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Abstract

We consider the problem of testing bivariate symmetry in matched pair experi-
ments where the observations are subject to univariate censoring. Thus the observable
random variables are given by (Y;,Y;) and (5,,8;,) where Y;=min(X;C) and
Sj = I(Xj < (), j=1,2. Here (X;,X,) is a random pair of partially observable life-
times and C is a fixed or random censoring variable. The hypothesis to be tested is
that (X;,X,) and (X5, X;) have the same distribution. Following Woolson and Lachen-
bruch (1980), we consider censored data generalizations of signed rank tests such as
the sign, signed Wilcoxon and signed normal scores tests. Using counting processes
techniques, we derive the asymptotic distribution of the test statistics under fixed and
contiguous alternatives. The efficiencies of the signed rank tests are considered in a
bivariate exponential model and compared with efficiencies of the paired Prentice-
Wilcoxon and log-rank tests.
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1. Introduction.

We consider the problem of testing whether (X;, X5;) has the same distribution as
X5, Xy) i=1, ..., n where (Xy;, X5) are independent identically distributed nonne-
gative bivariate random vectors representing failure or survival times of paired sub-
jects. Throughout the failure times (X;;, X;) are subject to univariate right censoring
so that the observable random variables are given by (Yy;, Y;) and (845, 8,;), where
Y;; =min(X;;,C) and §; =1X; < Cp), j=1,2,i=1-- n. Here C’s are indepen-
dent random variables representing withdrawal times from the study due to reasons
unrelated to the study itself. It is assumed that the C’s are independent of the X’s.
The censoring mechanism assumes that for both members of the pair the two time
measurements are made on the same time clock. This will occur in the case of
matched pair experiments or twin studies when the subjects undergo the study simul-
taneously and are censored only if failure does not occur by the end of the study.
Batchelor and Hackett (1970), Holt and Prenctice (1974) and Woolson and Lachen-
bruch (1980) for instance report data on survival of skin grafts on burn patients each
of whom received two grafts. The donor and the recipient were matched for blood
groups and closely or poorly matched for the transplantation antigen system. Censor-
ing occurred at the termination of the study. This censoring mechanism is also appli-

cable when two time measurements are made successively on the same individual.
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Thus (X;,X,) may represent times from remission to relapse and from relapse to death

in cancer patients or time from initiation of a treatment until first response in two suc-

cessive courses of a treatment in the same patient.

For uncensored data tests for bivariate symmetry can be based on signed rank
statistics, see Doksum (1980), Lehmann (1975) and Woolson and Lachenbruch (1980).
In the presence of censoring define Z; = Y, — Yy; and let g be the sign of Z;. Note
that the censoring mechanism implies & = 0 and Z; = 0 whenever §;; =8, =0, & =1

whenever §;; = 1 and 8,; = 1 and g; = ~1 whenever §;; = 0 and 8, = 1. Define sets

B = {i: g =1, 8,085 = 1}
B, = {i: & = -1, 8,8y = 1)
By = {i: §;; = 1, 85 = 0}
By = {i: &; =0, & = 1}.
For j =1,...,4 introduce counting processes N; (t) and U; (t) where

N;®) = Z2, N; (9 and U;(®) = IR, Uz () with

N;® = I(Z] <t i € B)
U =101Z| 2t i € By

To test the hypothesis of bivariate symmetry we consider statistics T = T (o) where

t t

T() = t[Kud(Nl - Ny + {ch(Ns - Ny
for some predictable scoring processes K, and K.. In particular the following special

cases will be of interest.



(i) The signtest: K, = K, = 1

(i) The signed Wilcoxon test: K, = 1 -F_andK, = 1-F_/2.

(i) The signed normal scores testt K, = & 1(1-F_/2) and
K, = 2F71¢ (@1 (1 - F_/2)} where ¢ and ® are the density and the distribution

function of the standard normal distribution.

Here F_ is the left continuous version of the product integral
F@®) = M{1-AAG))
sst
with

t

AW = £U-11(U > 0)d(N; + Ny)
where U = Zjil U;. Under the null hypothesis and in the absence of censoring, A@
is the Aalen-Nelson estimator of the cumulative hazard function of | Xy — X;;| while
E(t) is the corresponding empirical survival function.
In general we assume that K, = J (1 -F)and K, = J.(1 — F_) where the score

generating functions J, and J satisfy the relationship

L = -{ad-»I.WY (1.1)
This choice of the scoring functions is motivated by the censored data signed rank

statistics considered by Woolson and Lachenbruch (1980) who discussed these tests in
the case of log-linear models. More precisely, if logX;=0+my;+¢

log X5; = MNy; + € where {ny;}1; and {ny;]2; are mutually independent samples from a
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distribution with density ¢ and {g;}2; is a sample independent of M;;’s and mM,;’s then
locally most powerful signed rank test for testing © =0 against 6 > 0 is based on
statistic T with score functions J, (v) = —¢"(z)/ ¢ (z) and J_(v) = 2¢(z)/ (1 — v), where
z=®"1(1/2 + v/2) and ® is the distribution function corresponding to ’¢. In particular
the sign, signed Wilcoxon and signed normal scores test correspond to double
exponential, logistic and normal densities ¢, respectively. The term ‘‘locally most
powerful test’’ refers here to the signed rank test that is locally most powerful in the
uncensored version of the experiment, given the observed pattern of deaths and with-

drawals.

In this paper we consider asymptotic distributions of censored data signed rank
statistics. Using counting processes techniques of Aalen (1978), Gill (1980) and
Andersen et al. (1982), in Section 2 we derive the asymptotic null distribution of the
test statistics. The form of the asymptotic null variance was first derived heuristically
by Woolson and Lachenbruch (1980). In Section 3 we consider contiguous alterna-
tives, discuss the loglikelihood expansion of (|Z;], €, 8;;, 8,;) and efficacies of the
tests. In contrast to the two-sample comparisons with censored data (Gill (1980), Har-
rington and Fleming (1982)), the signed rank tests are in general inefficient. This is
caused by two reasons. Firstly, the scores of asymptotically optimal tests depend on

the distribution of the censoring variable however the signed rank tests derived from
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marginal likelihood do not take into account this distribution. Furthermore, the margi-
nal likelihood and tests derived from it omit information carried by doubly censored
observations. In Section 4 we consider the efficiencies of the signed Wilcoxon, sign
and signed normal scores tests in the exponential Farlie-Gumbel-Morgenstern family
subject to exponential and fixed censoring and compare them with efficiencies of the
paired Prentice-Wilcoxon and logrank tests (see O’Brien and Fleming (1987),

Dabrowska (1988) and Albers (1988)).

2. Asymptotic distributions under the null hypothesis.
We consider first the counting process N =[{N;():j=1,...,4,i=1,..., n}:
0 <t <e]. Clearly, each of the component processes has jumps of size 1 and no two
processes jump at the same time. The behaviour of the process N is determined by its

intensity o (t) = [{o;():j=1,...,4,i=1,...,n}: 0<t<eo] where

adt = P(AN;®) =1|F.} j=1.2

Here dNj; (t) stands for the increment of N;; over the interval [t,t + dt], whereas {F,}
is the self-exciting filtration generated by the null sets and processes Nj(t)
i=1,...,41i=1,...,n Thus a;(t)dtis the conditional probability that N;; jumps
in an infinitesimal interval of length dt around time t given the history F,_. It can be
easily verified that in our case a; () = U OA@®) j=1,..., 4, where Uj(t) are as

in Section 1 while A;(t) are given by
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A = h-lp(ts |Z;| st+hieB;||Z]2tieB)
Suppose that the joint distribution of (Xj;, X,;) has density y(x,y) and the censoring
times C; have distribution function G and survival function G = 1 — G. Introduce sub-

survival functions F ® =Pzl =2t ie B) which are explicitly given’ by

_ _ u-t
Fi® = [G) [ w(x,u)dxdu

u-t

F,0 = [Gw [ y@,y)dydu

U—too

Fo = [{[ [vkxy)dxdy}dG()

oo u—t

EF,® = [{] [ vixy)dxdy} dG ()
u =—oco
An easy calculation shows that the hazard functions A.j(t), j=1,...,4 are given by
A; (0) = (1) / F; (1) where f; is the density corresponding to F; (1), i.e.
0 = [Ca@ye-twd
f,0) = [Gy(u,u-t)du @.1)

30 = [( j v (u-t,y) dy} dG(u)

0 = [{ I V (x, u-1) dx} dG().
u .
Let A;(t) be the cumulative hazard function corresponding to Aj-(t). It follows from

the theory of counting processes (see e.g. Andersen and Borgan (1985)) that

t
M;®) = N;@®) - i‘;UjidAj j=1,...,4

are mean zero square integrable local martingales with predictable variation processes
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t

<M;>@ = l[UjidAj.
Furthermore, the martingales are orthogonal in the sense that their predictable covaria-
tion processes satisfy < M;M;;>(t)=0 if either j#/ or j=/ and i=zk,
Bl=1...,4k=1,...,n
The estimates A (t) and F (t) of Section 1 share many of the properties of the usual
Aalen-Nelson (Aalen (1978), Nelson (1972)) and Kaplan-Meier (1958) estimates. Here

we shall need consistency properties of these estimates. Set H(t) = H; (t) + H, ()

where
H®) = P(Zl2t =1) = [Ga{[v@Et y)dy)du
Hy(® = P(Zl2t =-1) = [G() (v (x,u-t)du}du.
Define

t
A@® = -[H1(dF, + dF))
0

and let F(t) be the corresponding product integral

F@ = II{1-A(ds)).

sst

For uncensored data, under the hypothesis of bivariate symmetry F(t) is the survival
function of | Xy — Xy;| and A (t) is the corresponding cumulative hazard function. If

H(t) > 0 then |A(t) - A(t)] =p 0 and | F(t) - F(t)] =p O uniformly in t € [0, T].
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Let us consider now the behaviour of the statistic T(t) under the hypothesis of
bivariate symmetry. If the survival times have a symmetric density ¥ (x,y) = ¥ (y,x)

then clearly F; = F,, F3 =F,, A; = A, and A; = A;. Define T' = T’(e) by

t t
T® = [K,(U; - UpdA; + [K (Us - UpdAs.
0 0
Under the hypothesis of bivariate symmetry T’ is equal to zcrb with probability one

because

t t
gKuUldAl + ,(’;KCU3dA3

has the same distribution as

t t
[KyUzdA, + [K UgdA,
0 0
Further, n™12 {T(t) — T’ (t)} is a mean zero square integrable martingale with predict-

able variation process

nlI<KT-T>@) = n‘lj)'K&(Ul +Uy)dA; + n-lixg(ug, + Uy dA,
In particular, if K,(t) =J,{1 - 13‘_(t)} and K. =J {1 - F (t)} for some continuous
functions J,, and J. then the consistency of F and Rebolledo’s Central Limit Theorem
(Theorem 3.2 in Andersen and Borgan (1985)) imply that n~12 {T(t) - T'(t)} con-

verges weakly to a mean zero normal variable with variance

t t
2 = 2[12(1 -PHFdA; + 2[12(1 -HF;dA,.
0 0
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Proposition 2.1. Suppose that the score generating functions J, and J, are continuous,

and

1J,)] s ad =v)y128 3 (v)] < a(l —v) V28 (2.2)

for some constants a > 0 and > 0. Then under the hypothesis of bivariate symmetry,

n"V2T converges weakly to a mean zero normal distribution with variance
of = 2{[13A -BFdA; + [12( - BHF;dA;)
Proof. Under the assumed growth rate conditions on the score generating functions
02 () = 0% < oo, where 02 (e0) = 1'¥n o2(t). Therefore by Theorem 4.2 in Billingsley
t oo

(1968), it is enough to show that

t1;rm"11:'1.51>(n—1j13(1-1‘=_)(Ul + U)dA; > €) =0
= t

lim ImP@™ [J12(1 -F)(U; + UpdA; > €) = 0
t oo t
for all € > 0. Let us consider the first of these limits, the proof of the second is analo-

gous. We have F_ 2 U/n so that (2.2) implies

ol [I2( - E)(U; + UpdA; < a?n! [(U; + Uy U/n)+BdA,.
t t
By Theorem 1.1 in van Zuijlen (1978), for given €>0 we have
(U/n) 128 < BH 2 with probability at least 1 — €, where B = €1*2, On the set

where this holds the last integral is less than

a2Pn! [(U; + Up HMPdA; —p 222B [HMPF dA, < 222 [H P dH
t t t
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and the right hand side tends to 0 as t — oo,

For practical purposes we shall need to estimate 0‘% from the data. We mimic pro-
cedures for the two sample case (Gill (1980), Andersen et al. (1982) and Harrington

and Fleming (1982)) and estimate c% by 6% where

> AN: -1 dN. it AN:. -1 dN;
62 = 22, [K2(1 - ——)— + T4 [K2(1 - ——)—.
1£ Ui-1" U -3£ U-1" 1

Under assumptions of Proposition 2.2, 6-% is a consistent estimate of 62,

To conclude this section we give a Corollary which summarizes the weak conver-
gence results for the test statistics of Section 1. We need to verify the growth rate
condition (2.2). If the score generating function corresponding to uncensored data is
selected as J,(v) = —¢'(z)/¢(z) with z = @ 1(1/2 + v/2) for some symmetric density
¢, then for most choices of ¢ arising in practice J, (v) satisfies the condition (2.2). In
particular this holds for normal, logistic and double exponential ¢. Further, if the
score generating function J.(v) corresponding to censored data is chosen so that the
relation (1.1) holds then

1
He@l = A - [, wdw| <

1
a (1 -7 (1 - wyPdw = ay(1 - v)12¥

where a, =a;/(1/2+ 3). Hence the score functions J, and J_ satisfy (2.2) with

a = max (a;,ay).
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Corollary 2.1. Under the null hypothesis the sign , signed Wilcoxon and signed nor-
mal scores test statistics are asymptotically mean zero normal with asymptotic vari-
ances given by
o¢ = 2{[FidA; + [F3dA;) = P(e=1)+P(g=-1)
ok = 2{[(1 -F’FdA; + [(1-F/2?F;dAs)

0'1% = Z{lez(?)ﬁldAl + IW%(?)P_3dA3}
where w, (s) = 11 -s2), wy(s) = 2s‘l¢ {®1(1 - s/2)}, and ¢ and @ denote the

density and the distribution function of the standard normal distribution.

3. Asymptotic distributions under contiguous alternatives.

3.1. The log-likelihood expansion for (|Z;|, &;, &1;, 02;)
In this section we assume that under the null hypothesis (X;;, X,;) have symmetric
density y, ¥ (x,y) = y(y,x) and C,; have distribution function G. We consider alterna-
tives of the form vy, (x,y) =y (x,y) {1+ n~12 Ya(X,y)} where vy, is a sequence of

functions such that vy, (x,y) = y(x,y) for almost all (x,y) and

JaENVEyddy = [y y)vxy)dxdy = 0.

This condition ensures that y, is a density. In the case of parametric models, if
Vo, (x,y) is a symmetric density and the alternatives are Vg (x,y) with
h = 0+ cn™2, the function y reduces to ¢ times the derivative of logyg(x,y) at

9=90.
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Let P and P, denote the joint distributions of (|Z;], €, 8y;, 85;) under the null
hypothesis and under the alternative, respectively. Set n; = (1 = 8;;) (1 — 8,;). Then

logdP,/dP = X& [log(f,/f)dN; + ZV;
V; = m;log (Pon/po) + (1 — My)1og {(1 — poy) /(1 = po)},

where pg and p, represent the probability of a doubly censored observation under the

null hypothesis and under the alternative, respectively. We have

po = [{J [w(x,y)dxdy}dG ()

and similarly

Pon = Po+n 2 I { j j ¥ %, V)V (X,y)dxdy} dG (u) = po+ n"V2h,,.
uu
Assuming that limits can be taken under the integral signs, it can be easily verified

that as n — oo

Ap® = 20'2[{f, /502 - 1] > A;®) j=1,...,4 (3.1

where

A1) = f07 [G @)yt u)y@-t,u)du
As; ) = £507 (] vt y) ¥ (-, y) dy} dG(u).

The functions A, and A, are defined similarly to A; and A; except that y(u—t,u) and

Y(u-t,y) should be replaced by ¥ (u,u-t) and y(y, u-t), respectively. Moreover,

Apn (@) = 20'2[(po,/p)'? - 11d + 202 [{(1 — pon) /(1 = p)}2 - 111 - d) —
Pothd — (1 = pp)th(l - d) = Ap(d) (3.2)
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ford=0or 1 and

h = [{J [y, y)v(xy)dxdy)} dG (u)
uu
By Le Cam’s Second Lemma (Héjek and Sidak (1968)) it is enough to consider the
asymptotic distribution of L, = L, + L,, where

Lin = 072E4, [ARdN; Ly, = o228, Ag, ().

We consider L,,, first. Assume
im [{Ap, (1) - A; (1))2f; = 3.3
Iim [ (A () - A;0Pf B = 0 (3.3)
forj=1,...,4. Set

S = n12X4, [A;dN;. (3.4)
Under the null hypothesis S is asymptotically mean zero normal with variance

o? = [(Af + ADFidA; + [(A} + ADF;dA,. (3.5)
By (3.3)

EL;, = n'2Z8, [A, 00 dt = 148, [AZ(f(Ddt - -1/40%
Var(Ly, - 8) < Z&, [(An® - Aj@)%f(Ddt - 0.
It follows that under the null hypothesis L,;, is asymptotically normal with mean

—02/4 and variance o2.

As for the term L,,,, we have

Elyy = -n(d - 0™ - n{(1-pow'? - (1-py)?)
= -1/4VarAg,(M;) — -1/4h%pgl (1 - py)L.
Berry-Esseen’s Central Limit Theorem implies that L,, converges weakly to a normal



-14 -
distribution with mean —1/4h2p3! (1 — po)~! and variance h®py! (1 — py)~!. Further-
more, it is easy to see that L, and L,, are uncorrelated. Therefore, it follows that L,

is asymptotically normal with mean —1/4 6¢ and variance 6¢ where

of = [(A?+ ADFdA, + [(AZ+ ADFsdAs + B2p5l (1 - (3.6)
Le Cam'’s First and Second Lemmas (Hijek and Sidak (1968)) imply now the follow-

ing result.

Proposition 3.1. Under the null hypothesis if (3.1) (3.2) and (3.3) hold, logdP, /dP
converges weakly to a normal distribution with mean —1/2 6¢ and variance 63 and the

family P, is contiguous to P.

32. Efficacies of tests.

To obtain efficacies of tests it is enough to find the joint distribution of n™2 T and

log (dP,,/dP) under the null hypothesis. Let S’ = S”(ec) be given by

t
§'(t) = n'2X4, [A;@N; - UjdA)
0
where A;, j=1,...,4is as in Section 3.1. Under the null hypothesis S’ () is a mean

zero square integrable local martingale with predictable variation process

t
<§> ® = n! zj4=l IAJZ UJ dAJ
0

Moreover, the predictable covariation process of S’(t) and n~/2 {T(t) — T' (1)} is given
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t
n12< S, T-T'>0) = 0! [K,(AjU; - AUpdA,
0

t
+ n'lIKc(A3U3 - A4U4) dA3.
0
In particular, if the processes K, and K, are given by K,=J,(1 - F) and
K, =J,(1 - F_) for some continuous score generating functions J, and J_, then the

right-hand side converges in probability to

or® = ilua -F(A; - ApF,dA; + iul - (A3 - AYF3dAs.
Under conditions of Propositions 2.1 and 3.1, Rebolledo’s Central Limit Theorem and
Cramer-Wold device applied in a fashion analogous to Hijek and Sidak (1968) and
Gill (1980), entail that S’ (es) and n~2 {T (es) — T’ (e=)} are jointly asymptotically nor-

mal with mean zero and covariance matrix

o2 or
3.7
or o2 (3.7
where cp = cp(e°) and o2 is given by (3.5). Since n™Y2T’(es) = 0p(1) and S’ has the
same asymptotic distribution as the statistic (3.4), it follows that L,, and n"V2T are
jointly asymptotically normal with mean (—62/4, 0) and the above covariance matrix.
It remains to show that L,,, the term corresponding to doubly censored observations is

uncorrelated with T(ee) — T'(ee). Fix t < oo and let us approximate the martingale

T(t) — T’ (t) by the Lebesgue-Stieltjes integral
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z‘iI;IEKu(sv) {dM;;(sy) — dMy(sy)) +
ziI;IEKc(Sv) {dM3;(s,) — dMy(sy)}

where 0 = §;< *+- <s, =tis a fine grid. Fori=1 we have AOn(nl)dei(sv) = (,
j=1,...,4. Further, for i#/ Ap,(M;) and dM;;(s,) are conditionally independent
given the history F_ so that using the predictability of the processes K, and K we

get

E[EAOn(nl)Ku(sv) {dMy; (sy) — dMy;(sy)}

+ ZAg MK () (M3 (5,) — dMgi(s) ]

= E[EKu(Sv)E{AOn(nl)lFs,—}E[{dMli(sv)_dMZi(sv)”Fs,,—]]
+ E[EKC(SV)E{AOn(nI)IFs,—} E[{dMg3;(sy) — dMy;(sy)} 1 Fg-1]

= 0.

An appropriate limiting argument shows now that L,, is uncorrelated with
T (e0) — T’(e<). This can be proved more rigorously by first considering the case when
K, and K_ are predictable step functions and then for general predictable processes

(see Meyer (1971)).

Proposition 3.2. Suppose that the assumptions of Propositions 2.1 and 3.1 are
satisfied. Then under the null hypothesis (logdP,/dP, n"V2T) converge weakly to a
normal distribution with mean (-1/264,0) and covariance matrix (3.7) with o2

replaced by 6¢ given by (3.6).
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Le Cam’s Third Lemma implies now that the efficacy of the test statistic T is given
by c#/c# In particular, the following corollary gives explicitly the efficacies of the

sign, signed Wilcoxon and signed normal scores tests.

Corollary 3.1. The efficacies of the sign, signed Wilcoxon and signed normal scores
tests are given by

es = (J(A - APFdA; + [(A3 - A)FsdAs)/cd

ew = (J(A; - AU -PFdA; + [(A3-AY( -F2)F3dAs) /o

ex = [[(A; - A)w P)FdA; + [(As - AYw, B F3dAs)/of

where w;, W,, 62, 6% and 63 are as in Corollary 2.1.

From Proposition 3.2 it follows that the signed rank tests are in general inefficient.
This is in contrast with tests for two-sample comparisons under the equal censoring
model (Gill (1980), Harrington and Fleming (1982)). In the present setting the scores
of asymptotically optimal tests depend on the censoring distribution, while censored
data signed rank tests do not take this distﬁbution into the account. Moreover, infor-
mation carried by doubly censored observations is omitted. In the next Section we

shall examine the efficiency loss due to censoring in more detail.
If the density of the paired survival times (X;,X,) belongs to a parametric family
Ve (x,y) and the censoring distribution is known (e.g. in the case of fixed censoring),

tests for symmetry can be based for instance on the likelihood ratio statistic. The
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efficacy of this test is 0'3 given by (3.6). In general however, the form of the censor-
ing distribution is unknown, tests have to be constructed adaptively using methods

appropriate for semiparametric models. This problem will be considered elsewhere.

4. Some comparisons.

For comparison purposes we consider the Farlie-Gumbel-Morgenstern (FGM) fam-

ily and assume that the joint density of the survival times (X;,X,) has form

Aee B {1+ a(l -2 - 2e4Y). 4.1)

Here the marginals are standard exponential for X; and exponential with scale parame-
ter A, A> 0 for X,. The parameter o ranges between -1 and 1 and accounts for the
degree of dependence between X; and X,. For o =0 the two survival times are
independent. In general the correlation between X; and X, is equal to /4 and thus it

ranges between -.25 and .25.

The efficiencies of the tests will be considered for uncensored data and for
exponential and fixed censoring. In the exponential case, we assume that C has
exponential distribution with scale parameter A and choose A =.05,.2,.5,1.4 and 3.
For this choice of A and a = 0 the probabilities of uncensored observations are .93,
.76, .53, .25 and .1, respectively. For a # 0 the probabilities of uncensored observa-
tions do not differ much from these values. In the case of fixed censoring C assumes

value ¢ with probability 1. We choose ¢ =3,2,1.25,.7 and 4. When o =0 the
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probabilities of uncensored observations are approximately .90, .75, .51, .25 and .11,
respectively.
To discuss the signed rank tests we apply the log transformation to X;, X, and C.

This transformation turns the exponential FGM model (4.1) into a FGM family with

extreme value marginals. Further, set

x1=e"+A X2=20—t+A X3=C-t+2A X4=26.t+2A
yi=1+Ac y;=2+Aet y3=1+2Ae y,=2+2Ac™.

In the case of exponential censoring the densities £, (t), i=1,...,4 of (2.1) are

given by

fia® = AcH{( + &)/ (x; + M) = 200/ (x5 + A)2 — 200/ (x3 + A)% + 4ot/ (x4 + A)2)
foa® = AeH{(1 + &)/ (y; + A)? = 20/ (y5 + A)? — 20/ (y3 + A)? + 4o/ (y4 + A)?)
faa®) = AeH{(1 + @)/ (xy + )% — 200/ (xg + )2 — &t/ (x5 + A)% + 20/ (x4 + A)?)
faa®) = Me{(1 + )/ (y; +A)? — a/(yp + A)? — 20./(y3 + A)2 + 200/ (y4 + A)2).

In the case of fixed censoring these densities are given by

fa00 = Ac {1 + &)L (x)) — 201, (x,) — 20 (x3) + 40l (x,)}
faa® = AeTH{(1 + ) L. (yy) — 201 (y,) — 201 (y3) + 40l (y,)}

f30(0) = ce*{(1 + a)e™™ — 20 — ae " + 206 )

fia®) = Acet {1 + @) — ae ™2 - 2ae ™ + 206 V)

where

L&) = [e™dt.
0

The score functions A;(t), i=1,...,4 of Section 3 can be next obtained by
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differentiating log f,; (t) with respect to A at A = 1. Furthermore, the probabilities pos

of doubly censored observations are given by

Poa = AlA+)/(1+A+M)+a{l/Q+2A+A) - U2 +A+2)-1/(1+2A+]0)}]

in the case of exponential censoring, and

Poa = (1+ a)exp{—c(l+A)} + aexp{—<(2+24)}
—oexp{—< (2 + A)} - oexp {—c(1 +24)}

in the case of fixed censoring. The contribution of doubly censored observations to
the asymptotic lower bound (3.6) is then given by h?pyl (1 - Po)~! where p, is given

by poa evaluated at A = 1 and h is the derivative of pp, with respect to A at A = 1.

The asymptotic lower bound of Proposition 3.1 and the efficacies of the signed
rank test do not have closed form expressions, therefore we computed them numeri-

cally using Romberg integration algorithm (e.g. Gerald and Wheatley (1985, p. 281)).

When o = 0 and the data are uncensored the signed Wilcoxon test is locally most
powerful within the class of signed rank tests and efficient within the class of tests
based on |X,; — X;;| and the signs g of Xy — X;; (Doksum (1980)). For o # 0 the
efficient signed rank test within this class of tests depends in a complicated way on a.
However, it follows from Table 1 below that the asymptotic relative efficiency (ARE)
of the signed Wilcoxon test with respect to the asymptotic lower bound is at least .971
when o # 0 and thus not much efficiency is lost when applying this test in the case of

dependent data as well. For censored data results of Woolson and Lachenbruch (1980)



-21-

imply that when a = 0 the censored data signed Wilcoxon test is locally most power-
ful within the class of signed rank tests derived from marginal likelihood considera-
tions. Table 1 gives the ARE of the censored data signed Wilcoxon test with respect
to the optimal parametric test. For both types of censoring and each of the o values
considered, the ARE decreases as the censoring gets heavier. When a = 0 the ARE
drops down from 1 for uncensored data to .503 for exponential censoring with A = 3
and to .418 for fixed censoring at ¢ = 4. Thus in this case the efficiency loss is
approximately 49.7% and 58.2% for exponential and fixed censoring, respectively.
More generally, for A between 0 and 3 the efficiency loss due to censoring ranges
between 30.6% for a =1 and 65.3% for o = ~1. For fixed censoring and c values
considered, the efficiency loss due to censoring ranges between 48.7% for oo = 1 and

65.3% for a = -1

Table 1 about here

In Table 2 we give the ARE of the sign and signed normal scores tests with
respect to the signed Wilcoxon test. In the case of exponential censoring the ARE of
both tests increases a little as the censoring gets heavier. In the case of the sign test
and a = 0 the ARE increases from .75 for uncensored data to .841 for A = 3.0. Thus

in this case there is a 9.1% gain in the ARE. For the remaining o values this gain
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ranges between 7% for o = 1 and 18.8% for o = —1. In the case of the normal scores
test and o = 0 the ARE increases from .955 for uncensored data to 1.005 for A = 3 so
that there is a 5% increase in ARE. For other o values this gain ranges between 6.2%
when o =1 and 2.3% when a = -1. As o approaches -1 or A > 3 the normal scores
test performs slightly better than the signed Wilcoxon test. Further, let us consider the
fixed censorship model. In the case of sign test we observe a slight decrease in ARE
when ¢ < 1.25, i.e. when the probability of uncensored observations gxceeds S,and a
slight increase when ¢ 2 1.25. For ¢ < 1.25 and a = 0 the loss in efficiency is approx-
imately 4.4% while for ¢ > 1.25 the gain in efficiency is about 9.9%. For the remain-
ing o values and c 2 1.25 the gain in ARE ranges between 5.7% when a =1 and
22.6% when o =-1. As for the normal scores test, the ARE is somewhat higher
under fixed censoring than for uncensored data. The gain in ARE is 7.5% when o = 0
and ranges between 7.3% when o = 1 and 8.1% when o = —-1. For most of the o and
c values considered the efficiency of the signed normal scores tests is higher than the

signed Wilcoxon test.

Table 2 about here

Rather than base tests for symmetry on the ranks of differences within the pairs,

we can consider tests based on differences of ranks of each pair in the pooled sample.
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For uncensored data this approach was adopted by Snijders (1981), Doksum (1980)
and Lam and Longnecker (1983) among others. Formally the procedures take the
same form as the usual tests for the two-sample comparisons except that the variance
of the test statistics is modified so as to take into the account the intrapair dependence.
When conditioned on the observed configuration of ranks in the pooled sample, the

tests are distribution free. See Snijders (1981) for further discussion.

Censored data analogues of these procedures were developed by O’Brien and
Fleming (1987), Dabrowska (1988) and Albers (1988) among others. Here we con-
sider a Prentice type method of ranking of the observations, that is the paired data are
pooled, uncensored observations are ranked among themselves and each censored
observation is assigned the same rank as the nearest uncensored observation on the
left. For suitably chosen score functions J (u,d), u € (0,1), d = 1,0, the test statistics

reject the hypothesis of symmetry for large values of nV2W /& where

W o= o (22, TS (V). 8y) — Z2, TS (Y2, &) 4.2)
and 67 is an estimator of the asymptotic variance of W of the form

62 = 0 (Z2 22, 2 S (Yp). 8 - T2, TS (Y1), 810 IS (Y2, 80)).
Here S (1) is the Kaplan-Meier estimate from the pooled sample or an estimator asymp-
totically equivalent to it, e.g. § ®=1-exp {—f\ ()} where f\(t) is the Aalen-Nelson
estimate based on the pooled sample. The choice J(u,1)=2u-1 and J(u,0) =u

yields the Prenctice-Wilcoxon test statistic (O’Brien and Fleming (1987)) whereas the
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choice J(u,1) =-1 —1log(l —u) and J(u,0) = -log(l — u) leads to the paired data

log-rank test.

Asymptotic properties of tests based on n2W /& were studied in Dabrowska
(1988). Therein it was assumed that the censoring is bivariate, i.e. each pair member
has its own censoring time and the two censoring times are possibly dependent. The
univariate censoring mechanism discussed in the previous sections can be accommo-
dated into this framework by considering pairs of censoring times (C;,C,) such that
P(C, = C)) = 1. Thus the marginal survival functions of C; and C, are common, say

G (1) whereas their joint survival function is min {G (s), G (t)}.

Let us consider the model described at the beginning of Section 3.1. Let S be the
common marginal distribution function of X;; and X, under the null hypothesis.

Further, set

%® = [(¥60) =709}y nd
Lo = [ n®dx

The efficacy of the tests based on the statistic (4.2) is then given by c& /o where

cw = [I(S(5), DG (9) Yo (s)ds + [T (S (5),0) T (s)dG (s)
2{[12(S(s), )G (5)dS (5) + [I2(S(5),0)S (s)dG (5)
ZLoZLo[[1(S (). p)T(S (1), @) dHyg (5, D)

where H,, (s, t) is the bivariate subdistribution function corresponding to those observa-

of

tions for which 8;; =p and 85;=q, p,q=0,1,i=1, ..., n. In particular in the case
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of the exponential FGM model (4.1), S is the standard exponential distribution func-

tion, Y (s) = —(1 — s)e™ and I'(s) = se™™.

In Table 3 we give the ARE of the paired Prentice-Wilcoxon and logrank tests
relative to the signed Wilcoxon test. For uncensored data these tests perform consider-
ably better than the signed Wilcoxon test. For a = 0 the ARE is 1.125 for the paired
Wilcoxon test and 1.5 for the logrank test. For other choices of a the ARE ranges
between 1.114 for oo = .5 and 1.188 for a = —1 in the case of the paired Wilcoxon test
and between 1.352 for a =1 and 1.690 for a = -1 in the case of the logrank test.
Under exponential censoring the ARE of both tests decreases as the censoring gets
heavier. When o = 0 the ARE of the paired Prentice-Wilcoxon test drops down from
1.125 for uncensored data to .862 when A = 3 whereas the ARE of the paired logrank
test decreases from 1.5 for uncensored data to .882 when A = 3. Thus the efficiency
loss is 26% for the Prentice-Wilcoxon test and 61.8% for the logrank test. For the
remaining o values considered, in the case of the Prentice-Wilcoxon test the efficiency
loss is between 25.1% for o = +.5 and 30% for o = 1. In the case of the logrank test
this loss ranges between 51.2% for o =1 and 76.8% for o =-1. The Prentice-
Wilcoxon test performs better than the signed Wilcoxon test only for A < .2 and from
Table 2 we find that the signed normal scores test has higher efficiency than the

Prentice-Wilcoxon test when A > .5 except for o = —1 and A =.5. In the case of the
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logrank test the situation is analogous. The logrank test performs better than the
signed Wilcoxon test for A < .5 and the signed normal scores test has higher efficiency
than the logrank test for A > 1.4 except when o = -1 and A = 1.4. Finally let us con-
sider the fixed censorship model. In the case of the Prentice-Wilcoxon test the ARE
decreases as the censoring gets heavier. For o =0 and ¢ 2 .4 the efficiency loss due
to censoring is about 12.1%. For other o values the efficiency loss ranges between
9.7% for oo = .5 and 19.5 % for o = —1. The Prentice-Wilcoxon test performs slightly
better than the signed Wilcoxon test with the exception of ¢ = .4 and o = -.5 or -1.
As for the logrank test, its ARE decreases as the censoring gets heavier except for
o = 1. For o = 0 the efficiency loss caused by censoring is about 48.3%, for other o
values the efficiency loss is between 35.8% when o =.5 and 73.5% when a = -1.
For all values considered the logrank test performs better than the signed Wilcoxon

test except when ¢ = .7 or .4 and o = -.5 or -1.

Table 3 about here
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Table 1. ARE of the signed Wilcoxon test with respect to the optimal parametric
test.

(v 0.0 1.0 S5 -5 -1.0
Uncensored data
1.0 998 999 995 971

Exponential censoring with scale A

A= .05 940 962 952 919 879
A= 2 879 .889 862 778 716
A= 5 715 816 772 647 571
A= 14 590 739 672 502 415
A= 3.0 503 692 606 402 315

Fixed censoring at ¢

c= 3.0 516 620 571 459 .396
c= 20 464 573 524 .398 328
c= 125 456 562 517 387 322
c= 7 446 545 502 385 321

c= 4 418 S11 467 .368 318



Table 2. ARE of the sign (S) and signed normal scores (N) tests with respect to

the signed Wilcoxon test.
o 0.0 1.0 5 -5 -1.0
Uncensored data
S .750 757 764 709 638
N 955 938 940 .980 1.011
Exponential censoring with scale A
A= .05 S .750 730 765 710 643
N 964 909 949 .988 1.018
A= 2 S 752 763 767 715 654
N 981 961 .966 1.003 1.029
A= 5 S .761 773 775 729 678
N 997 978 984 1.014 1.034
A= 14 S .79 797 801 775 743
N 1.005 994 998 1.014 1.022
A= 3.0 S 841 827 838 838 826
N 1.005 1.000 1.001 1.007 1.008
Fixed censoring at ¢
c= 30 S 716 734 734 677 613
N 1.013 981 991 1.044 1.082
c= 20 S .706 732 728 667 607
N 1.030 999 1.009 1.058 1.092
c= 125 S 726 748 745 692 643
N 1.026 1.009 1.014 1.042 1.060
c= 7 S 785 777 786 773 750
N 1.012 1.011 1.010 1.016 1.020
c= 4 S .849 814 834 860 864
N 1.004 1.007 1.005 1.004 1.003



Table 3. ARE of the paired Prentice-Wilcoxon (W) and Logrank (L) tests with
respect to the signed Wilcoxon test.

o 0.0 1.0 S5 -5 -1.0
Uncensored data
W 1.125 1.141 1.114 1.154 1.188
L 1.500 1.352 1.415 1.596 1.690
Exponential censoring with scale A
A= .05 W 1.103 1.107 1.089 1.133 1.168
L 1447 1.302 1.365 1.539 1.629
A= 2 W 1.049 1.031 1.028 1.081 1.118
L 1320 1.186 1.246 1.401 1.483
A= 5 W 978 940 952 1.011 1.046
L 1157 1.040 1.095 1.223 1.289
A= 14 W .892 .845 867 918 943
L .961 .883 921 1.001 1.038
A= 30 W .862 827 844 .880 .895
L .88 .840 .861 903 922
Fixed censoring at ¢
c= 3.0 W 1.072 1.104 1.069 1.097 1.134
L 1.365 1.346 1.337 1.414 1.475
c= 20 W 1.043 1.093 1.049 1.059 1.088
L 1245 1.465 1.309 1.225 1.232
c= 125 W 1.024 1.091 1.041 1.025 1.037
L 1129 1.555 1.264 1.061 1.025
c= 7 W 1.011 1.071 1.031 1.003 1.000
L 1.049 1.319 1.144 992 971
c= 4 W 1.004 1.041 1.017 997 993
L 1.017 1.120 1.057 990 955



