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Consider estimating the mean of a standard Gaussian shift when that mean is
known to lie in a quadratically convex set in /,. Such sets include ellip-
soids, hyperrectangles, and /,-bodies with p >2. The minimax risk among
linear estimates is within 25% of the minimax risk among all estimates. The
minimax risk among truncated series estimates is within a factor 4.44 of the
minimax risk. This implies that the difficulty of estimation -- a statistical
quantity -- is measured fairly precisely by the n-widths -- a geometric quan-
tity.

If the set is not quadratically convex, as in the case of /,-bodies with p<2,
things change appreciably. Minimax linear estimators may be outperformed
arbitrarily by nonlinear estimates. The (ordinary, Kolmogorov) n-widths
still determine the difficulty of linear estimation, but the difficulty of non-
linear estimation is tied to the (inner, Bernstein) n-widths, which can be far
smaller.

Essential use is made of a new heuristic: that the difficulty of the hardest
rectangular subproblem is equal to the difficulty of the full problem.
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1. Introduction

Pinsker (1980) considered the problem of estimating the mean of a certain Gaussian process when
the mean is known to lie in an infinite-dimensional ‘‘ellipsoid’’. He found an exact value for the
minimax risk of linear estimates and an asymptotic value for the minimax risk among nonlinear esti-
mates. These evaluations allow one to obtain precise constants on the asymptotic minimax risk for cer-
tain ‘‘real’’ function estimation problems: density estimation — Efroimovich and Pinsker (1981, 1982)
— and regression estimation — Nussbaum (1985). This is an improvement over usual treatments of
nonparametric estimation problems, where only rates, and not constants, are available. A remarkable
feature of the Pinsker solution is that it shows the minimax linear estimator to be asymptotically
minimax among all estimates. Thus, in minimax theory at least, there is little to be gained by nonlinear

procedures.

Because Pinsker’s result is specifically for the case where the unknown mean lies in an ellipsoid,
the question arises whether similar res\llts hold when the unknown mean lies in a set with a different
‘‘shape’. In this paper they show that if the mean is known to lie in a quadratically convex set, the
minimax linear risk is within a factor 1.25 of the minimax risk nonasymptotically. Thus, for ellipsoids,
hyperrectangles, and /, bodies the minimax linear risk is not very different from the minimax risk.

Almost certainly, the constant 1.25 can be replaced by 1.247.

More generally we might ask: in the problem of estimating a mean 6 known to lie in a convex
compact subset © of /,, does there exist a constant, independent of ©, bounding the ratio of minimax
risk to minimax linear risk. If such a constant exists independently of © (provided © is convex), many
of the usual lower bound arguments in rates of convergence theory might be dispensed with altogether.
One would simply determine the behavior of the minimax linear estimator; then no nonlinear estimator
could improve on this except by a constant factor. On the other hand, if there exists a class of convex
sets O for which the minimax linear and minimax risks behave essentially differently, this seems also

intrinsically interesting. We show here that for a large class of cases, the constant 1.25 applies.

Our approach also gives results on the minimax risk of truncated series estimates. Let the set 6

have the sequence of Kolmogorov n-widths (d, ). Then by using an optimal truncated series estimate,
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the worst-case risk inf d,2+n o2 is attainable. We show that if @ is quadratically convex, this upper
n

bound based on n-widths is within a factor 4.44 of the minimax risk, and a factor 4 of the minimax
linear risk. Moreover, even if © is not quadratically convex, the minimax truncation risk and the
minimax linear risk are within a factor 4. Thus, from a minimax point of view, general linear estimates

do not improve dramatically on truncation schemes.

Our results have other implications. Consider the problem of estimating the linear functional L (8)
of the unknown mean 6, when 0 is known to lie in a convex set ©. Results of Ibragimov and Hasmin-
skii (1984), combined with our Theorem 1, show that when © is symmetric, the ratio of minimax linear
to minimax risks is less than 1.25. Results of Donoho and Liu (1988b), combined with our Theorem 1,
show that for any convex set O, the ratio of minimax inhomogeneous linear risk to minimax risk is
bounded by 1.25. Thus, for estimating a single linear functional, an absolute bound on improvement by
nonlinearity holds quite generally, independent of the shape of the convex set in which the mean is

known to lie.

These results provide a partial answer to the question raised by Sacks and Strawderman (1981) --
namely, is it possible to improve significantly on minimax linear estimators by nonlinear schemes. They
also provide a concrete working out of the Birgé-Le Cam program to express minimax risks in terms of
geometric quantities; we show that for quadratically convex sets, the geometric quantity ir:f d2+nc?is
within a factor 4.44 of the minimax risk.

However, we also get negative results which are perhaps more interesting. We show that for [, -
bodies with p <2, the minimax linear risk need not tend to zero at the same rate as the minimax risk.

This shows that the /, bodies with p<2 represent in a certain sense an answer to the question posed by

Sacks and Stradwerman (1982).

An interesting feature of our approach is the use of geometric ideas, including that of hardest rec-

tangular subproblem and quadratic hull, to explain these phenomena.

Section 11 shows that analogs of these results hold for other loss functions; it discusses the case

of 1,-loss.



2. The Problem

The basic model is as follows. We are given

Yy = e,' + 8,‘ i = 0,1,2,... (2.1)
where ¢; are iid N (0,02) and 0; are unknown, but it is known that

16; 1 <7;, i=0,1.2,.. 2.2)
Thus 0 = (6;) lies in the hyperrectangle © = 6(t) = {0:10; | <1;}. We wish to estimate 6 with small
squared error loss, i.e. to make the squared /,-norm 118-0112 = 3(8; —6,)? small. We will use the

minimax principle to evaluate estimates; an estimator 8° is minimax if

gggsué‘-enz: irenfgggllé—ellz. 23)

We also speak of restricted minimax estimates. Thus, if 8" is linear and satisfies (2.3) with the infimum
over 8 referring only to linear procedures, we say that 8" is linear minimax.

Let us indicate briefly how this estimation problem is related to estimating an unknown function.

See also Pinsker (1980), Ibragimov and Hasminskii (1984), Nussbaum (1985). Suppose we are

interested in estimating the function f (¢), ¢t € [a,b], but f is observed in a white noise:

t t
y@) = [f @dt +o[aW () telab] (24)
a a
where W (1) is a Wiener process. We wish to find an estimate / of f which makes j(? —f)? small, and

we have a priori information that f is smooth.

If the smoothness information is of a particular kind, the problem reduces to the hyperrectangle
model (2.1)-(2.2). Let dm =dt/(b—a) and suppose we have a set {¢;} of functions orthonormal for
Ly(m,[a,b]). Let 6; = J'f¢,-dm be the i-th Fourier-Bessel coefficient of f with respect to this set, and
suppose we know a priori that the Fourier-Bessel coefficients of f decay rapidly:

10;1<1;, 1,50 as i —>oo. 2.5)
Let us see how these assumptions reduce to (2.1)-(2.2). To start with, (2.5) is precisely of the form

(2.2); on the other hand, if we take the Fourier-Bessel coefficients of (2.4) we get

o= b = 6+

where €; are i.i.d. N(0,067). Thus (2.4) and (2.1) are equivalent, if f lies in the span of {¢;}. Finally, a



-6-

good estimate of f leads to a good estimate of 0, and vice versa. If f is an estimate of f, it induces
an estimate 8 of @ via 8; = [f ¢;dm and for this estimate we have [(f —f)dm = ¥,(8; -6;) Simi-
larly, given an estimatc 8 of 0, we obtain a ‘series’ estimate f of f via f @) = Z@,-cb,-(t) and again
(2.6) holds.

A concrete example of the isomorphism between (2.1)-(2.2) and (2.4)-(2.5) is provided by Fourier
series. Let [a,b]=[-m,x], and let the orthonormal set {¢;} be the usual sinusoids: ¢,=1, and for i >0,
&i_1(¢)="2sin(it ), and ¢; (t)="2cos(it). Then the coefficients ; are just the Fourier Coefficients of f,
and (2.6) is Parseval’s relation. In this setup, the prior ‘‘smoothness’’ condition (2.5) does really
correspond to smoothness. For example, suppose that f and (¢—1) derivatives of f are of bounded
variation, and that f and these derivatives satisfy periodic boundary conditions at ® and —x. Then
109,104,411 < ci™ for an appropriate c. Thus the condition (2.5) with Ty; = T_; = ci™¥ is a weak-

ening of the condition that f have (¢—1) derivatives of bounded variation.

The white-noise model (2.4) is closely related to problems of density estimation and spectral den-
sity estimation. Indeed, it can appear as the limiting Gaussian shift experiment in such problems. Thus
it should be no surprise that results on hyperrectangles allow one to attack certain asymptotic minimax
problems. Bentkus and his school have used this connection to get expressions for the asymptotic
minimax risk among linear estimates in density estimation problems with smoothness constraints (2.5)
(Bentkus and Kazbaras, 1981), for the asymptotic minimax risk among kernel estimates of a spectral
density also using (2.5) (Bentkus and Sushinskas, 1982), (Bentkus, 1985a,b), and for the minimax risk
among kemel estimates in estimating a periodic function from sampled data (Jakimauskas, 1984). Simi-
larly, if the hyperrectangle constraint (2.5) is replaced by a quadratic constraint, Pinsker’s results on
Ellipsoids become relevant, and may be used to study asymptotic minimaxity with L, smoothness con-
straints in density estimation (Efroimovich and Pinkser, 1982), in regression estimation (Nussbaum,
1985), and in spectral density estimation (Efroimovich and Pinsker, 1981).

In this paper, we consider only the problem for observations (2.1); we take it for granted that the

results have a variety of applications, such as those just mentioned. We also take it for granted that

behavior as 6 — 0 is important, which may not be seem like a natural question in the model (2.1), but
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which is natural when the connection with e.g. density estimation is considered.
3. The 1-dimensional Problem

Consider estimating a single bounded normal mean, i.e. estimating ® € R from the single obser-
vation, y ~ N (0,6%) with the prior information that 10| <t. This problem has been studied by
Casella and Strawderman (1981), Levit (1980), Bickel (1981), and Ibragimov and Hasminskii (1984). It
is known that the minimax estimator for this problem is Bayes with respect to a prior concentrated at a
finite number of points in [-1,7]. Let 8Y5(y) denote this minimax estimator. 8}, is nonlinear in y (i.e.
it derives from a nonGaussian prior). Let py (t,0) denote the minimax risk. More information will be

given below.

Consider estimating 0 in this setup by a (possibly biased) linear estimator. The minimax linear
estimator can be worked out using calculus; it is

2

L -
3s0) 2102 y
and the minimax linear risk is
_ 2 _ T
pL(r,0) = inf sup E(B()-0)" = Zr (€8))

As it turns out, the minimax linear risk in this problem is not very different from the nonlinear
minimax risk. Consider the ratio of the two: p (t,0)/py(t,0). By the invariance p(1,0) = olp(t/o,l)
which holds for both p; and py, this ratio depends on t and & only through the ‘‘signal-to-noise’’ ratio
v=1/0. Let w(v) denote the ratio of the two risks for a given value of v. Ibragimov and Hasminskii

(1984) pointed out 3 basic facts about p(v): (1) it is continuous on (0,e°); (2) it is near 1 for v large:

pL(t1.0)
T/c e Py (‘C, G) B (3.2)
and (3) also near 1 for v small:
PL ('t, U) - (3.3)

t/6 -0 py (T,0)

Let u° denote the maximum value of p(v), i.e. the worst-case ratio of p. to py
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- pL (1,0)
bo=3P py (1,0)°

Ibragimov and Hasminskii (1984) argued that (3.2), (3.3), and continuity of p(v) imply that ' < oo,

G4

We can interpret (3.2) and (3.3) as follows. In the extremes where the prior information 10| <t
is weak compared to the noise level (i.e. T/ o large) and also where it is strong compared to the noise

level (i.e. T/c small) the minimax linear estimate is nearly minimax.

Actually, much more is true. p(v) never gets very far from 1 even at moderate v. Lucien Birgé,
in a talk on the work of M.S. Pinsker at the Mathematical Sciences Research Institute in Berkeley in
April, 1983 mentioned that he had convinced himself that u° < 1.7. In fact, as we shall explain in a

moment, the Ibragimov-Hasminskii constant W is less than 1.25.

In studying the ratio p(v) = pr(v,1) / py(v,1), we have information on p, from (3.1). However,
information on py (v,1) is harder to come by. For small v we can use the fact that, for v <1.05,
4oo
1 = v2en [ 004 35
pv(v.1) = vZe J_ prscran (3.5)
where ¢ denotes the N(0,1) density. This is proved in the appendix. For large v we can use the ine-

quality

sinhv
v coshy

pv(v.1) 2 (1- ) 36

which follows from Donoho and Liu (1988a, section 6.1). Actually, (3.5) implies that pu(v) < 1.25 for
v <.5, and (3.6) implies that p(v) < 1.25 for v 2 3.1. (We remark that the important relations (3.2)

and (3.3) follow immediately from (3.1), (3.5), and (3.6)).
To get information about p(v) for moderate v, one has to resort to the implicit characterisation
of py as the maximum of Bayes risks:
pn(v,1) = ,SE“R, p(m) 3.7

where p(m) denotes the Bayes risk

p(m) =inf sEg Eyip 8(Y) - 6)%, O~m.
By L.D. Brown’s identity p(r) = 1-7(®d* nt), where I (F) denotes the Fisher information I(f "2if , and

®*nt denotes the convolution of 7t with the standard Normal distribution function @ (see, for example,
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Bickel (1981)). Thus, putting /* (v) = inf (I (®*n): me I1,}, we have py(v,1) = 1-1"(v). AsI is con-
vex, evaluation of I” (v) presents a problem of minimizing a convex functional subject to the convex
constraint e I1,. The appendix explains how a numerical approach was used to get numbers /(v)
approximating upper bounds to I*(v). Assuming no programming error was committed, and that
machine arithmetic is performed with advertised accuracy, the numbers fy(v) = 1-7(v) may be shown
to rigorously obey

py(v,1) 2 Py(v)—.0001 v e [424.2)] 3.8)
Thus, they are ‘‘lower bounds to four digits accuracy’’.

Table 1 presents a small selection of the numerical results we have obtained; it shows the
numbers Py, together with the corresponding p, and the ratio i = p;/(py —.0005) > p.

Table 1 Risks in the 1-dimensional problem

v 0.2 04 0.6 0.8 1.0 12 14 1.6 1.8 2.0
PL 0.038 | 0.138 | 0.265 | 0.390 | 0.500 | 0.590 | 0.662 | 0.719 | 0.764 | 0.800
PN 2 0.037 | 0.137 | 0.261 | 0.373 | 0.449 | 0.491 | 0.534 | 0.576 | 0.614 | 0.644

ratio—el'—s 1.032 | 1.009 | 1.016 | 1.046 | 1.114 | 1.201 | 1.239 | 1.248 | 1.244 | 1.242

PN
v 22 24 2.6 2.8 30 32 34 36 38 4.0
fL 0.829 | 0.852 | 0.871 | 0.887 | 0.900 | 0.911 | 0.920 | 0.928 | 0.935 | 0.941

PN 2 0.669 | 0.692 | 0.714 | 0.733 | 0.750 | 0.765 | 0.779 | 0.792 | 0.804 | 0.814

ratio::—l's 1.239 | 1.231 | 1.220 | 1.209 | 1.200 | 1.191 | 1181 | 1.172 | 1.163 | 1.156
N

Professor Hasminskii has informed us that a set of calculations he performed in Moscow con-
vinced him that 1" is about 5/4. Professor Brown has informed us that a recent thesis at the Hebrew
University by I. Feldman makes it practically certain that the precise value of p” is between 1.246 and
1.247. Taking into account all the limitations of numerical approaches the best we can say with cer-
tainty is
Theorem 1. Suppose (3.8) holds. Then n* < 1.25.

The proof is given in the appendix, where considerably more information about our procedure and

the claim (3.8) are available. An unconditional result is possible. Let pr(t,0) = min(t2,6%). This is
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the minimax risk of the truncation rule which estimates 8 by zero if T<c and by y if T = o (see section

6). We have

Theorem 2.

max pT(V,l) - 1
v py(v,1) pn(1,1)

= 222 39
The proof is in the appendix. As pr = p. it follows that p° < 2.22.
4. Hyperrectangles

Return now to the hyperrectangle problem. If we let 6; be a random variable distributed accord-
ing to the prior supporting the minimax rule 8,“‘.’_0 and independent of the other 8;’s, then the Bayes risk

for estimation of 0 is easy to calculate; due to the independence of y;’s it is just the coordinatewise

sum Y py (T;,0) As the coordinatewise estimate = (83'.',0 (3;)) is Bayes for the indicated prior, and

as the indicated prior is least favorable for this estimator, this Bayes risk is the minimax risk and this

estimator is minimax.

Proposition 3. The minimax risk for Problem (2.1)-(2.2) is
Ry(0) = inf sup £ 118-06112 = Y py (1:,0). @.1)
By similar reasoning, the linear estimator o = (Sé'c(y,-)) is the minimax linear estimator, and

Proposition 4. The minimax linear risk for Problem (2.1)-(2.2) is

RL(0) = Yp. (1:,0).
The minimax linear risk has been studied intensively in several papers by R. Bentkus and members of
his school; Proposition 4 appears implicitly in several of their papers. The minimax risk has apparently
not been intensively studied, apparently because there is no tractable closed form expression for

pn(t;,6). However, in view of Theorem 1, we know that each p; (1;,6) < 1 py (t;,0), giving

Corollary.

RL (0) <’ Ry (0) < 1.25Ry (0). 44)

Thus the best nonlinear estimate of 6 cannot improve on the best linear one by very much.
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An asymptotic comparison, as 6—0, of the two different risks can be made as follows. Recalling

the definition of p(v),

Ry(©) = T0 () b (@:,0)
and so

T
Ry~ ZR)'PL,0)

RL(G) Y oL (1;,0)

‘t.
As p; >0 one may view this right hand side as defining an ‘‘average’ of u(—(;f)'l with respect to a

*‘probability distribution’’ p;, (t;,6)/ Y,p. (%;,0) on i. As many of the terms T; occur at T; /o large,

and an infinite number occur at t; /¢ small, (3.2)-(3.3) might suggest that with high °‘probability’’

T, . . . . . .
u(?) is close to one. Consequently, the actual ratio of minimax risks will be closer than the bound

1.25.

Theorem 5. Let g >1/2. Suppose that T; = ci™?. Then

Rv(©) _ _Tuoyd
i gy = L@ =[ner g0

where the probability density g, is supported on [0,%] and is defined by

2
\d y~(1+1/g)
1+v2

gq(v) = =

V2 ‘
v—(l+l/q) dv
1+v2

“4.5)

The proof is given in the Appendix. A table of lower bounds on {; (q) is given below. The bounds

were arrived at using techniques described in Gatsonis, MacGibbon, and Strawderman (1987), and in

section 3 above.

Table 2.

Bounds on {; (¢) and {7 (¢)
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q 0@ | Glg)<
75 1.23
1.0 1.27
12 | 897 1.27
14 | 903 1.25
1.6 | 904 1.24
1.8 | 906 1.22
20 | 912 1.21
22 | 915 1.19
24 | 918 1.18
26 | 921 1.17
28 | 926 1.16
30 | .927 1.12
40 | .940 1.12
50 | 949 1.10
100 | 971 1.05
25.0 | 98 1.02
50.0 | .99 1.01

Corollary. For q € (112,9), (. (q)<1. Consequenty, & is not asymptotically minimax as 6—0.
. (@)—> 1 as q—1/2 or . Consequently, 8" is nearly asymptotically minimax in the cases where the

problem is very difficult (q near 1/2) or very easy (q near o).

The proof of the first two sentences consists in the observation that p(v)>1 for all v € (0,%0), as
the minimax estimator is not linear. (Indeed, a minimax estimator is Bayes for some prior supported on
[-v,v]; it is therefore bounded in absolute value by v, whereas nontrivial linear estimators are not
bounded). Thus, the expectation of u(v)™ with respect to 8¢ is strictly less than 1. Equivalently,
L. (¢) <1, which prohibits minimaxity.

For sentences three and four, note that by (3.2)-(3.3), u(v) is near 1 for v near 0 and . Now the
limit of g, , as g—o, is a measure concentrated at +oo. Indeed, let x >1 and ¢ >1. Then

X X

1
-+ g, < [yl-la g, gy < 1 1
v < v + |v7ldv + log(x).
fr2zevomo < o-ia Jrtar s 1 vt
Also if ¢ >1,
v2 -(1+%) 15 —(1+%) q
£1+v2v v 2‘!\; vo= o

Hence
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x

lgq(v)dv < 1+qug x)2
which tends to zero as ¢ —> . Then as g —eo we must have
jpey g )y - limpe)™ = 1.
v —o0

On the other hand, the limit of g,, as q-—)—;-, is a measure concentrated at 0. To see this, note

that if x <1 and 1/2<¢g <1,

2 —a+dy 1,1 = 1
I 4 9dv < jv q +Jv'2dv < jv“+l = 1-log(x),
x 1 x

while

Consequently,

Ja. o)y < 22-")0-log @)

which tends to zero as g — % It follows that as q—»%,

Jro) e ()av - lmpe)™ = 1.
As {;(q) is the expectation of u(v)~!, this completes the proof. O
Thus, 6% is not asymptotically minimax for typical infinite dimensional hyperrectangles, although
it is not far from minimax, as Table 2 shows. If © is a finite-dimensional hyperrectangle, of course,

then 8 is asymptotically minimax as ¢ — 0. This is just a consequence of

d
(ti'o)
E’i——— su BM = sup pt;/0) — 1
Z‘,p ©.0) - lsils)de(‘t,-,O‘) o Pl
N\Vis
1

as 6—0.
6. Quadratically Convex Sets

Suppose now that we observe data according to (2.1), but instead of (2.2) we know that 6 € O,

where © is convex, but not a hyperrectangle. If © contains a hyperrectangle 6(t), T=(1;);2o, the prob-
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lem of estimating 6 under (2.1)-(2.2) is called a rectangular subproblem. The minimax linear risk of
the full problem is as large as that of any subproblem, so

R[(0) > sup{R.(c;8(1)): (1) c8) G.1)
When equality holds here, we have

v

Ry(0) > sup{Rpy(c;8(1)): 8(1)c8}

sup({ nl. R(c;8(1)): 8(1)c B}  (by (4.4)

= Z-Ri(©) (52)
T

v

This proves

Lemma 6. If the difficulty, for linear estimates, of the hardest rectangular subproblem, is equal to the
difficulty, for linear estimates, of the full problem, then
RL(0) < p' Ry(0) < 1.25Ry(0) (53)

We now show that equality often holds in (5.1). First, some definitions. »

We say that @ is orthosymmetric if, whenever 8 = (8;);2, belongs to ©, (£6;);2, also belongs to
8 for all choices of signs +. Examples of orthosymmetric sets include: Ellipsoids, sets of the form
{6: Y a;67 < 1) where all a; > 0; more generally, weighted l,-bodies, of the form, {6: Y a;16;17 <1},
sets {0:3 a;y(16;1) <1}, and of course hyperrectangles. We say © is quadratically convex if
{622, 0 € 8} is convex. Ellipsoids and weighted I, -bodies with p >2 are quadratically convex, as are
hyperrectangles, and sets {0: za,.w(e,?) < 1} where y is convex. (To make these examples more con-
crete, recall from the function smoothing interpretation in section 2 that constraints on the g-th deriva-
tive of a function can be expressed by weighted /, bodies with weights a=0, a_1=ay =ci?,i 21))
Theorem 7. If © is compact, quadratically convex, and orthosymmetric, the difficulty, for linear esti-

mates, of the hardest rectangular subproblem is equal to the difficulty, for linear estimates, of the full

problem:

R[(0) = sup{R;(c;6(1)): 8(1)cB) (54)

Thus, the factor 1.25 which we have established applies not only to hyperrectangles, but also to com-

pact ellipsoids and compact [, bodies, p >2. Note that the set {8:),4;10;1” <1 and nel2<Cj is
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orthosymmetric and quadratically convex, and compact if all but a finite number of the a; are nonzero
and g; — oo,

The result (5.4) is also true for some noncompact cases -- ®=R"” being an obvious example.
Also, if 8=8,x8,, and (5.4) is true for each factor ©;, then (5.4) is true for 8. These two remarks
may be combined. If a finite number of the a; are zero, and if a; — oo, then 8={0:Y.a; 16; 17 <1} is
the product ® = R” x©’, where O’ satisfies the hypotheses of the theorem. Thus (5.4) is true for all
ellipsoids and /,-bodies with p >2, not just compact ones. Probably (5.4) is true even if © is just

closed.

Proof. The idea is as follows. First, we show there is a hardest rectangular subproblem 8(t"). Let )
be the minimax linear estimator for that subproblem; we have automatically that for any linear estima-

tor &

sup R(6,6) > sup R(8",6).
e(t) (t)

The key step is to show that t* is as hard for 8" as the full problem:

R® ,©)>R@®,0) foral 6ec®. (5.5
It follows that

RL(G) = R®"T") = R[(0;0(1")).
Hence, (5.4).

To start, we identify the hardest rectangular subproblem. Let ©, denote the positive orthant of ©.
As O is orthosymmetric, if 0 € ©, then so is (£0;);2, for all sequences of signs +. As © is convex, if
te€ 8,, all (16;);2, with 16;1<1; must belong to . Therefore, O(1) O iff 1€ ©,. Hence, if we

define for te 6,

J() = Yp (1;.0) = R.(6,8(T)),
then

sup(RL(0;8(D)): B(1)cO) = supJ ()

We claim that J is an /,-continuous functional on 6,. From
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2 2
r'e’ _ st o g
r’+o?  s*+o?

we get 1 J(8)-J (1) | <Y 102-121. Let (8,) be a sequence in O, converging /,-strongly to . Putting

t,; =62, and f; =2, we have ¢,; >0, and ; 0. From the convergence 9, to T, we have 1, ; —¢ for
each i, and ¥ t,; — Y t,. Applying Sheffé’s Lemma, ¢, converges to ¢ in /,. Thus ¥ 162, —121 — 0.

By the inequality above | J(8)-J(t) | — 0.
As J is continuous, it follows from compactness of © that J has a maximum in 8,; T°, say.
©(t") is the hardest rectangular subproblem for linear estimates.

To avoid typographical excess, let T; denote the i-th component of t°. The minimax linear esti-

2
., . T . .
mator for ©(t ) is of the form (c;y; )29, where ¢; = ———. For the mean-squared error of this esti-

12+0?
mator, we have
R (é' ,0) = Bias? + Variance
= 2(1-c.-)2e,-2 +02 Yl
As we saw earlier, the theorem follows from the inequality (5.5). As the variance of 8" does not
depend on 6, the inequality is equivalent to saying that Bias%(0) is maximized at 6=1". As Bias%(0)
does not depend on the signs of the components of 0, it is enough to check that it is maximized in the

positive orthant at ©°, i.e.

YA-c;Y(t?-0) =2 0 forall 8¢ 8, (5.6)

Consider once again the functional J. We are going to show that J(0)<J (") implies (5.6); the
theorem then follows by definition of ©* as the maximizer of J in ©,. We first change variables. For a
generic 0 in ©,, put £ =(8?);2; put © for the set of all such ¢. As @ is quadratically convex, 82 is

- t;,0% .
convex. Define J(t) = Z—t—+—o_2, so that J (t) = J (). With 1o = (t?)2, we have

J(@t) < J(to), te®L (5.7
We claim J is Gateaux differentiable on I, at t,, with derivative

<D,J.h> = T (1-c;)h;. (5.8)
Now the maximum condition (5.7) gives <D,°j ,h> < 0 for all h =(t—ty). Using this and the definition
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of ¢t and ¢t will establish (5.6).

We provide the needed details. Let r and s denote scalars; a bit of algebra yields

(r +es)0” - ro® = es(l-c 2+£252—(i 59
r+es+c>  r+o® (I-e) r+es +62 69
_2
where ¢ =r/(r +6?). Now if both 7 >0 and r +&s 20, then _(=c)” < —l-. Now let h € l,; if
r+es+o? - o

to+€h 20 coordinatewise, applying (5.9) coordinatewise to the components of J, with 7 =¢; and s =h;,

gives

. 2
|(J (to+eh) =T (te) — e (1—c; Pk | < fyz‘/‘ﬁ (5.10)
Now let 8 € © and let ¢ be the corresponding element of 82, Define ¢, = (1-€)to+¢t. By convexity of
82, t.e 82 By (5.7), J (to)—J (to) < 0. It follows that

e (Jt)-J(te)) < 0 foree (0,1]. (5.11)
Now t.=to+€h for h =t -ty Also,

Yh? = Y(62-12) = Y(6;, —1.)%6; +T:)* < 4AM?Y(6;-T;)? < 16M* (5.12)
where M = sup{1l01l: 6 € B} < «, by compactness of 8. Using (5.10) and (5.11) with (5.12) gives

Z(I—C,')z(l,' —'lo_,') < —e—léM“
o2
for all €€ (0,1]. Taking into account the definitions of #; =62 and to=12, this implies that (5.6) holds

for every 6 € 6,.00

Remarks.

1. The concept of hardest rectangular subproblems appears to be new. Pinsker (1980) established a max-
imin property for ellipsoids which can be shown to imply (5.4) for ellipsoids (see egs. 17-18, page 122

of the English translation). Thus our result is an abstraction and generalization. However, even for

ellipsoids, the implication (5.3) seems to be new.

2. Theorem 7 does not cover I,-bodies with p <2. In fact (5.4) is not true in those cases. However, see

sections 8, 9, and 10.

3. Pinsker (1980) showed that for certain ellipsoids,
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RL(0)
Ry(0)

as 0 —0. Fundamental to his argument is the idea that the hardest rectangular subproblem be finite

(5.13)

dimensional. This is not true for /,-bodies with p >2, as one could discover from straightforward cal-
culations based on Theorem 7. Possibly, ellipsoids are the only sets where (5.13) holds. As we saw in
Theorem 5 and its corollary, (5.13) cannot hold for most hyperrectangles. So the class of cases where

(5.13) holds is strictly smaller than those where the 25% bound holds.
6. Truncation estimates

Suppose, once again, that ®=06(t) is a hyperrectangle, and recall that the minimax estimator and
minimax linear estimator for this situation are 8 and 6*. A simple alternative to these estimates is the
truncated series estimate 87, obtained by letting y; serve as the estimate of 0; in those coordinates at

which 1; > ¢ and letting O serve as the estimate of 0; at those coordinates where t; < 6. Thus

A

of =y Iz, 50)-

We remark that 87 uses the data to estimate 6 at those coordinates where the *‘signal-to-noise’’ ratio

T; / o is bigger than one; at other coordinates it ignores the data and just uses zero.

The term ‘‘truncated series estimate’’ derives from the function-smoothing viewpoint. The esti-

mate /7 (t) = 367 ¢; (r) estimates f by a series which is truncated as soon as the estimated coefficient

13

has signal/noise < 1. The maximum risk of 7 as an estimate of 6;,

. = aT _9.)2
Pr ('tx ’ 0) | ;:‘?21:.- E (91 el)
is just o2 or 12 depending on whether T; > ¢ or T; <. Thus we have the simple formula which was

used already in section 3. From this, we have the worst-case risk of 67:

Ri(0) = supE 8" -0 1% = Fpr(v;,0).
fe
In fact, Ry (0) is the minimax risk among all truncation estimates. Indeed, let 87 =y, I(; ¢ p () Where

P (o) is a set of indices. The worst-case risk of 8” is

13

YA icpony + W iaroy 2 me(oz,t?) = Rr (o).
1]

Thus 67 is minimax among truncation estimates.
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A common objection to truncation estimates is that their transition from ‘‘using the data™ to
‘‘ignoring the data’’ is too abrupt. Estimates such as 8" and 8" in some sense manage a smooth transi-
tion from using the data (t; » o) to ignoring the data (t; < ). Surprisingly, truncated estimates do

not do too badly in terms of minimax risks. We have

pr (T, 0) _ min(tz,oz) 3 min(tz,cz)(‘t2+o'2) 2 ) ) )
pL(.0) (B +D)] 20 (¢ + 0%)/ max(t%,0%) < 2.

Rr(0) =Y pr (%;,0) < Y2 - p, (1;,0) = 2R. (0).
From Theorem 2 we have, for similar reasons, R7(6) < 2.22Ry(c). This proves

Theorem 8. To minimize, among truncation rules, the worst-case risk over the hyperrectangle 6(t),
the optimal rule is to truncate at signal-to-noise ratio 1. The resulting risk is never worse than twice

the minimax linear risk, and never worse than 2.22 times larger than the minimax risk.

For asymptotics as ¢ — 0 we can use the same averaging argument that led to Theorem 5, but

this time on the ratio py/p, rather than on p. This leads to

Theorem 9. Let g >—%—. Ift; =ci ™7 then

m Rz (0) =l (q) = }(l+v2) )av +°J:(1+v2)/v2 Wav
0—>0RZ(0') = (r9q) = ! 8q ] 8q

where the density g, is defined in (4.5).

We omit the proof. We find the relatively good performance of truncation in this minimax setting
surprising. See table 2.

7. N-widths and Minimax Risk

Suppose now that © is convex but not a hyperrectangle, and we are interested in estimating 6

from data (2.1). Consider truncation estimates defined using projections -- 6= Py, P2=P. Define
R(c:8) = ix’}fsng Py -012

where the infimum is over all linear projections. For hyperrectangles, the optimal projections are of

course parallel to the coordinates, so this definition agrees with the one in section 6, and

R7(G;6(1) = Y. pr(t;.0). If © is not a hyperrectangle, there is an obvious lower bound -- the full
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problem is at least as bad as any rectangular subproblem. Under quadratic convexity, the bound is n@
sharp:

Theorem 10. Let © be compact, quadratically convex, and orthosymmetric. Then the difficulty, for
truncation estimates, of the hardest rectangular subproblem, is at least half the difficulty, for truncation

estimates, of the full problem:

Rr(0) < 2'sup(Rr(c;6(1)): 6(t) 8} (1.1)

Proof. We use notation from the proof of Theorem 7. Put J(t) = Y, pr(x;,0) for 1€ ©,. We have

1IJ(0)-J(t)| <Y, 162-1?1, so arguing as in the proof of Theorem 7, J is /,-continuous on ©,. A

maximizer ©° = (1;)/2 exists by compactness. 6(t") is the hardest rectangular subproblem for trunca-
tion estimates.

For a generic O¢ ©,, define a corresponding ¢ € 82 by ;=62 put J(¢)=Y min(;,0%) and

to; =12 Note that J(8)=J(¢t). J is a concave functional maximized over 87 at to. The Gateaux

differential of J is not, in general, additive. Nevertheless, for the differential DJ of J at ¢, .in direction

h, the maximum condition gives

Df,o(h) <0 (7.2)

for every h of the form ¢ —to, t € ©2. Let P denote the set of indices i such that to; = ¢, and let Q

denote the set where to; = 0. A calculation gives

DI, (h) = X hi - X(h)-; (7.3)

idP ieQ
where (a). = la |I,. We omit details here; they are similar to those given in the proof of Theorem 7.

From (7.2) and (7.3) we get Y (4; —to;) S X (t;—tg;)-, or, as (fi—to;)- S 02,
idP ieQ

z t; < Z to; + 02 z 1
idP idP ieQ
Translating back to 8-coordinates, we get
Y0 < Ttt+o2 YL (74)
igP idP ieQ

Consider the minimax truncation estimator 8" for ©(t"); given by 8; = y;,/(; e p). It has risk
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R® .0 = Y62+c’Y 1

idP ieP
Since Q P, (7.4) gives

RE® O < T¥+202 X1 < 2-Tpr(n,.0).

idP ieP

The last step follows from the definition of P, via pr(t;,6) = t; qp + 6;cp.0

Corollary. If © is orthosymmetric, compact, and quadratically convex, then

R7(0) < 4.44-Ry(0)
As in Theorem 9, one could show in specific cases a more precise result in the asymptotic case ¢ — 0.
It follows that n-widths of the set © determine the difficulty of estimation quite precisely. The

(Kolmogorov Linear) n-width of © is defined as (see Pinkus, 1984)

= infsup IP,0-0ll
d, 111,: sgp 0-0
the infimum being over all n-dimensional projections. Then we have
R7(c) = infd2+nc
n
Thus, for © orthosymmetric and quadratically convex, the corollary shows that the purely geometric
quantity infd2+no? is within a factor 4.44 of the minimax risk. In particular, if the n-widths go to

2
zero at rate n~”, then Ry(c) — 0 at rate (%) ¥+,

8. Non Quadratically Convex Sets

Let © be a set. The quadratically convex hull of © is

QHull(8) = (6:(8P) e Hull(82)). @8.1)

For quadratically convex, closed orthosymmetric sets, of course, QHull () = ©. On the other

hand, for weighted I, -bodies with p <2, the hull is strictly larger than the set itself. Indeed, if €,(a)
denotes {6: Y'a; 16; 17<1}, one can easily compute

QHull(8,(a)) = {6: Ya2P10; 17<1) 8.2)

Thus for all the weighted /,-bodies with p € (0,2), the quadratic hull is an ellipsoid. (More is true.

Consider the function-smoothing interpretation, with a; =i?? representing smoothness constraints on the

q-th derivative. For every p € [0,2), the quadratic hull is the ellipsoid with weights a; =i*?!) The key
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fact about quadratic convexifications is that it preserves minimax risks of linear estimators.

Theorem 11. Let © be orthosymmetric and compact.

R1(0;QHull (8)) (8.3)
R (c;QHull (8)) 8.4

R1(c;8)
RL(c;8)

Before giving the proof, some remarks. First, for linear estimation, /,-type constraints, with p <2, do not
add anything new; by (8.2)-(8.4) the difficulty is the same as with the ellipsoidal constraints of the
corresponding quadratic hull. Second, Theorems 7 and 11 together say that the minimax linear risk is
still determined by the hardest rectangular subproblem -- of the enlarged set QHull (8). Finally, let

6(t") be the hardest rectangular subproblem of QHull (8) for truncation estimates. Then

R((c:0) 2 R(0:8(1"))

v

SRIGOE) 2 TRIGQHUI(®) = 1R (0:6)

which proves
Corollary. Let © be orthosymmetric and compact. Then
R7(0;8) < 4R/ (c;8).

So for weighted /,-bodies with p € (0,.0), the minimax linear estimator never improves drastically on

minimax truncated series estimators.
As a final remark, note that the formula R7(0) = inf d,2+no? always determines the difficulty of

truncated series estimates. It follows from the Corollary that under orthosymmetry the n-widths deter-
mine the difficulty of linear estimation to within a factor 4.

Proof of Theorem 11.

Let C be a compact linear operator on /,, and let §=Cy be the estimator it induces. Then

R®,0) = W(C-1BI%+ G2IC Ny
where I denotes the identity and - ll 5 denotes the Hilbert-Schmidt norm. The appendix proves the
inequality
-1en2> Il (Di n? .
(e,.)si’& ‘)II(C 1)0 (e‘)sllgx " 1 (Diag (C)-1)01I 8.5)

and we also have
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HC llys 2 WDiag(C)llys . (8.6)

Together, these imply that Diag(C) has a smaller worst-case risk than C. Hence there is a minimax
linear estimator of the diagonal form 6; =¢;y;, and in fact with each c¢; € [0,1]. Similarly, there is a
minimax truncation estimator of the form é,- =c;y; with each c; € {0,1}. The risk of such estimators

has the form

R(®8) = X (1-c;)%0? + 6> 3¢ ®.7
Now let  be an element of QHull (8). Let ¢ be the corresponding point in Hull (82), defined by
7; =02 We have an integral representation { = jt du(t) with p a probability measure on 82. Let  be
the probability measure on 0, induced by p via the change of variables formula. Now obviously
supR (8.6) = [R(8,0)dn();

but, using (8.7)

[R®.8)R®) = | [2(1-c,.)29,-2] dn(8) + 6*Yc

wa by the construction of r and p, and the change of variables formula,

[0?dn(®) = [t due) =17 =B}

[R®.0)dm®) = F(1-c;))87 +*3c? = R(OD).

Hence supR 0.8) > R(6,9) for every 8 e QHull (8): QHull(®) is no harder for such an estimator than
O itself. Results (8.3)-(8.4) follow. O
9. Difficulty of Non-Quadratically Convex Classes

If © is orthosymmetric but not quadratically convex, QHull (8) is larger than © itself. The two sets
can, in fact, be quite different. Consider the /, body with weights a; =i?. A calculation based on the

results of the last two sections reveals that the hardest rectangular subproblem of QHull(®) has risk

2
which goes to zero as (6%)2*!. However, as explained in section 10 below, the hardest rectangular

241
subproblem in © has difficulty comparable to (6%)%*2, which is much smaller.

A difference of this sort guarantees that linear estimators are not nearly minimax. This follows from
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Theorem 12. Let pe(0,0). Consider the l,-body 8,(a) with weights a; > ci?® for some q>0. Then

Ry(0;8) < M (o) sup{Ry(0:6()): 8(1) c 8} 9.1)

where

M(c) = O(llogsl?) 9.2)
as 6—-0.

In words, the hardest rectangular subproblem of 8,(a) is, to within logarithmic factors, as hard as the
full problem. Hence if the difficulty of the hardest subproblem of QHull(8) tends to zero at a different
rate from the difficulty of the hardest subproblem for ©, the risk of linear estimators cannot tend to zero
at the optimal rate. So, for example in the /,-body case mentioned above, linear estimators are not
nearly minimax.

Proof. By Theorem 8, the difficulty of the hardest subproblem is within a factor 2.22 of

sup{R7(0,8(1)):8(t)c®}. The result (9.1) therefore follows if we can show that
Ry(c;8) < M(0) sup Y min(6%,6?) 9.3)
€
with M (o) satisfying (9.2).
We now construct an estimator which proves that (9.2)-(9.3) hold. Pick C =C(o) so that C >1

and C*(o)= llogo 12 as 6 — 0. Define

T = {i:sgpl(-),- I>Caol.

Define the estimator § by the rule

. sgn (i Xly;1-Co)y ieT
& =1, i dT 94

In words, 0 is zero at those coordinates which cannot possibly be large, and translates towards zero in
those coordinates which might possibly be large; compare Bickel (1983).

To analyze the worst-case behavior of 8, fix ee (0,1). Given 0, define

B
S
the indices of the ‘‘big’” and ‘‘small’’ coordinates of 0, respectively. Note that if ieT, then

{i:16;12¢0)

{i: 16; 1 <ec)

A

0; =y; +y(y;), where ly(y;)! <Co. Therefore, if ieT,
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E®;-6,)* = E(y; - 6; +y(y;))?
s[«lE(y,-—eﬁujswz(y,-)]z < (6+Co)? 9.5)

Also, if i €T

E®; -6, = 67 9.6)
and, finally, if ie ST

E®;-6,7 < 207(1+4¢(C-¢)) + 462[C+11¢(C —€) ©.7
where ¢(t) is the N(0,1) density (this is proved in the appendix). For small o, C-e>1, and so

4¢(C-e)<1. Combining (9.5)-(9.7),

SE®;,-6,) < (C+112Y, 62 +4362+ T 0%4[C+11¢(C—¢)

ieB ieS ieSNT
Now as C 21,

C+1)? .
(C+1)2021“9i'25°) + 49,21“9"@) < ( 82 ) mln(e,-z,cz)

Recalling the definitions of B and S, we have

A C+1)? .
SE® -0 < %—;mm(ef’oz) + Rem(C G)
where
Rem (C ,6) = 46%[C+1]Card (T }p(C —¢)
Now, by the assumption that g; >ci”™, we have Card(T) = O(c™) with r=r(qg)=1/q+1. Also,

C+1= 0 (llogc!) by definition of C. Therefore, as ¢ — 0,

Rem (C ,0)
o2

As 60, exp(-log 61%2) = o (exp(-R llog G 1)) = 0 (c®) for every R >0. In particular, for R >r. We

= O(llogolo™ exp(—llogc1%/2)).

conclude that

Rem (C ,0)
o -0 9.8)

as 6— 0. On the other hand, as © contains nonzero elements (otherwise the theorem is trivially true),

gugzmin(e,?, > o?(1+0(1) 9.9)
as 6 —0. Defining
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(C+1)>  Rem(C.0)
+
2 62(1+0(1)
with the o (1) term the same as in (9.9), we have

M) =

9.10)

£
IA

sgPZE 6; -9,

A

sup —(C:Tl)z Y min(8?,6%) + Rem (C ,0)

IA

M (o) sup ¥ min(6,6”)
This is of the same form as (9.3), where M (o) satisfies (9.2) because of (9.8). O
10. Hardest Cubical Subproblems of /, bodies, p <2

Definition: a standard n-cube of radius 7 is a set ©,(1,i) of elements 8 such that 16; | <t for indices

iei, 6; =0 for indices i €1i, and Card(i)=n.

Theorem 13. Let ©=8,(a) for 0<p <2. Let no=n(0) be the largest n for which an n-cube of
radius G fits in ©. Then the difficulty, for truncation estimates, of the hardest rectangular subproblem, is
essentially the same as the difficulty of this ny-cube:

noo> = sup{R7(0:0,(0.i): 8,(c,i) c 8} (10.1)
(no+1)6? > sup(R7(c;8(1)): 8(1)  6}. (10.2)

The proof is given in the appendix. Ignoring constants, the Theorem reduces the calculation of asymp-
totic behavior for the hardest subproblem to calculation of no(s). This is straightforward. Consider the
I,-body with weights a; =i?? for p <2. If an n-cube of size o fits in © at all, it can be fit using the first

n -coordinates for i. Therefore, n, satisfies

no-1
o’ Y iM <1
)
"o
o’y i > 1

One sees immediately that o® n§?*! — pg+1, and

2p942p
neo? = 0 ((c?) #142), (10.3)

As p <2, this goes to zero faster than the risk for the linear minimax estimator in this case, which by

section 7 is (6%)24*! . Hence, the conclusion of the introduction: there exist settings in which nonlinear
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estimates improve on linear ones by an arbitrarily large factor in the worst case.

Remarks.

1. Formula (10.3) shows that p is, to some extent, a smoothness parameter. Think of the function-
smoothing interpretation. With ¢, the ‘‘order of differentiability’’, fixed, the optimal rate of conver-
gence improves as p gets smaller. As p —0, in fact, the rate tends (modulo logarithmic factors) to o2,

which is the rate which would obtain if ® were finite-dimensional.

2. The quantity n is closely related to the so-called Bernstein (or inner) n-widths of © (Pinkus, 1985).
Let b, .. denote the largest radius of an n+1-dimensional /.-ball which can be inscribed in ©. Then
no= 1+sup{n:b, ..>c}. Theorems 12 and 13 attribute a central role for b,. in determining the

difficulty of estimation for /,-bodies with p <2. In particular, if the b, .. g0 to zero at rate n™, then, in

2541
the cases covered by Theorems 12 and 13, the minimax risk goes to zero as (%) * (ignoring loga-

rithmic factors).

As seen above, the Kolmogorov n-widths of ©,(a) determine the performance of truncated series esti-

mates, and more generally, of linear estimates. Thus, if the d, go to zero at rate n™", the minimax

=2r
linear risk goes to zero at rate (%) %*!,

Comparing the last two paragraphs, we see that for the minimax linear risk and minimax risk to con-

verge to zero at the same rate requires that -2% = % Hence, s = r +1/2. In other words, for n
sufficiently large and some ¢ >0,
b 2 o 2 (10.4)
me 2 € P :

A comparison of d, and b, .. can be effected as follows. Let b, , denote the largest radius of any
n+1-dimensional /,-ball which can be inscribed in ©. (This is the classical Bemstein n-width; see
Pinkus). As the sphere of radius 1 inscribes the cube of radius 1, and as the cube inscribes the sphere

of radius va+1,

by S bya S Vn+1b,... (10.5)
Also, we have (Pinkus, 1985, Page 13)
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b,» < d,. (10.6)
Combining (10.5) and (10.6), a sufficient condition for (10.4) is b, , = d,. This equality of Bernstein

and Kolmogorov n-widths occurs for ellipsoids (Pinkus, 1985, Chapter VI, Theorem 1.3, Page 199), but

for very few other cases. The ,-bodies, with p <2 show that we can have

dn
(n +1)1lp—lIZ

If this sort of relation holds, and we put p <1, (10.4) must fail, no matter how favorable the relation

by <

between b, 5 and b, .. in (10.5).

To summarize, when Theorems 12 and 13 apply, the statement that the minimax linear and minimax
nonlinear risks go to zero at different rates is basically equivalent to the statement that certain Bernstein
n-widths are significantly smaller than the Kolmogorov n-widths. While this cannot happen for /,-
bodies, this is precisely what happens for /,-bodies with p <2.

The linear n-widths of Kolmogorov have commonly been regarded as fundamental by approxima-
tion theorists, while Bernstein n-widths have been regarded as simply a tool for getting bounds on the
n-widths of Kolmogorov (Pinkus, 1984, page 12). In this setting of statistical estimation, the reverse is
true. Certain Bernstein n-widths determine (up to logarithmic factors) the difficulty of estimation, while
the Kolmogorov n-widths measure the difficulty of linear estimation, which is in our view less funda-

mental.
11. Use of /,-loss

We could have considered the problem (1.1)-(1.3) with the [;-loss function:
e - ol =3 Ié; — 6; 1. In order to do so, we would need to know the minimax risks in the bounded
normal mean problem for /,-loss. These apparently have not been studied previously. Let Ay(t,0),

Az (t,0) and Ar(7,0) be the minimax nonlinear, linear, and truncation risks, respectively. We have

Ar(t,0) = min (T, \/ %- o)

and from numerical work parallel to that described in this report,

Ar(t.0) < 1.87 AN(1,0)
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AL (1.0) S 1.23 Ay (1,0) .
Also, the minimax risks over hyperrectangles are Y, Av(%;.0), 3 A, (1;,0), ¥ Ar(t;,0) respectively.
Finally, by an argument similar to the proof of Theorem 10 we have
Theorem 14. * Let © be orthosymmetric, convex, and compact for the | -norm. Then the l,-difficulty
for truncation estimates of the hardest rectangular subproblem in © is at least half the 1,-difficulty of

the full problem.

In short for the /,-bodies p 2 1, the minimax /, risk is within a factor 3.8 of the geometric quantity

inf d,.,,+ncr\/7—-
n b4

where d, ; denotes the Kolmogorov linear n-width of © in /,-norm.
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12. Appendix

Proof of (3.5)

Casella and Strawderman (1981) show that for v <1.05, py(,1) =p(n,),

where

T, = —;—(5,, +8_,). Le Cam (1985, page 42) gives a formula for the exact Bayes Risk in estimation

problems with squared error loss, which says that to estimate 6 € {0,1} from one observation of P, the

minimax risk is

dPydP,

. “_ 2 =
ug sup Eq6-0) 2-[dPo+dP1

Now consider the problem of estimating ¢t € {—v,v} from one observation from ®,, the distribution of

N(.,1). Witht = 2v (6—%),P0 —®,,, P, =®,, we have

inf EG-1) = 21 dd_,dod,
A 2V do_, +do,

Now using

e—(y—v)zﬂe—(y+v)212 - e—(yz+v2)
e~ 02— 022 vy
e—(y+v)2/2 - e—(yz+v2)12e-vy

we have, using ¢, for the density of &,,

= e~ 2 j ¢0(Y )
e” +e™" 2cosh(vy)

J‘ ¢v¢—v - J»e’(’z“'z)’z/‘/ﬁ _
o+,

which, combined with (12.1), gives (3.5). O

Lemma 12.1 (Monotonicity) Forv 23,

_ v?2 _ _sinh(v)
m(v) = [1 +v2] ! [l v cosh(v)}

is monotonically decreasing as v increases.

Proof.  Symbolically differentiating m (v) using the Macsyma symbolic manipulator, we have

(12.1)
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where s = sinh(v), ¢ = cosh(v).

Note that, forv > 1,

[1——i—]21—izo.
v C c

Take the common denominator for the last term in Z—': The numerator will be

s | _ 2 sc+vist-vc?
2[[1 ] (M)[ s ]]

Call the term in square brackets I. If I > 1, then m’(v) < 0. Thus the lemma reduces to showing that

sinh

I>1forv 23. Since n is monotone increasing for v > 0, we have for v > 3 that

2 2 2
SLYS 5y [—‘-] >3 [i] I3 = 2970 =2
which completes the proof. O
Description of Numerical Approach
Our approach to bounding py(t,1) works in two stages.
Stage 1. With N, M, and Q parameters, define x; = (i/N) (t + Q); dx = x; — x; _;. Put

N
IPFEY=2 Y () () - dx
i=0

A
This is intended as a crude approximation to ALY
-t +0Q) fx)

Let t; = 7‘% *1, 1j1 <M, and put IT¥ = (n : supp (x) < {t;}}. Now I is a convex, 2M + 1 dimen-
sional set, and there are explicit formulas for f* and f when F = ® * n with & € IT¥. The problem

min (/°(® * =) : n e 1Y)

is therefore one of optimizing a smooth convex function over a finite dimensional convex set. We used
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the optimization system NPSOL developed in the Systems Optimization Laboratory at Stanford Univer-
sity --- see Gill, Murray, Saunders, and Wright (1986) --- to find a numerical ‘‘solution’’ to this prob-

lem; call it =°. We claim no optimality of n°.

Stage 2.  with Ny, 1, Q, and n° parameters, we attempt to find an upper bound on I(® * n°). Let

X =— - (t+Q), lil <N, and put
N,

Nl—l (fl(x))z
1 —-9. ~ v .
I'F)=2-dx .'2 xes(ggm) 700 +2-C.

Here C = C(1,Q) is an absolute constant so that

. 2
CZsup(I (ff') F=0*n,nell) ;
T+ Q

for example, with Q =6and t =5, C <2 - 10”". Because of this, we have at once

I"N®* m)21(®* n°) .
However, I is not actually computable, because of the “‘sup’” specified in its definition. Note, how-
ever, that for f = ¢ * n°, g = (f )%f is an analytic function; an absolute upper bound on the number
S of sign changes of g’ follows immediately from just the fact n° € IT¥. In any interval [x;, x;,1]
where there is no zero of g’, max {g(x):x € [x;, x;,1]/} = max {g(x;), g(xi;1)}. In any interval

where there is a zero of g’, a conservative bound on max {g(x) : x € [x;, x;,1]} is

max {g(x;), g(xis)} +D -dx /2

with D 2 sup lg’(x)|. Define now

le =2' »
E)=2-dx F max | = )

i=0

Ny-1 “(x:))2 "(xi41))?
1 [(f (69), (f(xn+l))]+(dx)2,D -S +2C

we have

I@* n°)21@* )2 1(@* n°) .
Justification of (3.8)
The numbers printed in columns 2 and 6 of Tables 3.1 - 3.3 are numerical evaluations of
py =1 —-I*® * 7°) on a SUN4 computer using IEEE-standard double precision arithmetic. From the

above, (3.8) follows provided we can evaluate I? to 4 digits accuracy. This is the same as saying we
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can evaluate a sum of the form

Mot (o))
Eo foi)

to 4 digits relative accuracy, where each y; = x; or x;,;. Now

fo)=- f; () & - ) exp(—x —1;2/2) /2w
j=M
fo)= {‘ () exp(—(x — ;)2/12)/ 2w .
i=M

By lengthy but standard arguments, it is possible to show that this is possible with double precision
arithmetic, assuming that the exponential function can be evaluated on the computer to 14 digits accu-
racy, that N, <20,000 and M <100, and that addition, division, and multiplication work on the com-

puter precisely according to IEEE standards. Details of the argument are available from the authors.

PL (V 11)
PN(V 11)

Proof of Theorem 1.  We proceed in three steps, showing that < 1.25 on each of the three

ranges [0, 42], [42, 4.2], [4.2, «).
Range [0, 42]. Asp.(v,1)<pr(v,1),

pr(v.1) pr(v.l) pr(42,1) .1762
sup ———— = sup = <
S on D) SV D) | py(421) © (145669 — 0.0005)

<1.25
by the monotonicity of pr(v,1) / py(v,1) for v € [0,1] (see the proof of Theorem 2).

Range [4.2, ). By (3.6),

sup petl) sup vEAVYT @27 A+ @) o
vz242 py(v,1) vz242 1— sinh(v) 1 - sinh (4.2)
v cosh(v) @4.2) cosh(4.2)

where we have used Lemma 12.1, which establishes the monotonicity of the ratio for v = 3.

Range [42,4.2]. Suppose we have numerical approximations Py (t;,1) accurate to within , at

a sequence (t;}. As pz(1,1) and py(t,1) are both monotone in T,

pL(t,1) < PL (Tis1,1)
pn(tl) — py(t1) -8

where 1; <t < 1;,,. Therefore, picking {t;} appropriately
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PL (tsl) pL (tl'-l-l’l)
sup ——— <max ——
a2stsa2 py(t,l) i Py )-8

Our computations used the 656 points {t;} = {.42,44,46, - - - 42} U {1.381,1.382, - - - 1.859,1.860}.
By (3.8) §=.5(.1) - 10™* (4 digit accuracy), giving 1.2497... for the right hand side of the above

display. See Tables 3.1 -3.3 O

Table 3.1
T Py @) PL max U(V)S Py @) PL max U(v) S
UREY 1%
040 0.136657 0.1379310 1.108271 1.86 0.624035 0.7757650 1.249858*
0.42 0.148601  0.1499490 1.101295 1.88  0.627203  0.7794640 1.249271+
044 0.160750 0.1621980 1.095188 1.90 0.630282 0.7830800 1.249524
046 0.173063  0.1746450 1.089829 192 0633270 0.7866170 1.249030
0.48 0.185501 0.1872560 1.089829 194 0636023 0.7900750 1.248597
0.50 0.198025  0.2000000 1.081075 196 0.638818 0.7934570 1.248510
052 0210596 0.2128460 1.077567 198 0641513  0.7967640 1.248225
0.54 0223178 0.2257660 1.074587 2.00 0.644105 0.8000000 1.248025
0.56 0235734 0.2387330 1.072101 202 0646627 0.8031650 1.247916
0.58 0248229 0.2517210 1.070088 204 0649135 0.8062620 1.247838
0.60 0260629 0.2647060 1.068530 206 0651631 0.8092910 1.247684
062 0272902 0.2776650 1.067414 208 0654117 0.8122560 1.247454
064 0285016 0.2905790 1.066728 210 0656593 0.8151570 1.247148
0.66 0296941 0.3034270 1.066468 212 0659049  0.8179970 1.246769
0.68 0308649 0.3161930 1.066629 2.14 0661504 0.8207760 1.246340
070 0320112  0.3288590 1.067208 216 0.663951  0.8234960 1.245826
072 0331304 0.3414120 1.068208 2.18 0.666366 0.8261600 1.245246
074 0342202 0.3538380 1.069631 220 0.668777 0.8287670 1.244646
076 0352783  0.3661260 1.071477 222 0671183  0.8313200 1.243976
0.78 0363025 0.3782640 1.073751 224 0673583 0.8338210 1.243241
0.80 0372909  0.3902440 1.076461 226 0675973  0.8362700 1.242446
0.82 0.382417  0.4020570 1.079611 228 0678326 0.8386680 1.241601
0.84 0391533  0.4136960 1.083209 230 0.680668 0.8410170 1.240757
0.86 0.400241 0.4251550 1.087262 232 0683001 0.8433190 1.239869
0.88 0.408528  0.4364290 1.091780 234 0685323  0.8455740 1.238935
090 0.416382 0.4475140 1.096772 236 0687790 0.8477840 1.237960
092 0423792  0.4584060 1.102249 238 0.690089  0.8499490 1.236667
094 0.430750 0.4691020 1.108223 240 0692376 0.8520710 1.235622
096 0.437248  0.4796000 1.114702 2.42 0694648 0.8541510 1.234543
098 0.443278  0.4899000 1.121700 244  0.696905 0.8561900 1.233440
1.00  0.448838  0.5000000 1.129234 246 0699132 0.8581880 1232312
1.02 0453812  0.5099000 1.137312 248 0701331  0.8601480 1.231188
1.04 0.458418  0.5196000 1.146231 250 0703513  0.8620690 1.230067
1.06 0.462554 0.5291020 1.146231 252 0705677 0.8639530 1.228929
1.08 0.466554 0.5384050 1.165242 2.54 0707823 0.8658010 1.227778
1.10 0470593 0.5475110 1.174781 256  0.709949  0.8676130 1.226615
112 0474670 0.5564230 1.183645 258 0712055  0.8693900 1.225444
1.14 0478781 0.5651420 1.191855 260 0714139 0.8711340 1.224268
1.16  0.482925 0.5736700 1.199441 262 0716201 0.8728450 1.223090
1.18  0.487098  0.5820100 1.206425 264 0718239 0.8745230 1221911

1.20 0.491297 0.5901640 1.212837 266 0.720253 0.8761700 1.220736



122
124
1.26
1.28
1.30
1.32
1.34
1.36
1.38

2.84
2.86
2.88
2.90
292
294
2.96
298
3.00
3.02
3.04
3.06
3.08
3.10
3.12
3.14
3.16
3.18
3.20
322
324
3.26
3.28
3.30
332
334
3.36
3.38
3.40
3.42
3.44
3.46
3.48
3.50
3.52
3.54
3.56
3.58
3.60

0.495520
0.499764
0.504025
0.508302
0.512591
0.516888
0.521190
0.525495
0.529920

Py @)

0.736950
0.738666
0.740348
0.741997
0.743620
0.745226
0.746827
0.748424
0.750012
0.751572
0.753121
0.754665
0.756203
0.757734
0.759259
0.760769
0.762254
0.763728
0.765195
0.766654
0.768105
0.769548
0.770981
0.772406
0.773821
0.775226
0.776621
0.778000
0.779360
0.780704
0.782038
0.783360
0.784672
0.785973
0.787261
0.788538
0.789801
0.791053
0.792290

0.5981350
0.6059270
0.6135410
0.6209820
0.6282530
0.6353560
0.6422950
0.6490740
0.6556950

PL

0.8896930
0.8910630
0.8924080
0.8937300
0.8950290
0.8963040
0.8975580

0.898790

0.900000
0.9011900
0.9023590
0.9035080
0.9046380
0.9057490
0.9068420
0.9079160
0.9089720
0.9100100
0.9110320
0.9120370
0.9130250
0.9139980
0.9149540
0.9158960
0.9168220
0.9177330
0.9186300
0.9195130
0.9203820
0.9212380

0.922080
0.9229080
0.9237250
0.9245280
0.9253200
0.9260990
0.9268660
0.9276220
0.9283670
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1.218702 2.68
1.224045 2.70
1.228892 272
1.233270 2.74
1.237200 2.76
1.240709 2.78
1.243823 2.80
1.246564 2.82
1.248954

Table 3.2

max P(V)SK;

1%

1.210961
1.209943
1.208953
1.207991
1.207056
1.206137
1.205219
1.204284
1.203331
1.202369
1.201428
1.200483
1.199523
1.198552
1.197571
1.196580

1.195592

1.194625
1.193656
1.192681
1.191699
1.190714
1.189723
1.188732
1.187738
1.186743
1.185749
1.184755
1.183771
1.182802
1.181844
1.180888
1.179936
1.178987
1.178041
1.177103
1.176170
1.175245
1.174326

3.82
3.84
3.86
3.88
3.90
3.92
3.94
3.96
3.98
4.00
4.02
4.04
4.06
4.08
4.10
4.12
4.14
4.16
4.18
4.20
422
424
426
4.28
4.30
432
434
4.36
4.38
4.40
4.42
444
4.46
4.48
4.50
4.52
4.54
4.56
4.58

0.722242
0.724205
0.726140
0.727877
0.729754
0.731601
0.733416
0.735200

Py @)

0.805000
0.806078
0.807147
0.808212
0.809272
0.810324
0.811370
0.812410
0.813446
0.814475
0.815499
0.816517
0.817526
0.818521
0.819504
0.820479
0.821449
0.822411
0.823366
0.824314
0.825257
0.826193
0.827123
0.828047
0.828964
0.829874
0.830777
0.831672
0.832561
0.833442
0.834316
0.835182
0.836040
0.836890
0.837732
0.838566
0.839391
0.840208
0.841018

0.8777860
0.8793730
0.8809300
0.8824580
0.8839580
0.8854310
0.8868780
0.8882980

PL

0.9358660
0.9364900
0.9371050
0.9377120
0.9383100
0.9388990
0.9394800
0.9400540
0.9406190
0.9411760
0.9417260
0.9422690
0.9428040
0.9433310
0.9438520
0.9443650
0.9448720
0.9453720
0.9458650
0.9463520
0.9468320
0.9473060
0.9477740
0.9482360
0.9486920
0.9491420
0.9495860
0.9500240
0.9504570
0.9508840
0.9513060
0.9517230
0.9521340
0.9525400
0.9529410
0.9533370
0.9537290
0.9541150
0.9544970

1.219566
1.218403
1.217250
1216110
1.215269
1.214161
1.213072
1.212005

max uv) Sy

%1%

1.164876
1.164065
1.163271
1.162481
1.161688
1.160895
1.160105
1.159315
1.158526
1.157736
1.156947
1.156159
1.155372
1.154591 .
1.153823
1.153066
1.152312
1.151560
1.150812
1.150068
1.149328
1.148588
1.147853
1.147120
1.146390
1.145664
1.144943
1.144225
1.143514
1.142806
1.142104
1.141406
1.140715
1.140029
1.139350
1.138678
1.138011
1.137353
1.136701
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362 0.793515 0.9291000 1.173417 460 0841817 0.9548740 1.136054
364 0.794725 0.9298230 1.172516 462 0842606 0.9552460 1.135418
3.66 0.795921 0.9305340 1.171626 464 0.843388 0.9556140 1.134791
3.68 0.797103 0.9312360 1.170746 466 0.844164 0.9559770 1.134169
3.70 0.798270 0.9319260 1.169876 468 0.844936 0.9563360 1.133551
3.72 0799421 0.9326070 1.169018 470 0.845705 0.9566910 1.132935
3.74 0.800557 0.9332780 1.168173 472 0.846470 0.9570420 1.132319
376 0.801679 0.9339390 1.167341 474 0847231 0.9573880 1.131705
3.78 0.802795 0.9345910 1.166520 476 0.847986 0.9577300 1.131092
3.80 0.803904 0.9352330 1.165697 478 0.848735 0.9580680 1.130483
pL(%:.1)

where y; = and & = 0.0005 for all nummbers except those numbers with a *‘*’* are calculated by 3 = 0.0001.

Py (T 1) -8’

Table 3.3
T P @) PL max W(v) < M T Py () PL max p(v) S H;
5% 1%

continue 1.625 0.581700 0.7253220
1.385 0.531473  0.6573260 1.239541 1.630  0.582696  0.7265440 1.249217
1390 0.532547  0.6589480 1.240085 1.635 0.583689  0.7277600 1.249167
1395 0.533621  0.6605600 1.240611 1.640  0.584679  0.7289680 1.249112
1.400 0.534695  0.6621620 1.241117 1.645 0.585666 0.7301690 1.249051
1.405 0.535768  0.6637550 1.241604 1.650 0.586650 0.7313630 1.248985
1.410 0536840  0.6653390 1.242074 1.655 0.587631  0.7325510 1.248914
1.415 0537912  0.6669140 1.242527 1.660 0.588608 0.7337310 1.248838
1.420 0538984  0.6684790 1.242960 1.665 0.589582  0.7349040 1.248759
1.425 0540054  0.6700350 1.243375 1.670  0.590553  0.7360710 1.248675
1430 0.541124  0.67158200 1.243776 1.675 0.591520 0.7372310 1.248586
1.435 0542193  0.6731200 1.244159 1.680  0.592484  0.7383840 1.248494
1.440 0543262  0.6746490 1.244526 1.685 0.593444  0.7395310 1.248398
1.445 0.544329  0.6761680 1.244874 1690  0.594401  0.7406710 1.248299
1.450 0.545395  0.6776790 1.245210 1.695 0.595355  0.7418040 1.248196
1.455 0546461  0.67918100 1.245530 1700 0.596304  0.7429310 1.248088
1.460 0.547525  0.68067400 1.245833 1705 0.597250 0.7440510 1.247980
1.465 0.548588  0.68215900 1.246123 1710  0.598192  0.7451650 1.247868
1.470  0.549650  0.68363400 1.246398 1715 0599130  0.7462720 1.247754
1.475 0.550711  0.6851010 1.246659 1720 0.600065 0.7473730 1.247638
1.480 0.551771  0.6865600 1.246905 1725 0.600995 0.7484670 1.247518
1.485 0.552829  0.6880090 1.247137 1730  0.601922  0.7495550 1.247398
1.490 0.553886  0.6894510 1.247357 1735 0.602844  0.7506370 1.247275
1.495 0554941  0.6908830 1.247564 1740 0.603762 0.7517130 1.247152
1.500 0.555995  0.6923080 1.247759 1745 0.604676 0.7527830 1.247027
1.505 0.557048  0.69372400 1.247940 1750  0.605586  0.7538460 1.246901
1.510 0.558098 0.69513100 1.248108 1755 0.606492  0.7549030 1.246773
1515 0.559148  0.6965310 1.248267 1760 0.607394  0.7559550 1.246644
1.520 0.560195  0.69792200 1.248411 1.765 0.608291  0.7570000 1.246513
1.525 0.561241  0.69930500 1.248546 1770 0.609183  0.7580390 1.246383
1.530 0.562285 0.70067900 1.248669 1775 0610072  0.7590720 1.246254
1.535 0.563327  0.70204600 1.248781 1.780 0.610955 0.7601000 1.246122
1.540 0.564367  0.70340500 1.248884 1.785 0.611835 0.7611210 1.245993
1.545 0.565405 0.70475600 1.248975 1790 0612709 0.7621370 1.245861

1.550 0.566441  0.70609800 1.249058 1795 0.613579 0.7631470 1.245732
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1.555 0.567475  0.7074330 1.249130 1.800 0.614444 0.7641510 1.245602
1.560 0.568507 0.70876100 1.249192 1.805 0.615305 0.7651490 1.245474
1.565 0.569536  0.71008000 1.249245 1.810 0.616160 0.7661420 1.245344
1.570  0.570564 0.71139100 1.249291 1.815 0.617011 0.7671290 1.245218
1.575 0571589 0.71269500 1.249326 1.820 0.617857 0.7681110 1.245091
1.580 0.572611  0.71399200 1.249353 1.825 0.618698 0.7690860 1.244966
1.585 0573632 0.71528000 1.249374 1.830 0.619534  0.7700570 1.244842
1.590 0.574649 0.71656100 1.249383 1.835 0.620365 0.7710220 1.244720
1.595 0.575665 0.71783500 1.249389 1.840 0.621191 0.7719810 1.244599
1.600 0.576677 0.71910100 1.249383 1.845 0.622011 0.7729350 1.244479
1.605 0.577687 0.72036000 1.249373 1.850 0.622827 0.7738840 1.244364
1.610 0.578695 0.72161100 1.249355 1.855 0.623637 0.7748270 1.244248
1.615 0.579699  0.72285500 1.249329 1.860 0.624442 0.7757650 1.244136
1.620 0.580701  0.72409200 1.249299
P (%.1)

h P ————
e i e (Gin1) — 0.0001

Proof of Theorem 5.

Note that Y p; (T;,0) < = iff Y pr(t;,0) < o iff Y17 < o iff ¢ >1/2. Define the measure

200 (T 0 (v <tiosv,)
201 (1:,0)

As g >1/2, M 4 is a probability measure. Now if y(v) is any function,

Mglvovil =

E\v(%)pL (:.0)
29 (1:,0)

Therefore, putting W(v) = u(v)™, the theorem is equivalent to [w(v)dMo(v) - [W(v)g,(v)dv. As

= [y@)aM o).

H(v) is bounded and continuous ((3.2)-(3.3)), this will follow if we can show that M ; converges weakly
to g,, i.e.
V1

Molvovil > [go(v)dv (12.4)

Yo
for 0<vo<v;<co. Now define the measure
NG[VO’VI] = ol #(i:VoST,'/O'SVI]

From the definition of N and 1;, we have

GVo _ Ovy _
Ng4[vov,] =o' ("C—o) Ve — (—c—) Y +Ro(vovy)

where IRs| <2. Hence, if 0<vo<v;<eo, we have as ¢ — 0 that
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Nglvovil = Hylvevil

(12.5)

v v
where H,[vov,] = (To)‘”" —(-;1—)“"’ . Let h,(v) =c"4/q v=(*V) be the density of the measure H,.

Now as p (v,1) is continuous and bounded, (12.5) implies that for €>0,

foL . DANG() = [pL v, 1)k, (v)dv.
€ €
Moreover, as lemma 7.2 (following) shows, for small ¢ and &,

€

gpL(v,l)dN,(v) <ce

l oo
‘- { PL(V, )N o(dv)
It follows from (12.6), (12.7), and Fatou’s lemma that

{pL(v,nch(v) - l[pL(v,nh.,(v)dv.
Using (12.6) and (12.8) we then have
1 "1

foLw.DaNgt) L DA ()av

Yo Yo

Mglvovi] = - = [g,()av

Yo

t[ pL (v, 1)dN o(v) z[pm,l)h.,(v)dv

which establishes (12.4) and completes the proof. O

Y1

(12.6)

(12.7)

(12.8)

Lemma 11.2. For all sufficiently small €y and Oy, there exists C (€9,00) so that (12.7) holds for all €<gy

and all 6<0y.

Proof.
€
[pLODdNG) < Bt (gse) = T oo 4y,
0 i c
P 2 | eo =2
< | -y = L—[(-——)-“v—l]
&yt 2a-tie
[4
T 1 1
3 = L% .22
[P DaNG) 2 o0 DNW) = FTeHH o,
T 1
> A+ M = =
<2)-{"+1 2 2l

The ratio of the two terms is less than

2 1-2¢
< [(2)-“4 + 2] :
(4
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(1-(ESyvay-
2 82- 1/q 4

(1+2()Vay-2
so that (12.7) holds with
O
(1 +2(—=)" 0y

C =2 . O
(1 (FE2yvaypa-t
[

Proof of (8.5). Suppose first that T has a finite number of nonzero coefficients. Then

nec-nen?

Z(Cu—l)29‘2 + 22 Z (Cﬁ—l) 6,- Cij (-)I + z (Z Cij 0,)2
i i j# i jl=

Il (Diag (CY-1)0112 + 2%, ¥ (ci-1) 8; c;; O; (129)

i ju

Z[(c.-.-—l)e,- + T e,-] 2

v

Let now s; be an i.i.d. sequence of +1 gotten by tossing a fair coin. Let 6; = s;7;. Let E denote expec-

tation with respect to coin-tossing measure. As E is linear, and all sums are finite,

E [Z 2 (ci—1) 6; ¢ ej] =), Z (ca-1) cij T 7; Els; 5]

T i

As s; and s5; are independent, zero mean random variables under coin tossing measure, Es;s; =0. It fol-
lows that there exists 0 of the form (0;)=(£t;) which makes the last term in (12.9) nonnnegative. (8.5)

follows.

The case of general 1 follows by approximation. [J

Proof of (9.7)

E®;-96;,* = 02P(®;=0) + E {(§; —-90,)*1 8, 20}P (§; =0).
Now from (x—y)? < 2(x%+y?)

E{(6;-6,)%16, 20} < 202+ 2E (82186, #0)
But, as 62 <y?andieS$

E {6218, 20)P(B; #0) < E (y?1y2>C2%?)P (y2>C?)

< 2 [ (8;+0z)0(z)dz
C-¢

with ¢ the density of N (0,1). Using (x +y)?<2(x2+y?), we get
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< 46i2 I ®z)dz + 4g? j 220(z)dz
C—¢ C-¢
= 402 (1-B(C-¢)) + 40%((C-e)(C -£) + 1-D(C —¢))
Applying 1-®(a) < %tp(a) (Mills’ Ratio) and putting the pieces together gives (9.7). O

Proof of Theorem 13.

We prove only the special case where all a;>0. Define new variables w; via w; =g; T7. In terms of

these variables, the problem of finding the hardest rectangle is to Maximize

Jw) = Y min(w?P/a??c?)
i

subject to the constraints (C1) each w; 20, and (C2) Yw; <1. AsJ is monotone increasing in each

w;, a maximum exists satisfying (C3) Yw; = 1. Moreover, as J is constant in w; as soon as w;2? is
i

largerthan 62?7, it follows that a maximum exists satisfying (C4) each w; <6”q;. Let W denote the
set of w satisfying the constraints (C1), (C3), and (C4). A maximum of J with respect to the original

constraints (C1)-(C2) exists in the special set W, and W is convex.

The restriction of J to W is just Zw,-”"/a,—”’ -- this functional is convex, as p <2, and strictly

13
convex if p <2. Any member of W may be expressed as a mixture of extreme points, and by convexity
of J, the value of J at any member is less than the maximum value of J at some extreme point occur-
ring in this representation. It follows that the desired maximum value of J is the maximum over

extreme points.

An extreme point of W can be characterized as follows. First, the coordinates sum to 1. Second,
in all but one coordinate, the coordinate value is either the minimum or the maximum value allowed for
that coordinate. In the remaining coordinate, the value is determined by the condition that the coordi-
nate sum be 1. Let now an extreme point w be given, and let i be the indices of the coordinates taking

on their maximum possible values under (C4). The value of J at w is bounded by

Y, ( maximum allowed value for coordinate i )*?/a;*? = (Card (i)+1)c? (12.10)

iw; »0
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We now interpret (C4) in terms of the original 1-variables. Given an extreme point w, define T
by T; = (w;/a;)'P. The condition that w satisfy (C1) and (C2) implies that the corresponding point T is
in the positive orthant of ©; as we have argued before, orthosymmetry implies that 6(t) c®.The
extreme point w has the property that w; =(02a; 2 for iei. This is completely equivalent to saying
1?=0? for ici. The rectangle ©(t) therefore contains the cube ©,(c,)) (n=Card(i)). Hence

8,(0.,i)c®, and so Card(i) < ny(c). Hence (12.10) implies inequality (9.2). (9.1) is immediate. [
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