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1) Introduction.

Let Pj j = 1, ...,n be probability measures on a a-field A. Let F C A be a
Vapnik-tervonenkis class. If 41, *. .. , en are independent observations with Pj = L (4)
the empirical process Zn is defined on A by

1 n

Zn(A) = ., 1: I IA (4) - Pj (A)

Let Gn be the Gaussian process that has mean zero and the same covariance structure
as Zn. Consider the space B of bounded functions on the V.C. class F with its uni-
form norm. It is well known that Gn defines a probability measure, say Mn, on B.
Similarly, under standard measurability conditions Zn will define a measure, say Ln, on
a reasonably big a-field of subsets of B.

We are interested in the Prokhorov distance i(Ln,Mn) between these two meas-
ures. Our purpose is to prove the following:

There exists a universal function (v, n) -> ¢ (v, n) of the V.C. exponent v of F and
the integer n such that

1) 4(v,n) -4 0 as n-oo

2) xC(Ln,Mn) < 0 (v, n).

Actually this result is known. It has been proved by Pascal Massart in [5] and the
proof given below differs little from that of Massart. The reason for rewriting it is to
emphasize the universality of the function 4. It does not depend on the Pj at all. It
depends on the class F only through the exponent v. The proof will supply a particu-
lar 0. It is not necessarily the optimal one. The same technique can be used to obtain
other results, with bounds that depend on P and on the class F. The proof uses three
known results; a) The entropy bound of R.M. Dudley [2] with the chain argument; b)
a bound on the norm of empirical processes on V.C. classes consisting of sets with
small probability and c) a theorem of Yurinskii on the Central Limit theorem in Rk.

* Research Supported by National Science Foundation Grant DMS87-01426.
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Measurability requirements are essentially ignored at first. They are discussed in
the last section.

One could let the class F depend on n. The measures Pj, j = 1,...,ncan also
depend on n in an arbitrary manner. One can also obtain results where the Vapniks
exponent v of F (and F) varies with n provided that one puts restrictions on the

S K2 (X)
entropy integrals of the form JLn(x2)dx with LQ (x) = log K4 that occurs in the

0 2x
application of the chaining argument. For further results, see Massart [1986].

For applications and v fixed 0(v,n) can be taken equal to C(v) (V)wheren~v

7(v) - 9 20v and where C is a certain universal function of v.

Improvements in the exponent y(v) seem possible but they depend on improve-
rpents in the Central Limit theorem in Rk for the uniform norm and arbitrary covari-
ance matrices. The literature contains several such improvements. In Section %'we
discuss briefly the possible use of a theorem of Zaitsev (1987).

2) A theorem of Yurinskii.

Consider the k-dimensional space Rk and provide it with a norm 11 11. That norn

will be called "Hilbertian" if it satisfies the median equality 11 2Y 112 + 11 xY 112 =

1 [llxII2 + Iy1121.2

Theorem 1. Let X1, X2,... , Xn be independent random variables with values in ftk*
Assume EXj = 0 and EllXj 1i3 < oo. Let F be the distribution of the sum
S = X1 + X2 +...+ Xn and let G be the Gaussian measure with the same expectation
and covariance structure as F. Then:

1) If 11- I is Hilbertian then

it(F,G) < 8{(S3k)[1 + -5- logS3k]}1/4
8 k

2) If 11 - 11 is arbitrary, then

x (F, G) < 8 {(S3k4) [ 1 + 8 k I log (S3 k4) 1 ]11/48 k

3) If 11 * 11 is the maximum coordinate norm of Rk, then

x (F, G) < 8 { S3 k5/2) [ 1 + 58 klog (S3 k5/2)1])1/48 k
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where S3 = ME-EIIXj 13

Remark. Statement (1) is imitated from Yurinskii (1977). It is not quite the same as
Yurinskii's because we had difficulties following some of his arguments and may have
redone them differently.

Statements (2) and (3) are obtained from statement (1), following a technique used
by Dehling (1983).

Proof. Take a function f defined on Rk. Assume that f is twice differentiable. This
can be taken to mean that for each x E Rk there is a vector A (x) and a matrix B (x)

such that 1lf(x + y) - f(x) - A(x)y - +y'B(x)yl tends to zero as IIy ->0.

Assume in addition that B satisfies a Lipschitz condition

IB(x) - B(z)l < Clix - zil
so that lz'[B(xl) - B(x2)]yI < C llXl - x211 liZil IlYll

Let Y1,... , Yn be independent, independent of the Xj with EYj = EXj and

EYj Yj' = EXjXj'. Let S = XXj, T = lYj. Then Lindeberg's argument shows that

IEf (S) - Ef (T) I <. {E Xj 13 + £E Yjll3}.
Now assume that 11 II is Hilbertian and Yj Gaussian. Then

E 11Yj 113 44[E 11Yj112]312= 4[E 1Xj112]112
< 4E 11Xjl3

Thus

IEf(S)-Ef(T)I < 5 C1EI Xjll3

Now, assuming again that 11 11 is Hilbertian, let us create some function f that
satisfy the above differentiability conditions.

Let Fi, i = 1,2 be two disjoint closed subsets of Rk. Let p (x, F) = inf{Ix - y 11;
y E Fi} and p = p (F1, F2) = inf p (x, F2): x E F1}. Then the function g defined by

x

_p_(x, F2)
g(x) = ( F1) ( F2) satisfies the Lipschitz condition I g (x) - g (x2)1 <

-1 x -x2 H. Let Ha be the Gaussian density whose exponential term is
p
exp {-y1 IxI12}.

2ax
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Consider the function f (x) = Eg (x + y) where y has distribution Ha. This may
also be written

Kfg(x + y)exp- 11y 112) dy

= KJg(y)exp(- 12IIY - x112) dy.2a2
Look at f (x + Xz) and take derivatives with respect to X. The second derivative of

exp- 12 II y -X _ Z112) is given by the same exponential multiplied by

1 (y_)Zz2-X2lll1 1 ~~~~2

- 1--[(y-(X+Xz)')z]2 - 1 1 z 112.ac a2
Taking as a new variable of integration y - (x + Xz) one obtains

a2 1aX2f(X+ kz) = -4Eg[y+(x+2z)] x [(y'z)2 -a2 IIzI2].
Therefore

a2 a2ax2 f(x + Xz) - --f(X + Xz)l o

< 4-EIg(y+ X + XZ) - g(y + X)[Z'y]2 _X211Z112cc4
< 1 XIIziiEI(z'y)2 2c211z1121

pa4
2 XIIzII Iz112 < 2

paC2 pOC2
Thus the derivative B (x) of the function f will satisfy the Lipschitz condition

Iy [ B(xl) - B (X2)] Y I < 2 1I1x - X211 11 y 112cc2
Now take any arbitrary closed set A. Let AP = {x; p(x,A) < f }.

going to F1 = A7 and F2 = (AP+P)c. This will give a certain function

derivative satisfies a Lipschitz condition with coefficient C < 2

x E A one will have f(x) > 1 - Pr[c2X2 2> f32]. For x e (A21+P)c
f(x) < Pr[a2 2 > 32 ]. If we let c = Pr [cx2 2 > B2 ] this will yield

P (S E A) < Ef (S) + e

Apply the fore-
f whose second

In addition for

one will have
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5 Ef(T) + - 21 EEIXjII3 + £
3 pa2 J

< Pr[T E A2VP] + e +-j Ea2EIXjI + e
3 pa2

< Pr[T E= A2p+p ] + 2F, 53 2 zE 1Xj 113.

To obtain a bound it will be sufficient to select a, f and p in an appropriate
manner. To do this note that Pr [ a2 2 > f2] is the probability that a gamma variable,

say V, with density k eX be larger than -2- To bound this probability
J7(-)

2
note that EetV = (1 - t)412 for t E (0, 1). Thus Pr[V > v] . (1 -

Write v =- z and minimize with respect to t. This gives
2

Pr[V > v] < exp{-k/2[z - 1 - logz]}.

Treating z > 1 as fixed for the time being we get an inequality of the type

Pr[S E A] < Pr[TeA2+P] +2e + p2

p2 5~~~~~~~~p
where 2~= kz and e = exp{-kI2[z -1- logz]) and S3 = E11Xj 13. This sug-a23
gests taking

S3 S3 kz25 + p 2=ppa2 pf2

This will give a value of p such that (p + j)2 - k 2 and

2 0+{ S3kz +p2}1/2 < 2 +*(S3kz)1/2.

Minimizing with respect to ,3 we obtain

0 = 2S3kz]1/4
2

and

23+ p < 3[S3kz]1/4.

Finally we get

x (F,G) < 3 [ S3 kz ]1/4 + 2exp{-k/2 [ z - 1 - log z]}
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Since the Prokhorov distance never exceeds unity one can restrict all considerations to
the case where 3 (S3 k)114 < 1.

To select a value of z one can try to equate (S3 kz)1/4 and
exp{-k/2 [ z - 1 - log z]).

This yields the equality

z- 1-(1 )10gz = -ilogS3kl.
2k 2k

This equality can also be written x [1 _ 2k-i log(l+x)] = 1 109 S3kI with
2k ]=-iog3k wt

x = z - 1. Since - log (1 + x) is decreasing, it follows that if x is substantial then it
x

will be about equal to I log9S3kI. We can assume, arbitrarily, x 2 15. For such

values, x . 5 1 log S3 k 1. Then we shall have
8k

IC(F,G) < 8{(S3k)[1 + 5 logS3kI])1/48k

For the second statement in the theorem one can proceed as follows. See [4] pages
16-17.

Let li* be an arbitrary norm on Rk. Let B denote the unit ball of (Rk, liii) and let
B* be the unit ball dual to B.

Take an arbitrary xl E B with lixill = 1. There is a Y1 E B* such that
< yl,x > = 1. Let B1 = {x: x E B,< yl,x> = 0). Take a x2 E B1 with ilx2il = 1
and a Y2 e B* with < y2,x2> = 1. Continue with B2 = {x: x E B, < yi,x> =0,
i = 1,2) and so forth. This gives a set of k pairs (xi,yi) with < yi,xj> = 5ij, the
Kronecker 8.

Now consider the norm I defined by I x 12 = >I< y,x>2.
k j=1

Clearly IxiI maxI< yj,x>i s lixil. Also, by convexity lix s Xi< yj,x>l
. k{ k -Z< yj,x>i2)1/2 = kIxi. Thus IxiI lixil s kIxI and I I is a Hilbertian norm.

The foregoing argument applies to 1 I. Consider A7,= {x: inf II y - xli . y). If
yEA

y > (2f3 + p)k then A7, A2+p. Thus we have P (S E A) . P [T E A(2p+p)k]
S3kz 1

+
S

+ 2exp{- -k [ z - 1 - log z]} as before. Herepf32 2

53 -XElXl3 < -X,EIi1Xj113<S3S3 3 3<S3
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This suggest taking

S3kz
(21 + p)k = S or equivalently

p12
S3z

(213 + p)p = ,
Z

which yields

21+p <23 + (S3z)1/2

and, minimizing with respect to 13

(213 + P)min ' 3(S3 z)1/4.

Thus we have

x (F,G) < 3k (S3z)1/4 + 2exp{-k/2 [ z - 1 - log z]}.

Selection z by the same procedure as before we get

7(F,G) < 8{S3k4 [1 + 5i klog(S3k4)1]}1/4.
8 k

The same argument applies to statement (3) of the theorem except that now the sup

norm 11 x 11 = max I < yj, x > I satisfies the inequalities I x I < 11 x 11 < I x 1k for the Hilber-
j

tian norm defined by I x 12 1 < yj, x> i2.

Remark. In the sequel we shall use statement (3) of the theorem under conditions
where the actual dimension of the space is not known but where it is known to be
bounded by a given k. The bounds are still applicable since the bound in statement

(3) is monotone increasing as function of k.

3) Reduction to the finite dimensional case.

In this section F will be a V.C. class of sets and Zn will be the empirical process
defined in the introduction. For each x > 0, Fx will be a minimal subset of F with the
property that sutpinf{P[FFAS]; S E Fx, F E F) c x. The cardinality of Fx will be K (x)

and L (x) will be [log K2 (x 1

If v is the exponent of the V.C. class it is known (see Dudley (1978), Le Cam
(1986)) that

K (x) < exp {2v [ log v + log 2/x ]}.
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The following lemma is a version of a chain argument used by many authors

Lemma 1. Let m be an integer and let a e [ 0, 1/2] be such that 413 (a) < na. Then
there is amap X from Fa to F.4m such that

sup{ Zn (A) - Zn [ X (A) ] ;A E Fa}
(2m-1)a

< 32 f L(x2)dx
la

except for cases whose total probability does not exceed 4 (2m - 1) «ia.
This will allow us to approximate the class Fa by the class Fa4m whose cardinality

is or can be very much smaller than that of Fa.

It will remain to approximate F itself by Fa. Later on the variable a will be made
to depend on n.

To pass from Fa to F, introduce the class Da of sets of differences S \ (S) or
4 (S) \ S where 4 (S) is selected in Fa so that P [ SA4 (S) ] < a.

It is known (see Dudley (1978)) that Da is a V.C. class of exponent at most 2v.

Consider a set of pairs W = {(xj,yj): j = 1,2, . . . , n} of points in the space X that
carries F. If S E Da it determines a "pattern" on W as follows: The pattern of S on
W is a sequence {uj; j = 1, . . . , n) with uj = 1 if xj e S, yj i S. It is uj = -1 if
xj i S, yj E S. Otherwise uj =O.

The number of different patterns carved out on W by the elements S of Da will be
called M (Dag W).

It is known (see Dudley (1978), Le Cam (1986)), that M (Da,W) < (2n)2v where v
is the V.C. exponent of F.

Consider also the sum v (S,W) = £1 uj (S) I for the pattern carved by S on W and
let N (W) = sup{ uj (S)I; S E Da}.

According to Le Cam (1986), Lemma 6 page 546

Lemma 2. Let conditions (A) and (B) of Le Cam (1986) page 545 hold. Let

x2 (e) = 2log 2(2n)2v. Then

1) Pr* {N(W) > 2[x (e) + lna+l j2} < 8F

2) Pr* {supIZn (S); S E Da
2> n 1 + 2 xn (£ I Xn (£) + Anoc+ I]] < 20£.z=n 1
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For this to be true one needs some conditions on D. but they are of the nature of
measurability restrictions. They are satisfied in most usual applications.

To combine Lemma 1 and Lemma 2 we need to select a value on of a. According
to Lemma 1 one should take an so that 4L2 (an) . nan.

Recall that L2(x) = log K(X) = 21ogK(x) + logy-

< (2v + 1) log 1 + 2v log 2v. One can verify that
x

an = 4 (2v + 1)logn

will satisfy the desired inequality. If so the bound in Lemma 2, for the probability
(20)e will become

1 + X [4vlog2n + 2log 2]

+ -[44(2v+ 1)logn+ 1] [4vlog2n+2log3 ]1/2.

Keeping e fixed for the time being, assume that c2,2 c and let m be the smallest

integer such that 4m¢cn 2&. That is m = int [114 log £r] + 1. The class selected

in Lemma 2 is a class F C-. Lemma 1 can be used to pass to the class Fa.'4m selecting

sets 41 (S) e Fc,4m so that sups {IZ (S) - Zn[ (S)], S e F) < 32 L(x2)dx. Since
0

L2(x) < (2v + l)log 1 + 2vlog2v one has
x

L (x) < ((2v + 1) log 1} 1/2 + [2v log 2v ]1/2
x

and

LL(x2)dx < (4v + 2)1/2 (log 1/2dx + e [4vlog2v]1/2
o 0 x

taking y = log - the integral J (log 1)1/2 dx can be written
x 0 x

00 00

J eYidy = e Y<IIOg 1 + j 1 e dy

1 (£ r{log _ __ ill2 + 1 }\C< 11-2f[og 1/2 +2
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assuming e-12 < 1.

Combining the two maps 4 and 41 one obtains a map X from F to FOc,4m such that

except for total outer probability at most 28 e one has

sup({ZS)()Z[t(S)]l; SE F)

. 6442v+1([4vlog2v]12 + +Q(og-1 )1/2}+~~~~~2
+ x-[4v log 2n + 2 log-]

nn

+ < ([4(2v + 1)logn + 1] [4vlog2n + 2log 2])1/2

A similar argument can be applied to the Gaussian process, say ZO, that has the same

covariance structure as Z. However, here one can pass directly from F to Fa.4m with

a map X such that, except for probability at most 8e will satisfy

sup {IZ.(S) - Zoo[d (S)] 1: S E F)
S

< (64)(42v+1){[4vlog2v]11/2 + 2 + (log )1/2).

Note that since an4m 2 e2 the cardinality of Fa,4m is at most

K(e2) < exp{2vlog2v + 4vlog-}

= (2v)2V 1
E4v

If one compares the bounds obtained above with the bound of theorem 1 with

2) ~~~~~~~~~~~~~~~1-k = K (e2) this suggest the choice of an e of the type £ = 1 We shall make a partic-
n'y

ular choice of y in the next section.

4) A bound on the Prokhorov distance.

We are now in a position to prove the following result:

Theorem 2. Let F be a V.C. class of subsets of X with exponent v. Assume that suit-
able measurability restrictions are satisfied. Let Zn be the empirical process for n

independent observations 41, 42 .. n with arbitrary distributions L (4j) = Pi.
Let Z., be the Gaussian process defined on F with the same covariance structure

as Zn.



- 11 -

Then one can construct a probability space Q and processes 4n* and Z* defined
on Q2 and such that

1) L(Zn)=L(4*) and L (Z*) = L (Z..),
and
2) Pr* { sUPs14*(S) - Z:* (S)I > (v,n))}< (v,n) where for y=[ 8 + 20v]1
one has

n'y 0(v,n) < C3 (v) + C2 (v) 'log n
with C2(v) = (128)Vi(2v+1) and

C3 (V) = C1' (v) + max (36, 9(2v)5V/4),

Cl'(v) = (128)[(2v+1)4vlog2v]112 + (2)(4+4N)(2v+ 1)(8+20v)
C1'(v) = (128)[(2v+ ~~~~~~~(3+lOv)

Proof. For the time being we shall not bother about the measurability restrictions.
They will be debated in the next section.

Choose °cn as described in Section 3. Let en =
ny

Consider the empirical processes Zn,r equal to Zn restricted to the class Fan4m
described in Section 3. On this class the processes can be considered as random vec-

tors in Rk(n) with a dimension k (n) < (2v)2V n4Vy. According to Theorem 1, and the
remark that follows its proof, one can match Zn,r with Zc,r in such a way that, for the
uniform norm li on functions on FCt4m)

Pr{IIZn,r-Zo,rII .2 (v,n)) < vf(v,n)
where 4f (v,n) is the function

(v,n) = 5 (2v)5(4nn)v2-1/8 x [ 1 + 5 log [k(n) ]5/2 1/4

To obtain a Z4 reconstruct all the Zn (S) from the conditional probabilities of
{Zn(S); S r F) given {Z (S); S E Fan4m).

Proceed similarly for Z*. According to Section 3 one will have

Pr sup l(S) - Z.. (S) I 2 v (v,n) + Vp1(v,n)}
< 36 + v (v,n)

for a function Mf (v,n) equal to

(128)42v+ -{[4vlog2v]1/2 + (ylogn+og )1/2} + xf (v,n),
ny -\F2~~
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2(v,-n) + -[(4v + 2) log 2 + (4v + 2y) log n]

+ I[ 1 + 4(2v +1)logn] [(4v + 2)log2 + (4v + 2,y)Iognn1/2.

Equating the powers of n in front of NV (v,n) and Ni (v,n) suggests taking

'Y= 8+20, . Note that then Vi (v,n) and the first part of Nfi (v,n) start with powers n7.

=/ n~~ hr i=1 3+10vBy contrast Nf2 (v,n) starts with powers n8+20n where vy - - =

Using repeatedly the argument that for A < B and x E (0,1) the maximum of
x [A - B log x ] is not more than B one obtains that

1 1-[1+4X(4v+2)1og2+'/(4v+2^y)1ogn] < -4 (4v+2^y)and

1 [1 +4(2v+ 1)logn] < - 4(2v+ 1).

Thus

nTNV2(v,n) < -{(4v+2y) + [[4(2v+1)]2[4v + 2y]]112

< -[ (2 +) (2v +7) + 2(2v + 1]
7i

< - (4+ )(2v+ 1).
7'

This yields

nTVN (v,n) < C1' (v) + C2 (v) 40log n

where

Cl'(v) = (128)\2v+1(4vlog2v)1/2 + -2 (4 + 2)(2v + 1)
7i

and

C2(v) = 128 l7y(2v+1).
Finally

5 k_n___2n'yNf(v,n) < 8(2v)5v/4[1 + 5 log k(n)5/48k(n) og 1/

with k (n) < (2v)2v n4V'Y. By the remark made after the proof of Theorem 1 one can
replace k (n) by that upper bound. Using the same argument about function of the
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type x [A - B log x] and noting that (2 + 5v) y = 1/4 it can be seen that, whenever

(2v)5V < n4Y, one will have 1 + 58 k(n) log (k(n)) I smaller than 1 + 58 1v2
This will yield

5 __ __ _nTyN, (v,n) < 8(2v)5v/4 [1 + - 1]1v/4
Then

ny [ v (v,n) + V, (v,n)] < C1(v) + C2 (v) Nlog n
with C2 (v) = (128) y 42v+1 as above and

C1 (v) = C1'(v) + 9(2v)5V/4

where we have replaced 1 + -5 1 by 41/36 for v . 1.
8 v(2v)2v

This yields a function 0 (v,n) of the type described in the Theorem

(Note. The exponent y = 8 obtained here seems smaller than the exponent
8+20v

in Massart [5]. However Massart 2d is the same as our 4v. Thus the rates of conver-
gence are about the same). (See Section 6 for modifications)

5) Measurability conditions.

The arguments of Section 4 require certain measurability restrictions for their vali-
dity. The conditions can be stated as follows:

A) Let D be the class of differences Sl \ S2' Si E F. Let

{41' 2' ...*,*n; 71191212 * , Tln) = W be a sample of independent variables with
L (4) = L (hj). Let ej; j = 1,2, ... , n be independent variables, independent of W,
with Pr [ ej = 1] =Pr [ ej =-1] = 1/2. Then

{E li (5j - 81Q) (S); S E D}
j

has the same distribution as {E (8,j - 8,J) (S); S E D} and that distribution can be
j

obtained by first conditioning on W.

B) Let m(S) be a median 1 E [ 8j (S) - Pj (S)= Zn (S). Then

Pr{supstZnI(S) - m(S)I; S E S] 2 X} < 2Pr{[supIZn(S) - Zn'(S) ;

S E S] 2 x) for Zn' a copy Of Zn independent of it and for any subclass S of D.

Dudley (1978) has given conditions that are sufficient for the validity of (A) (B).
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We have stated (A) (B) in terms of probabilities. However it is sufficient that they
be valid with outer probabilities.

Here one may note that Dudley's conditions are meant to apply to the empirical
processes as naturally defined. (That is taking for measurable sets in the space B (D)
those whose inverse images are measurable in the space of the {41,. . . , e) They are
automatically satisfied if F is countable. If F is uncountable one may be tempted to
look at Zn as a process with trajectories in the space B (D) of bounded functions on D
and work with various "versions" of the process. For instance one may note that for
any system Pj; j = 1, . . . , n of distributions Pj = L (4) the V.C. class D admits a

countable dense subset for the distance P(S1AS2)= - Pj (S1AS2). Indeed D is
n

precompact for that pseudometric. Thus one can use "separable" versions.

Noting that if na < 1/4 the median of a binomial B (n, a) variable is zero and
applying Lemma 6 page 546 of Le Cam (1986) one sees that if D (a) is the class of
sets {D e D; P(D) < a) then

Pr*(supDIZn(D)I; DED(a) >< 20£

where [ x (e) ]2 = 4v log 2n + 4 log 2
E

Thus the validity of conditions (A) (B) already implies that the asymptotic behavior
of Z4 in F can be deduced, within terms of order log 2n / 4i1, from its behavior in the
countable subclass Fo = U F 1 union of finite classes Flm that approximate F within

m m

m

Kakutani defined a "distribution" for Zn in B (F) as follows. Consider the line 1R
compactified by adjunction of points at oo. Then Zn defines a unique Radon measure
on (ft)F. Since Z4 has bounded paths the measure in question is already a Radon
measure on B (F) topologized by pointwise convergence on F. Since that Radon
measure is already well defined by its projection on subspaces of the type (Rk)s with
S c F and countable, it will automatically satisfy (A) and (B) but need not coincide
with the natural version of L (Zr) for sets where both are defined.

The argument used in Section 4 conditioning on projections of the type
{Z(S); S E Fp) seems to require additional measurability restrictions, but it does not.

Since F is a V.C. class, the Gaussian process ZOO defined on F admits a version
with continuous paths for the pseudometric P (S 1AS2). It is well defined. For a class
F that is finite one can find a joint distribution Q in RFP x ftFp that has marginal

Fd F IL Z(S); S E Fp ] on the first R and L[Z. ,(S) ; S E Fp ] on the second R It can
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be selected so that Q {II Z4 - Z, IIFO > Xn) < n for the Prokhorov distance between the
two marginals. This joint distribution yields a Markov kernel Q (x, B) that maps the
first RFo to measures on the second. For the Gaussian process Z. one can select
another Markov kernel, say H (y, C), regular conditional distribution of
{ZO (S): S E F) given {Z,, (S): S E F). To pair Z4 with ZO,, keep for Z4 the original
process whether it is in its natural form or a modified version. Pass from
(Zn(S); S E F) to x = {Zn (S); S E Fp}. Now apply Q(x,B) to get ayE RFO of the
form y = (y(S); S e F}). Then apply H(y, ) to get a point z = {z(S): S e F). This
will yield the pairing as needed.

In Section 2 we have used a Prokhorov distance n (P,Q) obtained from inequalities
P (A) < Q (AE) + e for closed sets A. In Section 4 we have used the fact, due to
Strassen, that such inequalities imply the possibility of a coupling with
Pr{I Zn,r - Zo ,rlI > 0) < e. There the Zn,r and Zco,r are vectors in a finite dimensional
space. Thus Strassen's theorem is certainly applicable. However we have stated
Theorem 2 in the coupling form and not in the P (A) < Q (AC) + e form because that
would necessitate specifying for which (closed ?) sets A the probabilities P [Zn e A]
are defined. The coupling form, with outer probabilities, avoids this specification.

6) Application of a theorem of Zaitsev.

In this section we discuss briefly some possible improvements on the rates of con-
vergence obtained in Section 4. One small improvement can be obtained by replacing
the bound on K (2) derived from Lemma 3 page 543 of Le Cam (1986). However it
seems that major improvements will depend on the use of better finite dimensional
results to replace Yurinskii's theorem (Theorem 1, here). There are several possibili-
ties. One of them is a theorem of Zaitsev (1987). Unfortunately, as we shall see,
Zaitsev's theorem, as published, does not quite fulfill its promise. It does replace the
n'18 of Theorem 1 by n1/2 but the power of the dimension k is increased. This m"lv
just be a feature that could be changed by redoing Zaitsev's proof. However the proof
is rather complex and at the time of this writing we have not yet succeeded in carrying
out the necessary modifications.

Let us start with the improvement on K (82). Here we have used the bound

K (x) < exp {2v [ log v + log 2/x]

as given in Le Cam (1986) page 543. This is obtained there by writing , =-logK
V

and noting that 4 is at most equal to that solution y of the equation y = log y + a,
(with a = log (2v/x)) that is larger than unity. In fact that solution satisfies the inequal-

ity y < a + a loga = a[ 1 + (a - 1)-1 loga]. This was replaced by 2a in Le Cam
a-i
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(1986). For a large (a - 1)-1 log a becomes small.

This means that, for small £, the bound K (e2) < (2v)2v e4V given at the end of
a

Secdon 3 can be replaced by (2v)V e72v . (e, v) where p. (e, v) = (a) a-i , a = log 2

This extra factor p (e, v) is logarithmic in e.

If this is taken into account the exponent y = in the rate ny can be replaced
8+20v

by 1/(8 +10v).

Now let us pass to Zaitsev's theorem. Zaitsev considers a random vector X with
distribution given by a measure F on IRk. It is assumed that EX = 0 and that for
v E Rk the variance (Dv,v) = E(v'x)2 exists. Let G be the Gaussian measure with
expectation zero and the same covariance system as F.

It is assumed that IRk is provided with a Hilbertian norm denoted I * This norm is
extended to the product Ck of k complex planes as usual. The corresponding inner

product will be denoted < z, x >, z E Ck, x eRk or Ck. Define on Ck by

¢(z) = logEe< X>.

The function 4 is subject to the following restrictions: There is a 'X > 0 such that

A1) 4 is defined and analytic for

IZI < 1, Z E Ck.

A2) For all u and v in IRk the mixed third derivative satisfy the condition

a a2Ia 0. 4 (z) I < I u I (Dv, v)(.au Dv

The derivatives are taken as usual so that 4) (z) means lim 0 (z + £u) (Z)
D3u C-0 £

One of Zaitsev's results is as follows.

Theorem 3. Let F satisfy the conditions A1 and A2 for a X > 0. Then for the norm
I- I the Prokhorov distance n2 (F, G) between F and the Gaussian with the same first
and second moments satisfies the inequality

7t2(F,G) . Ck2t[1 + logtI]

where C is a universal constant.

To apply this result here consider the case where X is the empirical process
Zn = {Z(A); A E A) where A is a class of k subsets of the sample space. For com-

k
plex vectors z = IZ1, Z2,...- , Z~J let < z,zn> z=Zn(.
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The function 4 (z) is easily obtainable even though a bit messy looking. The third
mixed derivative can be computed. Its main term contains an expectation of the type
H (u,v) = E I< u, Z > < v, Zn> ]2. This can be bounded by

H (u,v) < - 1 u 11 (Dv, v)

k
where I ul is the L1-norm Iuli = Y. I uj I < I uVIi for the Hilbertian norm (E I Uj 12)112.

Thus Zaitsev's theorem applies with a number X of the type X = b for a cer-

tain constant b.

To obtain a theorem similar to Theorem 2 of Section 4 we need to use the Pro-
khorov distance ic(F,G) computed for the uniform normn 1111 instead of the 72(F,G)
computed for the Hilbertian norm. Since Ixl < llxll IxI4_k one will have
it (F, G) ' s2 (F, G) 4k. Finally this gives the following result

Theorem 4. For the distribution F of the empirical process on k subsets of the sam-
ple space and for the uniform norm there are constants C1 and b such that

it(F,G) < C, - = [ 1 + Ilog(b-)]

Note the term k3/ Fh. It corresponds here to the [k512/,]11/4 of Theorem 1. This
shows that Zaitsev's result is a considerable improvement on Yurinskii's as far as
powers of n are concerned. Unfortunately we were unable to beat down the k3 to a
k512. Whether this is possible by rewriting Zaitsev's proof or by a better evaluation of
the term X is not known to this writer at this time.

In any event application of the above result to the computations carried out in Sec-
tion 4 will give a bound where the Prokhorov distance between Zn and the correspond-
ing Gaussian process will tend to zero as n-, ignoring some logarithmic terms, but

here y can be taken equal to y = 2 + 12v

This is a definite improvement over the y = of Section 4. It is unfortunate
8+20v

that this particular y was replaced by (8 + lOv)-1 at the beginning of the present sec-
tion. Since 8 + lOv and 2 + 12v are not comparable it suggests that a better argument
should lead to a value of y larger than (2 + lOv)-l.

We shall return to this question and to other possible approaches in a later report.
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