 2Pr{[sup|Z,(S) - Z,/(S)|;
S € S] 2 x} for Z, a copy of Z, independent of it and for any subclass S of D.
Dudley (1978) has given conditions that are sufficient for the validity of (A) (B).
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We have stated (A) (B) in terms of probabilities. However it is sufficient that they
be valid with outer probabilities.

Here one may note that Dudley’s conditions are meant to apply to the empirical
processes as naturally defined. (That is taking for measurable sets in the space B (D)
those whose inverse images are measurable in the space of the {§, . . ., &,}) They are
automatically satisfied if F is countable. If F is uncountable one may be tempted to
look at Z, as a process with trajectories in the space B (D) of bounded functions on D
and work with various ‘‘versions’’ of the process. For instance one may note that for
any system Pj; j=1,...,n of distributions P; = L(ﬁj) the V.C. class D admits a

countable dense subset for the distance 13(SIASZ) = %ZPj (5;AS,). Indeed D is

precompact for that pseudometric. Thus one can use ‘‘separable’’ versions.

Noting that if na < 1/4 the median of a binomial B (n,) variable is zero and
applying Lemma 6 page 546 of Le Cam (1986) one sees that if D (o) is the class of
sets {D € D; P(D) < a} then

Pr* (supp|Z, (D)]; D e D(a)z‘\/%[x(e)]z} < 20e

where [x (€) ]2 = 4vlog2n + 4log%

Thus the validity of conditions (A) (B) already implies that the asymptotic behavior
of Z, in F can be deduced, within terms of order log 2n/+n, from its behavior in the
countable subclass Fy =\ JF ; union of finite classes Fy,, that approximate F within

m m

1

m

Kakutani defined a ‘‘distribution’’ for Z, in B (F) as follows. Consider the line R
compactified by adjunction of points at eo, Then Z, defines a unique Radon measure
on (R)F. Since Z, has bounded paths the measure in question is already a Radon
measure on B (F) topologized by pointwise convergence on F. Since that Radon
measure is already well defined by its projection on subspaces of the type (R)S with
S © F and countable, it will automatically satisfy (A) and (B) but need not coincide
with the natural version of L (Z) for sets where both are defined.

The argument used in Section 4 conditioning on projections of the type
{Z,(S); Se FB} seems to require additional measurability restrictions, but it does not.
Since F is a V.C. class, the Gaussian process Z., defined on F admits a version
with continuous paths for the pseudometric P(S;AS,). It is well defined. For a class
Fg that is finite one can find a joint distribution Q in R x R™ that has marginal
L[Z,(S); S € Fg] on the first R™ and L[Z.(S); S € Fg] on the second R, It can
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be selected so that Q{||Z, - Z,, IIF‘3 > 1t} < © for the Prokhorov distance between the
two marginals. This joint distribution yields a Markov kernel Q (x,B) that maps the
first R™ to measures on the second. For the Gaussian process Z, one can select
another Markov kernel, say H(y,C), regular conditional distribution of
{Z.(S): S € F} given {Z_,(S): S € Fg}. To pair Z, with Z_, keep for Z, the original
process whether it is in its natural form or a modified version. Pass from
{Z,(S); S € F} to x = {Z,(S); S « Fg}. Now apply Q(x,B) to geta y e R of the
form y = {y(S); S € Fg}. Then apply H(y,-) to get a point z = {z(S): S € F}. This
will yield the pairing as needed.

In Section 2 we have used a Prokhorov distance &t (P,Q) obtained from inequalities
P(A) < Q(A®) + € for closed sets A. In Section 4 we have used the fact, due to
Strassen, that such inequalities imply the possibility of a coupling with
Pr{llZ,; — Z..; Il > €} < &. There the Z,; and Z, ; are vectors in a finite dimensional
space. Thus Strassen’s theorem is certainly applicable. However we have stated
Theorem 2 in the coupling form and not in the P (A) < Q(A®) + € form because that
would necessitate specifying for which (closed ?) sets A the probabilities P[Z e A]
are defined. The coupling form, with outer probabilities, avoids this specification.

6) Application of a theorem of Zaitsev.

In this section we discuss briefly some possible improvements on the rates of con-
vergence obtained in Section 4. One small improvement can be obtained by replacing
the bound on K (¢2) derived from Lemma 3 page 543 of Le Cam (1986). However it
seems that major improvements will depend on the use of better finite dimensional
results to replace Yurinskii’s theorem (Theorem 1, here). There are several possibili-
ties. One of them is a theorem of Zaitsev (1987). Unfortunately, as we shall see,
Zaitsev’s theorem, as published, does not quite fulfill its promise. It does replace the
n'® of Theorem 1 by n!’? but the power of the dimension k is increased. This mav
just be a feature that could be changed by redoing Zaitsev’s proof. However the proof
is rather complex and at the time of this writing we have not yet succeeded in carrying
out the necessary modifications.

Let us start with the improvement on K (€2). Here we have used the bound

K(x) < exp{2v[logv + log2/x]

as given in Le Cam (1986) page 543. This is obtained there by writing & = %bgK

and noting that & is at most equal to that solution y of the equation y = logy + a,

(with a = log (2v/x)) that is larger than unity. In fact that solution satisfies the inequal-
a

a-—

ityy<a+ 7 loga=a[l+(a—1)lloga]. This was replaced by 2a in Le Cam
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(1986). For a large (a — 1 log a becomes small.
This means that, for small €, the bound K(e2) < (2v)®' €™ given at the end of

—vV
Section 3 can be replaced by (2v)'e€ % p(g,v) where (g, v) = (a)*! , a = log 2—

This extra factor W (€, v) is logarithmic in €.

If this is taken into account the exponent Yy =
by 1/(8 + 10v).

Now let us pass to Zaitsev’s theorem. Zaitsev considers a random vector X with
distribution given by a measure F on IR¥. It is assumed that EX = 0 and that for
v € RK the variance (Dv,v) = E(v'x)? exists. Let G be the Gaussian measure with
expectation zero and the same covariance system as F.

S20v in the rate nY can be replaced

It is assumed that R¥ is provided with a Hilbertian norm denoted | +|. This norm is
extended to the product €¥ of k complex planes as usual. The corresponding inner

product will be denoted < z,x>, z € CX, x € R¥ or C¥. Define ¢ on CX by
0(z) = logEe<%X>,
The function ¢ is subject to the following restrictions: There is a T > 0 such that
A;) ¢ is defined and analytic for
t)z] <1, ze Ck

A,) For all u and v in R¥ the mixed third derivative satisfy the condition

9 9
IEWMZN < |ul(Dv,v)t.

d(z+ew) —-0(2
€

. 0 .
The derivatives are taken as usual so that 3 ¢ (z) means lm())
u £

- One of Zaitsev’s results is as follows.

Theorem 3. Let F satisfy the conditions A, and A, for a © > 0. Then for the norm
|-| the Prokhorov distance w, (F,G) between F and the Gaussian with the same first
and second moments satisfies the inequality

n,(F,G) < Ck*t[1+|logtl|]
where C is a universal constant.

To apply this result here consider the case where X is the empirical process
Z,={Z,(A); A € A} where A is a class of k subsets of the sample space. For com-

K
plex vectors z = {2,,25, . . ., 7} let < z,z,> = j=21 z,Z, (A).
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The function ¢ (z) is easily obtainable even though a bit messy looking. The third
mixed derivative can be computed. Its main term contains an expectation of the type

H(u,v) = E|<u,Z,>|[<V,z,>]* This can be bounded by

H@u,v) < _«/—1-;1— |ul; (Dv,v)
k
where |u|; is the L;-norm |u]; = ):1 lu; < |u|Vk for the Hilbertian norm (Z|u; %2,
J=

Thus Zaitsev’s theorem applies with a number T of the type T = b'\’ —E- for a cer-
tain constant b.

To obtain a theorem similar to Theorem 2 of Section 4 we need to use the Pro-
khorov distance © (F,G) computed for the uniform norm ||-|| instead of the &, (F,G)
computed for the Hilbertian norm. Since |[x] < |[x]| < |x|Vk one will have
7 (F,G) < n, (F,G) vk. Finally this gives the following result

Theorem 4. For the distribution F of the empirical process on k subsets of the sam-
ple space and for the uniform norm there are constants C; and b such that

K k
n(F,G) < CITH-[1+Ilog(b‘\/;)I].

Note the term k3/Vn. It corresponds here to the [k>2/Vn]" of Theorem 1. This
shows that Zaitsev’s result is a considerable improvement on Yurinskii’s as far as
powers of n are concerned. Unfortunately we were unable to beat down the Ktoa
k2. Whether this is possible by rewriting Zaitsev’s proof or by a better evaluation of
the term T is not known to this writer at this time.

In any event application of the above result to the computations carried out in Sec-
tion 4 will give a bound where the Prokhorov distance between Z, and the correspond-
ing Gaussian process will tend to zero as n7Y, ignoring some logarithmic terms, but
1

here v can be taken equal to Y = ERRT
v

This is a definite improvement over the y = of Section 4. It is unfortunate

1
8+20v
that this particular ¥ was replaced by (8 + 10v)™! at the beginning of the present sec-
tion. Since 8 + 10v and 2 + 12v are not comparable it suggests that a better argument
should lead to a value of y larger than (2 + 10v)~L.

We shall return to this question and to other possible approaches in a later report.
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