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Abstract

We consider the problem of testing bivariate symmetry in matched pair experi-
ments where the observations are subject to univariate censoring. Thus the observable
random variables are given by (Y1, Y2) and (i1, 82) where Yj = min(Xj, C) and

Bj = I (Xj < C), j = 1,2. Here (X1, X2) is a random pair of partially observable life-
times and C is a fixed or random censoring variable. The hypothesis to be tested is
that (X1, X2) and (X2, X1) have the same distribution. Following Woolson and Lachen-
bruch (1980), we consider censored data generalizations of signed rank tests such as
the sign, signed Wilcoxon and signed normal scores tests. Using counting processes
techniques, we derive the asymptotic distribution of the test statistics under fixed and
contiguous alternatives. The efficiencies of the signed rank tests are considered in a
bivariate exponential model and compared with efficiencies of the paired Prentice-
Wilcoxon and log-rank tests.
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1. Introduction.

We consider the problem of testing whether (Xli,X2i) has the same distribution as

(X2i,Xli) i = 1, . .. , n where (Xli,X2i) are independent identically distributed nonne-

gative bivariate random vectors representing failure or survival times of paired sub-

jects. Throughout the failure times (Xli,X2i) are subject to univariate right censoring

so that the observable random variables are given by (Yli,Y2i) and (81i,'2 ), where

Yii = min (Xji, Ci) and 8ji = I (Xji 5 Ci), j = 1, 2, i = 1 * - - n. Here Ci's are indepen-

dent random variables representing withdrawal times from the study due to reasons

unrelated to the study itself. It is assumed that the C's are independent of the X's.

The censoring mechanism assumes that for both members of the pair the two time

measurements are made on the same time clock. This will occur in the case of

matched pair experiments or twin studies when the subjects undergo the study simul-

taneously and are censored only if failure does not occur by the end of the study.

Batchelor and Hackett (1970), Holt and Prenctice (1974) and Woolson and Lachen-

bruch (1980) for instance report data on survival of skin grafts on bum patients each

of whom received two grafts. The donor and the recipient were matched for blood

groups and closely or poorly matched for the transplantation antigen system. Censor-

ing occurred at the termination of the study. This censoring mechanism is also appli-

cable when two time measurements are made successively on the same individual.
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Thus (X1, X2) may represent times from remission to relapse and from relapse to death

in cancer patients or time from initiation of a treatment until first response in two suc-

cessive courses of a treatment in the same patient.

For uncensored data tests for bivariate symmetry can be based on signed rank

statistics, see Doksum (1980), Lehmann (1975) and Woolson and Lachenbruch (1980).

In the presence of censonrng define Z. = Y2j - Yli and let £- be the sign of 4, Note

that the censoring mechanism implies Si = 0 and Z4 = 0 whenever Bli = 82i = 0, = 1

whenever Bli = 1 and 82i = 1 and ei = -1 whenever Bli = 0 and 82i = 1. Define sets

B1 = (i: £i = 1, sji2i = 1)

B2 = (i: £i = -1, li82i = 1)

B3 = (i: Bli = 1, &2 = 0)

B4 = (i: Bli = 0, 62i = 1).

For j = 1, . . . , 4 introduce counting processes Nj (t) and Uj (t) where

Nj (t) = I Nji (t) and Uj (t) = £A, Uji (t) with

Nji (t) = I 7lZ < t i e Bj)
Uji (t) = I 7(i > t i E Bj)

To test the hypothesis of bivariate symmetry we consider statistics T = T (co) where

t t

T(t) = tKud(Nl - N2) + tK,d(N3 - N4)

for some predictable scoring processes Ku and Kc. In particular the following special

cases will be of interest.
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(i) The sign test: K. = Kc = 1

(ii) The signed Wilcoxon test: K. = 1 - F_ and KC = 1 - F_ / 2.

(iii) The signed nomal scores test: K, = 4)-i (1 - F_12) and

KC = 2F I t(-I (1 -F_/2)) where + and e are the density and the distibution

function of the standard normal distibution.

Here F_ is the left continuous version of the product integral

F(t) = rI A1-A(s))
sSt

with

t

A (t) U-|F I (U > O) d(NI + N2)

where U = Ii Uj. Under the null hypothesis and in the absence of censoring, A (t)

is the Aalen-Nelson estimator of the cumulative hazard function of I X2 - XliI while

F(t) is the corresponding empirical survival function.

In general we assume that Ku = Ju(I - F) andKc = Jc(1 - F-) where the score

generating functions Ju and J, satisfy the relationship

JU(v) = -((1-v)Jc(v))' (1.1)

This choice of the scoring functions is motivated by the censored data signed rank

statistics considered by Woolson and Lachenbruch (1980) who discussed these tests in

the case of log-linear models. More precisely, if log Xli = 0 + ili + ;

logX2i= n2i + e, where Tn j)A I and (Til2i)I are mutually independent samples from a
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distribution with density + and (ej),-) is a sample independent of lli's and Tl2i's then

locally most powerful signed rank test for testing 0 = 0 against 0 > 0 is based on

statistic T with score functions J. (v) = -4' (z) / (z) and J, (v) = 2¢ (z) / (1 - v), where

z = ZFl (112 + v12) and 1 is the distribution function corresponding to 0. In particular

the sign, signed Wilcoxon and signed normal scores test correspond to double

exponential, logistic and normal densities 0, respectively. The term "locally most

powerful test" refers here to the signed rank test that is locally most powerful in the

uncensored version of the experiment, given the observed pattern of deaths and with-

drawals.

In this paper we consider asymptotic distributions of censored data signed rank

statistics. Using counting processes techniques of Aalen (1978), Gill (1980) and

Andersen et al. (1982), in Section 2 we derive the asymptotic null distribution of the

test statistics. The form of the asymptotic null variance was first derived heuristically

by Woolson and Lachenbruch (1980). In Section 3 we consider contiguous alterna-

tives, discuss the loglikelihood expansion of (1ZiJ, j, Bli, 82i) and efficacies of the

tests. In contrast to the two-sample comparisons with censored data (Gill (1980), Har-

rington and Fleming (1982)), the signed rank tests are in general inefficient. This is

caused by two reasons. Firstly, the scores of asymptotically optimal tests depend on

the distribution of the censoring variable however the signed rank tests derived from



marginal likelihood do not take into account this distribution. Furthermore, the margi-

nal likelihood and tests derived from it omit information carried by doubly censored

observations. In Section 4 we consider the efficiencies of the signed Wilcoxon, sign

and signed normal scores tests in the exponential Farlie-Gumbel-Morgenstern family

subject to exponential and fixed censoring and compare them with efficiencies of the

paired Prentice-Wilcoxon and logrank tests (see O'Brien and Fleming (1987),

Dabrowska (1988) and Albers (1988)).

2. Asymptotic distributions under the null hypothesis.

We consider first the counting process N = [ (Nji(t): j = 1, . ., 4, i = 1,... , n):

O < t < coo]. Clearly, each of the component processes has jumps of size 1 and no two

processes jump at the same time. The behaviour of the process N is determined by its

intensity a(t) =[ai(t): j = 1,.. . ,4, i = 1,... ,n):O < t <oo] where

Czi (t)dt = P(dNji(t) = 1 1Ft-) j = 1,2.

Here dNji (t) stands for the increment of Nji over the interval [t, t + dt], whereas {Ft

is the self-exciting filtration generated by the null sets and processes Nji (t)

j = 1,... , 4, i = 1,... , n. Thus ac, (t) dt is the conditional probability that Nji jumps

in an infinitesimal interval of length dt around time t given the history Ft., It can be

easily verified that in our case zji (t) = Uji (t) j(t) j = 1, . . . , 4, where Uji (t) are as

in Section 1 while kj (t) are given by
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A(t) limh7lP(t < 1Zil < t+hieBj IZil tie BJ)

Suppose that the joint distribution of (Xli, X2i) has density if (x, y) and the censonrng

times Ci have distribution function G and survival function G = 1 - G. Introduce sub-

survival functions Fj (t) = P (I Z7 1 2 t, i e B) which are explicitly given by

U-t

F,(t) = JG(u) Jf (x, u) dx du

F2(t) = JG(u) J v (u, y) dydu
Ut00

F3(t) = J{Jfq (x,y)dxdy)dG(u)
-00 U

oo U-t

F4(t) = f(J f Mr(x,y)dxdy)dG(u)
U -0

An easy calculation shows that the hazard fnctions X (t), j = 1,... , 4 are given by

Xj (t) = fj (t) /Fj (t) where fj is the density corresponding to F (t), i.e.

f1 (t) = G (u) 4f(u-t,u) du

f2(t) = JG(u)i+f(u,u-t)du (2.1)

f3 (t) = fJ{ r(u-t, y) dy) dG(u)
u

00

f4(t) = J{J V(x,u-t) dx) dG(u).
u

Let Aj (t) be the cumulative hazard function corresponding to X(t). It follows from

the theory of counting processes (see e.g. Andersen and Borgan (1985)) that

t

Mji(t) = Nji(t) - fUjidAj j = 1, . . , 4
0

are mean zero square integrable local martingales with predictable variation processes
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<M>(t)= fUjidAj.
Furthermore, the martingales are orthogonal in the sense that their predictable covaria-

tion processes satisfy < Mji,Mlk >(t) =O if either j * l or j l and i * k,

j,l = 1,.1 . .4,k= 1, n.

The estimates A (t) and F (t) of Section 1 share many of the properties of the usual

Aalen-Nelson (Aalen (1978), Nelson (1972)) and Kaplan-Meier (1958) estimates. Here

we shall need consistency properties of these estimates. Set H (t) = H1 (t) + H2 (t)

where

00

H1 (t) = P(7Zi1 2 t =1) = JG(u) f(u-t, y)dy) du
u

H2(t) = P(IZiI 2 t j=-l) = JG(u)(J (x,u-t)du)du.
u

Define

t

A(t) = f1(dF, + dF2)

and let F (t) be the corresponding product integral

F(t) = II{1-A(ds)).
SSgt

For uncensored data, under the hypothesis of bivariate symmetry F (t) is the survival

function of I X2j - XliI and A (t) is the corresponding cumulative hazard function. If

H(t) > 0 then IA(t) - A(t)I -+p 0 and IF(t) - F(t)I -p 0 uniformly in t e [0,r].
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Let us consider now the behaviour of the statistic T (t) under the hypothesis of

bivariate symmetry. If the survival times have a symmetric density V (x, y) = V (y, x)

then clearly F1 = F2, F3 = F4, A1 = A2 and A3 = A4. Define T' T'(oo) by

t t

T'(t) = fKU(Ul - U2) dAl + Kc (U3 - U4) dA3-
0 0

Under the hypothesis of bivariate symmetry T' is equal to zero with probability one

because

t t

JKuUl dAl + JKcU3 dA3
o 0

has the same distribution as

t t

fKuU2dA2 + KKCU4dA4.
o o

Further, n112 (T (t) - T' (t)) is a mean zero square integrable martingale with predict-

able variation process

t t

nl < T -T> (t) nl KQ (U1 + U2) dA, + nflKC (U3 + U4) dA3
0 0

In particular, if Ku (t)=Ju 1 -F_ (t)) and Kc = J, I 1 - F_ (t)) for some continuous

functions Ju and Jc then the consistency of F and Rebolledo's Central Limit Theorem

(Theorem 3.2 in Andersen and Borgan (1985)) imply that n71/2 (T(t) - T'(t)) con-

verges weakly to a mean zero normal variable with variance

t t

2(t) = 2 JJ2(1 - F)F1dA1 + 2JJ2(1 -F)F3dA3.
0 0
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Proposition 2.1. Suppose that the score generating functions JU and JC are continuous,

and

IJu(v)I < a(1 - v)Tia2+4 IJc(v)I < a(1- v)'2+4 (2.2)

for some constants a > 0 and 8 > 0. Then under the hypothesis of bivariate symmetry,

n112T converges weakly to a mean zero normal distribution with variance

2(JU (1 -F)F1dA1 + fJ (1 F)F3dA31

Proof. Under the assumed growth rate conditions on the score generating functions

a2 (oo) = aT2 < oo, where a2 (co) = liimoa2 (t). Therefore by Theorem 4.2 in Billingsley
t oo

(1968), it is enough to show that

00

limlim J - + U2)dA1 , £) =0

limlimP(n7l J FJ2(1-F_)(U3 + U4)dA3 > £) = 0
t °° t

for all e > 0. Let us consider the first of these limits, the proof of the second is analo-

gous. We have F_ > U /n so that (2.2) implies

00 00

nfJU(1-F)(U1 + U2)dAj 5 a2nJl (U1 + U2)(U/nY)-1+2dA,.
t t

By Theorem 1.1 in van Zuijlen (1978), for given e> O we have

(U / n)-1+28 . (W1+28 with probability at least 1 - e, where = e1+28. On the set

where this holds the last integral is less than

00 00 00

a2 OnJl (U1 + U2) E1+28 dAj -p 2a21JH1+28 F1dAl s -2 a2 R1+20 dH
t t t
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and the right hand side tends to 0 as t -e o.

For practical purposes we shall need to estimate T2 from the data. We mimic pro-

cedures for the two sample case (Gill (1980), Andersen et al. (1982) and Hanrington

and Fleming (1982)) and estimate CT2 by aFT2 where

6T 2= 2 AN-l dNi* (1 ANi- )dN1
K

U.-1 U. 13 U.0 11011

Under assumptions of Proposition 2.2, d is a consistent estimate of c2.

To conclude this section we give a Corollary which summarizes the weak conver-

gence results for the test statistics of Section 1. We need to verify the growth rate

condition (2.2). If the score generating function corresponding to uncensored data is

selected as J. (v) = -4' (z) /¢ (z) with z = d-1 (1/2 + v/2) for some symmetric density

*, then for most choices of + arising in practice JU (v) satisfies the condition (2.2). In

particular this holds for normal, logistic and double exponential . Further, if the

score generating function JC(v) corresponding to censored data is chosen so that the

relation (1.1) holds then

IJC (v)I = (1 -v)-1I JU (w) dwI <

al(1 v)-v1(1-w)-la248dw = a2(1 -v)1/2+4
u

where a2 = al / (1/2 + 8). Hence the score functions JU and J, satisfy (2.2) with

a = max (al, a2).
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Corollary 2.1. Under the null hypothesis the sign , signed Wilcoxon and signed nor-

mal scores test statistics are asymptotically mean zero normal with asymptotic vari-

ances given by

a;s =2 F1dA + |F3 dA3) = P (4 = 1) + P (ej=-)

C&2 2 (f(1-F)2F1dA1 + f(1 - F/2)2F dA)

aN2 2 Jw2(Fj)FdA + Jw (F)F3dA3)

where w1 (s) =-1 (1 - s/2), w2(s) = 2s00 (O-' (1 - s/2)), and 0 and (D denote the

density and the distribution function of the standard normal distribution.

3. Asymptotic distributions under contiguous alternatives.

3.1. The log-likelihood expansion for (I Z 1, ej, 5li' 82i)

In this section we assume that under the null hypothesis (Xli, X2i) have symmetric

density V, V (x, y) = v (y, x) and Ci have distribution function G. We consider alterna-

tives of the form qf (x, y) =V (x, y) (1 + nl12yn (x, y)) where yn is a sequence of

functions such that yn(x, y) - y(x, y) for almost all (x, y) and

fYn (x, y)v (x, y) dxdy = fy(x, y)V (x, y) dxdy = 0.

This condition ensures that 4rn is a density. In the case of parametric models, if

'fe0 (x, y) is a symmetric density and the alternatives are f (x, y) with

On = Oo+ cn71/2, the function y reduces to c times the derivative of log if0 (x, y) at

0 = 0o.
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Let P and Pn denote the joint distributions of (IZ,i, Sj li 2i) under the null

hypothesis and under the alternative, respectively. Set Ti1 = (1 - Bli) (1 - 62i). Then

logdPn /dP - -10log(fjn / fj) dNj + 2 Vi

Vi = Ili109(Pon/PO) + (1- 09IG{(-Pon) /G- Po))...
where po and pon represent the probability of a doubly censored observation under the

null hypothesis and under the alternative, respectively. We have

00 co

Po = J(JJNI(x, y) dxdy) dG (u)
u u

and similarly

00 00

Pon = Po + n |af (f Yn (X, y) f (x, y) dxdy) dG (u) = po + n71/2 hn.
u u

Assuming that limits can be taken under the integral signs, it can be easily verified

that as n oo

Ajn(t) = 2n1/[2 fjn-(t)/fj(t))"21]- Aj(t) j = 1,. . . , 4 (3.1)
where

A1 (t) = fi (t)- IG (u) y(u-t, u) Nf (u-t, u)du

A3 (t) = f3 (t-1 f( J y(u-t, y) Nf (u-t, y) dy) dG(u).
u

The functions A2 and A4 are defined similarly to A1 and A3 except that y (u-t, u) and

y(u-t, y) should be replaced by y(u, u-t) and y(y, u-t), respectively. Moreover,

Ao (d) = 2nl12 [ (pon/po) 2 - 1 -d+ 2n/2 [ ((1-pon) / (1-PO)} 12 - 1 - d)

pO-'hd - (1 - po)-l h (1 - d) = Ao (d) (3.2)
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for d = 0 or 1 and

00 00

h = |f(x, y)V (x, y)dxdy) dG (u)
u u

By Le Cam's Second Lemma (Hijek and BidAk (1968)) it is enough to consider the

asymptotic distrbution of Ln = Lln + L2n where

Lin= n'l/ifj4 dNj L2n = n7l/2 I Aon(i)-
We consider Lin first. Assume

nlimfI{Ajn (t)- A (t))2f (t)dt = 0 (3.3)

for j = 1, . . , 4. Set

S = n71/2£j41 |AjdNj.S=~~3J
Under the null hypothesis S is asymptotically mean zero normal with variance

2 = J(A? + A22)F1dA1 + (A32 + A2)F3dA3.
By (3.3)

It follows

(3.4)

(3.5)

ELl. = n1£j I JAjn (t) fj (t) dt = -1/4Zj4JAj (t)f (t)dt -A

Var (Lin - S) < jj4f(Aj(t)-A (t))2fj(t) dt _4 0.

that under the null hypothesis Lin is asymptotically normal with mean

-os2/4 and variance e2.

As for the term L2n, we have

EL2n = -n (p 12- p 1/2)2 - n (1_ po)1/2 (1 -po)1/2)
= -1/4 VarAo,(Tli) -+ -1/4 h2po- (1 _ po)l.

Berry-Esseen's Central Limit Theorem implies that L2 converges weakly to a normal
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distribution with mean -1/4h2po1 (1
- pO)-1 and variance h2p -1 (1

- po)0l. Further-

more, it is easy to see thatLZ.and L, are uncorrelated. Therefore, it follows that Ln

is asymptotically normal with mean -1/4 a2 and variance a0 where

a2 = f(A2 + A22)F1dA1 + f + A4)F3dA3 + h2p01 (1 - Po)1. (3.6)

Le Cam's First and Second Lemmas (Hajek and Sidak (1968)) imply now the follow-

ing result

Proposition 3.1. Under the null hypothesis if (3.1) (3.2) and (3.3) hold, logdPn/dP

converges weakly to a normal distribution with mean -1/2 a&2 and variance YO and the

family Pn is contiguous to P.

32. Efficacies of tests.

To obtain efficacies of tests it is enough to find the joint distribution of n71/2T and

log (dPn/dP) under the null hypothesis. Let S' = S' (coo) be given by

t

S'(t) = n127 _1 JA (dN -UjdAj)

where Aj, j = 1, . . . , 4 is as in Section 3.1. Under the null hypothesis S' (t) is a mean

zero square integrable local martingale with predictable variation process

t

< S' > (t) = n1fl Aj2 Uj dAj
0

Moreover, the predictable covariation process of 5'" (t) and n7112 (T (t) - T' (t)) is given
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by

t

n112< S',T - T'> (t) = n1fKU (AIUi - A2U2) dA,
0
t

+ n 1 JKc (A3U3 - A4U4) dA3-
0

In particular, if the processes KU and KC are given by Ku=Ju(1 -F...) and

Kc= Jc(1 - F) for some continuous score generating functions JU and JC, then the

right-hand side converges in probability to

t t

CT (t) = fJU(1 - F) (Al - A2) F1 dA1 + JC (1 - F) (A3 - A4) F3 dA3-
0 0

Under conditions of Propositions 2.1 and 3.1, Rebolledo's Central Limit Theorem and

Cramer-Wold device applied in a fashion analogous to Hijek and ;idak (1968) and

Gill (1980), entail that S'(oo) and n7la2 (T(oo) - T'(oo)) are jointly asymptotically nor-

mal with mean zero and covariance matrx

CTci] (3.7)

where cT = cT(°o) and a is given by (3.5). Since nfla2T'(co) = op(1) and S' has the

same asymptotic distribution as the statistic (3.4), it follows that Lin and n112T are

jointly asymptotically normal with mean ( Ai4, 0) and the above covariance matrix.

It remains to show that 12, the term corresponding to doubly censored observations is

uncorrelated with T (oo) - T(oo). Fix t <oo and let us approximate the martngale

T (t) - T' (t) by the Lebesgue-Stieltjes integral
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I IKU (sv) dMjj (SV) - dM2i (S)) +
5,

I :Kc (sv) {dM3i (SV) - dM4i (S))

where 0 = sj< - * - < sm = t is a finegd. For i = l we have Ao(ill) dMji (sv) = 0,

j = 1, .. , 4. Further, for i * I Aon(i) and dMji (sv) are conditionally independent

given the history F;,_ so that using the predictability of the processes Ku and KC we

get

E [ £Aon(T1, ) Ku (sV) (dMji (sv) - dM2i (sV))

+ £Aon (,nl ) Kc (sv) fdM3i (SV - dM4i (S) I]
sv

+ E[ Ku(sv)E(An(rII)IFs)-E[dMi(sv)-dM2i(sv)) Fs-]]
sv

=0.

An appropriate limitng argument shows now that 12 is uncorrelated with

T (oc) - T' (oc). This can be proved more rigorously by first considering the case when

Ku and KC are predictable step functions and then for general predictable processes

(see Meyer (1971)).

Proposition 3.2. Suppose that the assumptions of Propositions 2.1 and 3.1 are

satisfied. Then under the null hypothesis (logdPn/dP, nfla2T) converge weakly to a

normal distribution with mean (-1/2ca2, 0) and covariance matrix (3.7) with a2

replaced by c;02 given by (3.6).



- 17 -

Le Cam's Third Lemma implies now that the efficacy of the test statistic T is given

by cj/c4T2. In particular, the following corollary gives explicitly the efficacies of the

sign, signed Wilcoxon and signed normal scores tests.

Corollary 3.1. The efficacies of the sign, signed Wilcoxon and signed normal scores

tests are given by

es= ((A1 - A2)F1 dAl + |(A3 - A4)F3dA31 /cyS2
ew = {J(A1 - A2) (1 - F)F1 dAl + f(A3 - A4)(1 -F/2)F3dA3)/C

eN = [(Al-A2)w (F) F1 dAl + f(A3-A4)w2 (F) F3 dA3) /CN
where wl, w2, css29 ca2 and CN2 are as in Corollary 2.1.

From Proposition 3.2 it follows that the signed rank tests are in general inefficient.

This is in contrast with tests for two-sample comparisons under the equal censoring

model (Gill (1980), Harrington and Fleming (1982)). In the present setting the scores

of asymptotically optimal tests depend on the censoring distribution, while censored

data signed rank tests do not take this distribution into the account. Moreover, infor-

mation carried by doubly censored observations is omitted. In the next Section we

shall examine the efficiency loss due to censoring in more detail.

If the density of the paired survival times (X1, X2) belongs to a parametric family

'fo (x, y) and the censoring distribution is known (e.g. in the case of fixed censoring),

tests for symmetry can be based for instance on the likelihood ratio statistic. The
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efficacy of this test is ac2 given by (3.6). In general however, the form of the censor-

ing distribution is unknown, tests have to be constructed adaptively using methods

approprate for semiparametrc models. This problem will be considered elsewhere.

4. Some comparisons.

For comparison purposes we consider the Farlie-Gumbel-Morgenstem (FGM) fam-

ily and assume that the joint density of the survival times (X1,X2) has form

AeCeA&t{1 + a(1 - 2e7)(1 - 2eAt)1. (4.1)

Here the marginals are standard exponential for X1 and exponential with scale parame-

ter A A > 0 for X2. The parameter a ranges between -1 and 1 and accounts for the

degree of dependence between X1 and X2. For a = 0 the two survival times are

independent. In general the correlation between X1 and X2 is equal to a14 and thus it

ranges between -.25 and .25.

The efficiencies of the tests will be considered for uncensored data and for

exponential and fixed censoring. In the exponential case, we assume that C has

exponential distribution with scale parameter x and choose X =- .05,.2,.5, 1.4 and 3.

For this choice of X and a = 0 the probabilities of uncensored observations are .93,

.76, .53, .25 and .1, respectively. For a * 0 the probabilities of uncensored observa-

tions do not differ much from these values. In the case of fixed censoring C assumes

value c with probability 1. We choose c = 3,2,1.25,.7 and .4. When a =0 the



- 19 -

probabilities of uncensored observations are approximately .90, .75, .51, .25 and .11,

respectively.

To discuss the signed rank tests we apply the log transformation to X1, X2 and C.

This transformation tumns the exponential FGM model (4.1) into a FGM family with

extreme value marginals. Further, set

xl=et+A x2=2e7t+A x3=e t+2A X4=2e7t+2A

Yi= I+Aet y2=2+Ae7t y3= 1+22Aet y4=2+2Ae7t.
In the case of exponential censoring the densities fiA (t), i = 1, . , 4 of (2.1) are

given by

fl, (t) = Ae7t((1 + a) / (xl + X)2 - 2a/ (x2 + X)2 - 2a / (x3 + X)2 + 4a/ (x4 + X)2)
f2& (t) = Ae7t{(1 + a) / (y1 + X)2 - 2a / (y2 + X)2 - 2a/ (y3 + X)2 + 4a/ (y4 + X)2)

f3A,(t) = et ((1 + a)/(xl + X)2 _ 2a/(x2 + X)2 - a/(x3 + X)2 + 2a/(x4 + X)2)
f4A(t) = Ae7t ((1 + a) / (y1 + X)2 - a/(Y2 + X)2 - 2a/(y3 + X)2 + 2a (Y4 + )2).

In the case of fixed censoring these densities are given by

flAj(t) = Aet ((1 + a)Ic (xl) - 2aIc(x2) - 2Od (x3) + 4aIc(x4))
f2A (t) = Ae7t((1 + a)Ic(yl) - 2aIc(y2) - 2aocI(y3) + 4oacI(y4))
f3A (t) = ce7l (1 + a) e7xl - 2a7CX2 - ae-cx3+ 2aeC})
f4A (t) = Acet ((1 + a) e-'l - ae2 - 2ae3'y + 2aeC')

where

C

IC (x) = fte dt.
0

The score functions A (t), i = 1, . . . , 4 of Section 3 can be next obtained by
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differentiating logfi(t) with respect to A at A = 1. Furthermore, the probabilities poA

of doubly censored observations are given by

pod = X[(1+a)/(l+A+X)+a(l/(2+2A+X)- 1/(2+A+X)-1/(1+2A+X))]

in the case of exponential censoring, and

PoA = (1 + a) exp (-c (1 + A)) + aexp -c(2 + 2A))

-aexp(-c (2 + A)) - aexp {-c(1 + 2A))

in the case of fixed censoring. The contribution of doubly censored observations to

the asymptotic lower bound (3.6) is then given by h2p(-1 (1 - po)0l where po is given

by pOA evaluated at A = 1 and h is the derivative of poA with respect to A at A = 1.

The asymptotic lower bound of Proposition 3.1 and the efficacies of the signed

rank test do not have closed form expressions, therefore we computed them numen-

cally using Romberg integration algorithm (e.g. Gerald and Wheatley (1985, p. 281)).

When a = 0 and the data are uncensored the signed Wilcoxon test is locally most

powerful widiin the class of signed rank tests and efficient witiin the class of tests

based on IX2i - XliI and the signs ej of X2i - Xli (Doksum (1980)). For a . 0 the

efficient signed rank test within this class of tests depends in a complicated way on a.

However, it follows from Table 1 below that the asymptotic relative efficiency (ARE)

of the signed Wilcoxon test with respect to the asymptotic lower bound is at least .971

when a * 0 and thus not much efficiency is lost when applying this test in the case of

dependent data as well. For censored data results of Woolson and Lachenbruch (1980)
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imply that when a = 0 the censored data signed Wilcoxon test is locally most power-

ful witiin the class of signed rank tests derived from marginal likelihood considera-

tions. Table 1 gives the ARE of the censored data signed Wilcoxon test with respect

to the optimal parametric test. For both types of censoring and each of the a values

considered, the ARE decreases as the censoring gets heavier. When a = 0 the ARE

drops down from 1 for uncensored data to .503 for exponential censoring with X = 3

and to .418 for fixed censoring at c = .4. Thus in this case the efficiency loss is

approximately 49.7% and 58.2% for exponential and fixed censoring, respectively.

More generally, for X between 0 and 3 the efficiency loss due to censoring ranges

between 30.6% for a = 1 and 65.3% for a = -1. For fixed censoring and c values

considered, the efficiency loss due to censoring ranges between 48.7% for a = 1 and

65.3% for a = -1

Table 1 about here

In Table 2 we give the ARE of the sign and signed normal scores tests with

respect to the signed Wilcoxon test. In the case of exponential censoring the ARE of

both tests increases a little as the censoring gets heavier. In the case of the sign test

and a = 0 the ARE increases from .75 for uncensored data to .841 for X = 3.0. Thus

in this case there is a 9.1% gain in the ARE. For the remaining a values this gain
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ranges between 7% for a = 1 and 18.8% for a = -1. In the case of the normal scores

test and a = 0 the ARE increases from .955 for uncensored data to 1.005 for X = 3 so

that there is a 5% increase in ARE. For other a values this gain ranges between 6.2%

when a = 1 and 2.3% when a = -1. As a approaches -1 or X . 3 the normal scores

test performs slightly better than the signed Wilcoxon test. Further, let us consider the

fixed censorship model. In the case of sign test we observe a slight decrease in ARE

when c < 1.25, i.e. when the probability of uncensored observations exceeds .5, and a

slight increase when c . 1.25. For c < 1.25 and a = 0 the loss in efficiency is approx-

imately 4.4% while for c . 1.25 the gain in efficiency is about 9.9%. For the remain-

ing a values and c 2 1.25 the gain in ARE ranges between 5.7% when a = 1 and

22.6% when a = -1. As for the normal scores test, the ARE is somewhat higher

under fixed censoring than for uncensored data The gain in ARE is 7.5% when a = 0

and ranges between 7.3% when a = 1 and 8.1% when a = -1. For most of the a and

c values considered the efficiency of the signed normal scores tests is higher than the

signed Wilcoxon test.

Table 2 about here

Rather than base tests for symmetry on the ranks of differences within the pairs,

we can consider tests based on differences of ranks of each pair in the pooled sample.
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For uncensored data this approach was adopted by Snijders (1981), Doksum (1980)

and Lam and Longnecker (1983) among others. Formally the procedures take the

same form as the usual tests for the two-sample comparisons except that the variance

of the test statistics is modified so as to take into the account the intrapair dependence.

When conditioned on the observed configuration of ranks in the pooled sample, the

tests are distribution free. See Snijders (1981) for further discussion.

Censored data analogues of these procedures were developed by O'Brien and

Fleming (1987), Dabrowska (1988) and Albers (1988) among others. Here we con-

sider a Prentice type method of ranking of the observations, that is the paired data are

pooled, uncensored observations are ranked among themselves and each censored

observation is assigned the same rank as the nearest uncensored observation on the

left. For suitably chosen score functions J (u, d), u e (0, 1), d = 1,0, the test statistics

reject the hypothesis of symmetry for large values of n12W / 6 where

W = n I(Zi1 J (S (Y11), Bii) - 4=1 J (S (Y2i), 80)) (4.2)

and 62 is an estmator of the asymptotic variance ofW of the form

eS2= n~l gl Zjn l J2 (3 erji J (3li), 8li) J(n(y2i) XY i)}
Here S (t) is the Kaplan-Meier estmate from the pooled sample or an estmator asymp-

totically equivalent to it, e.g. S (t) = 1 - exp (-A (t) ) where A (t) is the Aalen-Nelson

estmate based on the pooled sample. The choice J(u, 1) = 2u - 1 and J(u,0) = u

yields the Prenctice-Wilcoxon test statistic (O'Brien and Fleming (1987)) whereas the
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choice J(u,1)=-1-log(1l-u) and J(u,O)=-log(l-u) leads to the paired data

log-rank test.

Asymptotic properties of tests based on nl/2W/dS were studied in Dabrowska

(1988). Therein it was assumed that the censoring is bivariate, i.e. each pair member

has its own censoring time and the two censoring times are possibly dependent. The

univariate censoring mechanism discussed in the previous sections can be accommo-

dated into this framework by considering pairs of censoring times (C1, C2) such that

P (C1 = C2) = 1. Thus the rginal survival functions of C1 and C2 are common, say

G (t) whereas their joint survival function is min (G (s), G (t)).

Let us consider the model described at the beginning of Section 3.1. Let S be the

common marginal distribution function of Xli and X2i under the null hypothesis.

Further, set

%0(s) = J(y(s,t)-y(t,s)) v (s,t)dt

ro(s) = j o(x)dx.
The efficacy of the tests based on the statistic (4.2) is then given by c&2 /c 2 where

Cw = JJ(S (s), 1)G (s)yo (s) ds + JJ(S (s),O) ro (s)dG (s)
-W= 2(J2 (S (S), 1)G (s) dS (s) + JJ2(S (s 0) S (s) dG (s)

1S°£F I (S (S), P) J (S (t), q) dHpq(,t
where Hpq (s, t) is the bivariate subdistribution function corresponding to those observa-

tions for which Bli = P and 8,. = q, p, q = O, 1, i = 1,.. . , n. In particular in the case
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of the exponential FGM model (4.1), S is the standard exponential distribution func-

tion, Yo(s) = -1 - s)ed and ro(s) = se7.

In Table 3 we give the ARE of the paired Prentice-Wilcoxon and logrank tests

relative to the signed Wilcoxon test. For uncensored data these tests perform consider-

ably better than the signed Wilcoxon test. For a = 0 the ARE is 1.125 for the paired

Wilcoxon test and 1.5 for the logrank test. For other choices of a the ARE ranges

between 1.114 for a = .5 and 1.188 for a = -1 in the case of the paired Wilcoxon test

and between 1.352 for a = 1 and 1.690 for a = -1 in the case of the logrank test.

Under exponential censoring the ARE of both tests decreases as the censoring gets

heavier. When a = 0 the ARE of the paired Prentice-Wilcoxon test drops down from

1.125 for uncensored data to .862 when X = 3 whereas the ARE of the paired logrank

test decreases from 1.5 for uncensored data to .882 when X = 3. Thus the efficiency

loss is 26% for the Prentice-Wilcoxon test and 61.8% for the logrank test. For the

remaining a values considered, in the case of the Prentice-Wilcoxon test the efficiency

loss is between 25.1% for a = ±.5 and 30% for a = 1. In the case of the logrnk test

this loss ranges between 51.2% for a = 1 and 76.8% for a = -1. The Prentice-

Wilcoxon test performs better than the signed Wilcoxon test only for X < .2 and from

Table 2 we find that the signed normal scores test has higher efficiency than the

Prentice-Wilcoxon test when X > .5 except for a = -1 and X = .5. In the case of the
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logrank test the situation is analogous. The logrank test performs better than the

signed Wilcoxon test for X < .5 and the signed normal scores test has higher efficiency

than the logrank test for X 2 1.4 except when a = -1 and X = 1.4. Finally let us con-

sider the fixed censorship model. In the case of the Prentice-Wilcoxon test the ARE

decreases as the censoring gets heavier. For a = 0 and c . .4 the efficiency loss due

to censoring is about 12.1%. For other a values the efficiency loss ranges between

9.7% for a = .5 and 19.5 % for a = -1. The Prentice-Wilcoxon test performs slightly

better than the signed Wilcoxon test with the exception of c = .4 and a = -.5 or -1.

As for the logrank test, its ARE decreases as the censoring gets heavier except for

a = 1. For a = 0 the efficiency loss caused by censoring is about 48.3%, for other a

values the efficiency loss is between 35.8% when a = .5 and 73.5% when a = -1.

For all values considered the logrank test performs better than the signed Wilcoxon

test except when c = .7 or .4 and a = -.5 or -1.

Table 3 about here
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Table 1. ARE of the signed Wilcoxon test with respect to the optimal parametric
test.

a 0.0 1.0 .5 -.5 -1.0

Uncensored data

1.0 .998 .999 .995 .971

Exponential censoring with scale X

X = .05 .940 .962 .952 .919 .879

X = .2 .879 .889 .862 .778 .716

X = .5 .715 .816 .772 .647 .571

X= 1.4 .590 .739 .672 .502 .415

k= 3.0 .503 .692 .606 .402 .315

Fixed censoring at c

.516 .620

.464 .573

.456 .562

.446 .545

.418 .511

c= 3.0

c= 2.0

c= 1.25

c= .7

c = .4

.571

.524

.517

.502

.467

.459

.398

.387

.385

.368

.396

.328

.322

.321

.318



Table 2. ARE of the sign (S) and signed normal scores (N) tests with respect to
the signed Wilcoxon test.

a 0.0 1.0 .5 -.5 -1.0

Uncensored data

S .750 .757 .764 .709 .638
N .955 .938 .940 .980 1.011

Exponential censoring with scale X

k= .05 S .750 .730 .765 .710 .643
N .964 .909 .949 .988 1.018

k= .2 S .752 .763 .767 .715 .654
N .981 .961 .966 1.003 1.029

X= .5 S .761 .773 .775 .729 .678
N .997 .978 .984 1.014 1.034

= 1.4 S .794 .797 .801 .775 .743
N 1.005 .994 .998 1.014 1.022

= 3.0 S .841 .827 .838 .838 .826
N 1.005 1.000 1.001 1.007 1.008

Fixed censoring at c

c= 3.0 S .716 .734
N 1.013 .981

c = 2.0 S .706 .732
N 1.030 .999

c= 1.25 S .726 .748
N 1.026 1.009

c= .7 S .785 .777
N 1.012 1.011

c= .4 S .849 .814
N 1.004 1.007

.734

.991

.728
1.009

.745
1.014

.786
1.010

.834
1.005

.677
1.044

.667
1.058

.692
1.042

.7
1.016

.860
1.004

.613
1.082

.607
1.092

.643
1.060

.750
1.020

.864
1.003



Table 3. ARE of the paired Prentice-Wilcoxon (W) and Logrank (L) tests with
respect to the signe[Wilcoxon test.

a 0.0 1.0 .5 -.5 -1.0

Uncensored data

W 1.125 1.141 1.114 1.154 1.188
L 1.500 1.352 1.415 1.596 1.690

Exponential censoring with scale X

X= .05 W 1.103 1.107 1.089 1.133 1.168
L 1.447 1.302 1.365 1.539 1.629

X= .2 W 1.049 1.031 1.028 1.081 1.118
L 1.320 1.186 1.246 1.401 1.483

= .5 W .978 .940 .952 1.011 1.046
L 1.157 1.040 1.095 1.223 1.289

k= 1.4 W .892 .845 .867 .918 .943
L .961 .883 .921 1.001 1.038

k= 3.0 W .862 .827 .844 .880 .895
L .882 .840 .861 .903 .922

c= 3.0 W
L

c= 2.0 W
L

c= 1.25 W
L

c= .7 W
L

c= .4 W
L

Fixed censoring at c

1.072 1.104
1.365 1.346

1.043 1.093
1.245 1.465

1.024 1.091
1.129 1.555

1.011 1.071
1.049 1.319

1.004
1.017

1.041
1.120

1.069
1.337

1.049
1.309

1.041
1.264

1.031
1.144

1.017
1.057

1.097
1.414

1.059
1.225

1.025
1.061

1.003
.992

.997

.990

1.134
1.475

1.088
1.232

1.037
1.025

1.000
.971

.993

.955


