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Consider estimating the mean of a standard Gaussian shift when that mean is
known to lie in a quadratically convex set in 12. Such sets include ellip-
soids, hyperrectangles, and 1, -bodies with p >2. The minimax risk among
linear estimates is within 25% of the minimax risk among all estimates. The
minimax risk among truncated series estimates is within a factor 4.44 of the
minimax risk. This implies that the difficulty of estimation -- a statistical
quantity -- is measured fairly precisely by the n -widths -- a geometric quan-
tity.

If the set is not quadratically convex, as in the case of 1p -bodies with p<2,
things change appreciably. Minimax linear estimators may be outperformed
arbitrarily by nonlinear estimates. The (ordinary, Kolmogorov) n-widths
still determine the difficulty of linear estimation, but the difficulty of non-
linear estimation is tied to the (inner, Bernstein) n-widths, which can be far
smaller.

Essential use is made of a new heuristic: that the difficulty of the hardest
rectangular subproblem is equal to the difficulty of the full problem.
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1. Introduction

Pinsker (1980) considered the problem of estimating the mean of a certain Gaussian process when

the mean is known to lie in an infinite-dimensional "ellipsoid". He found an exact value for the

minimax risk of linear estimates and an asymptotic value for the minimax risk among nonlinear esti-

mates. These evaluations allow one to obtain precise constants on the asymptotic minimax risk for cer-

tain "real" function estimation problems: density estimation - Efroimovich and Pinsker (1981, 1982)

- and regression estimation - Nussbaum (1985). This is an improvement over usual treatments of

nonparametric estimation problems, where only rates, and not constants, are available. A remarkable

feature of the Pinsker solution is that it shows the minimax linear estimator to be asymptotically

minimax among all estimates. Thus, in minimax theory at least, there is little to be gained by nonlinear

procedures.

Because Pinsker's result is specifically for the case where the unknown mean lies in an ellipsoid,

the question arises whether similar results hold when the unknown mean lies in a set with a different

"shape". In this paper they show that if the mean is known to lie in a quadratically convex set, the

minimax linear risk is within a factor 1.25 of the minimax risk nonasymptotically. Thus, for ellipsoids,

hyperrectangles, and Ip bodies the minimax linear risk is not very different from the minimax risk.

Almost certainly, the constant 1.25 can be replaced by 1.247.

More generally we might ask: in the problem of estimating a mean 0 known to lie in a convex

compact subset e of 12, does there exist a constant, independent of 0, bounding the ratio of minimax

risk to minimax linear risk. If such a constant exists independently of 0 (provided 0 is convex), many

of the usual lower bound arguments in rates of convergence theory might be dispensed with altogether.

One would simply determine the behavior of the minimax linear estimator, then no nonlinear estimator

could improve on this except by a constant factor. On the other hand, if there exists a class of convex

sets 0 for which the minimax linear and minimax risks behave essentially differently, this seems also

intrinsically interesting. We show here that for a large class of cases, the constant 1.25 applies.

Our approach also gives results on the minimax risk of truncated series estimates. Let the set e

have the sequence of Kolmogorov n -widths (d,, ). Then by using an optimal truncated series estimate,
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the worst-case risk inf d,, + n a9 is attainable. We show that if 0 is quadratically convex, this upper
a

bound based on n-widths is within a factor 4.44 of the minimax risk, and a factor 4 of the minimax

linear risk. Moreover, even if 0 is not quadratically convex, the minimax truncation risk and the

minimax linear risk are within a factdr 4. Thus, from a minimax point of view, general linear estimates

do not improve dramatically on truncation schemes.

Our results have other implications. Consider the problem of estimating the linear functional L (0)

of the unknown mean 0, when 0 is known to lie in a convex set 0. Results of Ibragimov and Hasmin-

skii (1984), combined with our Theorem 1, show that when 0 is symmetric, the ratio of minimax linear

to minimax risks is less than 1.25. Results of Donoho and Liu (1988b), combined with our Theorem 1,

show that for any convex set 0, the ratio of minimax inhomogeneous linear risk to minimax risk is

bounded by 1.25. Thus, for estimating a single linear functional, an absolute bound on improvement by

nonlinearity holds quite generally, independent of the shape of the convex set in which the mean is

known to lie.

These results provide a partial answer to the question raised by Sacks and Strawderman (1981) --

namely, is it possible to improve significantly on minimax linear estimators by nonlinear schemes. They

also provide a concrete working out of the Birg6-Le Cam program to express minimax risks in terms of

geometric quantities; we show that for quadratically convex sets, the geometric quantity inf d,,2+ n a2 iS

within a factor 4.44 of the minimax risk.

However, we also get negative results which are perhaps more interesting. We show that for lp-

bodies with p <2, the minimax linear risk need not tend to zero at the same rate as the minimax risk.

This shows that the 1, bodies with p <2 represent in a certain sense an answer to the question posed by

Sacks and Stradwerman (1982).

An interesting feature of our approach is the use of geometric ideas, including that of hardest rec-

tangular subproblem and quadratic hull, to explain these phenomena.

Section 11 shows that analogs of these results hold for other loss functions; it discusses the case

of Il-loss.
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2. The Problem

The basic model is as follows. We are given

yi =Hi + ei i = 0,1,2,... (2.1)
where ei are iid N (0,c) and Oi are unknown, but it is known that

IOi I <Ti, i =0,1,2Ot929.... (2.2)
Thus 0 = (0k) lies in the hyperrectangle e = e(X) = (0: I 0 I t5i). We wish to estimate 0 with small

squared error loss, i.e. to make the squared 12-norm I I00112= 0( 0,)2 small. We will use the

minimax principle to evaluate estimates; an estimator O is minimax if

sugE IA&* _0 1 12 = inf sgl1O-01 2 (2.3)

We also speak of restricted minimax estimates. Thus, if O is linear and satisfies (2.3) with the infimum

over 0 referring only to linear procedures, we say that & is linear minimax.

Let us indicate briefly how this estimation problem is related to estimating an unknown function.

See also Pinsker (1980), Ibragimov and Hasminskii (1984), Nussbaum (1985). Suppose we are

interested in estimating the function f (t), t e [a ,b ], but f is observed in a white noise:

t t

y (t) = Jf (t) dt + cJfdW (t) t E [a,b] (2.4)
a a

where W (t) is a Wiener process. We wish to find an estimate f of f which makes J(f -f )2 small, and

we have a priori information that f is smooth.

If the smoothness information is of a particular kind, the problem reduces to the hyperrectangle

model (2.1)-(2.2). Let dn =dtl(b-a) and suppose we have a set (4,) of functions orthonornal for

L2(m ,[a ,b]). Let Oi = if 4 dm be the i-th Fourier-Bessel coefficient of f with respect to this set, and

suppose we know a priori that the Fourier-Bessel coefficients of f decay rapidly:

I0i I c xi, xi -0 as i- oo. (2.5)

Let us see how these assumptions reduce to (2.1)-(2.2). To start with, (2.5) is precisely of the form

(2.2); on the other hand, if we take the Fourier-Bessel coefficients of (2.4) we get

Yi = b-a f+j y(t) = 0 +ei

where ei are i.i.d. N(O,cr2). Thus (2.4) and (2.1) are equivalent, if f lies in the span of { ). Finally, a
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good estimate of f leads to a good estimate of 0, and vice versa. If f is an estimate of f, it induces

an estimate 0 of 0 via Oi = Jifndm and for this estimate we have ( -f)2dm - ,(oi -0i) Simi-

larly, given an estimate 0 of 0, we obtain a 'series' estimate f of f via f (t) = ii(t) and again

(2.6) holds.

A concrete example of the isomorphism between (2.1)-(2.2) and (2.4)-(2.5) is provided by Fourier

series. Let [a ,b] = [-1,], and let the orthonormal set ()i) be the usual sinusoids: 40= 1, and for i >0,

2i-l(t )= -sin(it ), and 42. (t )= 42cos(it ). Then the coefficients Oi are just the Fourier Coefficients of f,

and (2.6) is Parseval's relation. In this setup, the prior "smoothness" condition (2.5) does really

correspond to smoothness. For example, suppose that f and (q-1) derivatives of f are of bounded

variation, and that f and these derivatives satisfy periodic boundary conditions at x and -n. Then

102. , 102.-1 1 < ci- for an appropriate c. Thus the condition (2.5) with '2. =r2i- = ci- is a weak-

ening of the condition that f have (q-l) derivatives of bounded variation.

The white-noise model (2.4) is closely related to problems of density estimation and spectral den-

sity estimation. Indeed, it can appear as the limiting Gaussian shift experiment in such problems. Thus

it should be no surprise that results on hyperrectangles allow one to attack certain asymptotic minimax

problems. Bentkus and his school have used this connection to get expressions for the asymptotic

minimax risk among linear estimates in density estimation problems with smoothness constraints (2.5)

(Bentkus and Kazbaras, 1981), for the asymptotic minimax risk among kernel estimates of a spectral

density also using (2.5) (Bentkus and Sushinskas, 1982), (Bentkus, 1985a,b), and for the minimax risk

among kernel estimates in estimating a periodic function from sampled data (Jakimauskas, 1984). Simi-

larly, if the hyperrectangle constraint (2.5) is replaced by a quadratic constraint, Pinsker's results on

Ellipsoids become relevant, and may be used to study asymptotic minimaxity with L2 smoothness con-

straints in density estimation (Efroimovich and Pinkser, 1982), in regression estimation (Nussbaum,

1985), and in spectral density estimation (Efroimovich and Pinsker, 1981).

In this paper, we consider only the problem for observations (2.1); we take it for granted that the

results have a variety of applications, such as those just mentioned. We also take it for granted that

behavior as a--> 0 is important, which may not be seem like a natural question in the model (2.1), but
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which is natural when the connection with e.g. density estimation is considered.

3. The 1-dimensional Problem

Consider estimating a single bounded normal mean, i.e. estimating 9 E R from the single obser-

vation, y - N (0, a2) with the prior information that I 0 I <X. This problem has been studied by

Casella and Strawderman (1981), Levit (1980), Bickel (1981), and lbragimov and Hasminskii (1984). It

is known that the minimax estimator for this problem is Bayes with respect to a prior concentrated at a

finite number of points in [ L,].LeNtN,,(y) denote this minimax estimator. 8N, is nonlin in y (i.e.

it derives from a nonGaussian prior). Let PN (t, a) denote the minimax risk. More information will be

given below.

Consider estimating 9 in this setup by a (possibly biased) linear estimator. The minimax linear

estimator can be worked out using calculus; it is

sL,:@)r=2+g2 Y

and the minimax linear risk is

PL(T = inf sup E(()_0)2 - 2 (3.1)

As it turns out, the minimax linear risk in this problem is not very different from the nonlinear

minimax risk. Consider the ratio of the two: pL(jW,P)/pN(¶,a). By the invariance p(t,d) = c2p(tfa,1)

which holds for both PL and PN. this ratio depends on X and a only though the "signal-to-noise" ratio

v =1/a. Let p(v) denote the ratio of the two risks for a given value of v. Ibragimov and Hasminskii

(1984) pointed out 3 basic facts about IL(v): (1) it is continuous on (O,oo); (2) it is near 1 for v large:

lim PL 1 (3.2)
,c/Cy PN(.S

and (3) also near 1 for v small:

lim P 3)=1..3)
/aofv PN(thew)

Let [i denote thie maximum value of g(v), i.e. the worst-case ratio of pL to PN
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PL (Ta) (3.4)

Ibragimov and Hasminskii (1984) argued that (3.2), (3.3), and continuity of p(v) imply that ,u* < oo.

We can interpret (3.2) and (3.3) as follows. In the extremes where the prior information I 0 I < X

is weak compared to the noise level (i.e. r /a large) and also where it is strong compared to the noise

level (i.e. t/a small) the minimax linear estimate is nearly minimax.

Actually, much more is true. j(v) never gets very far from 1 even at moderate v. Lucien Birg6,

in a talk on the work of M.S. Pinsker at the Mathematical Sciences Research Institute in Berkeley in

April, 1983 mentioned that he had convinced himself that [i* < 1.7. In fact, as we shall explain in a

moment, the Ibragimov-Hasminskii constant t* is less than 1.25.

In studying the ratio t(v) = PL(V,1) / PN(v,l), we have information on PL Erom (3.1). However,

information on PN (vY,1) is harder to come by. For small v we can use the fact that, for v < 1.05,

PN(V,X) = V Jef cosh(vt) dt. (3.5)

where ) denotes the N(O,1) density. This is proved in the appendix. For large v we can use the ine-

quality

sinhv
PN(V,l) 2 (10- (3.6)

v coshv~

which follows from Donoho and Liu (1988a, section 6.1). Actually, (3.5) implies that g(v) < 1.25 for

v < .5, and (3.6) implies that [(v) < 1.25 for v > 3.1. (We remark that the important relations (3.2)

and (3.3) follow immediately from (3.1), (3.5), and (3.6)).

To get information about t(v) for moderate v, one has to resort to the implicit characterisation

of PN as the maximum of Bayes risks:

PN(V,l) = Su, p(i) (3.7)

where p(g) denotes the Bayes risk

p(i) = inf EgEEy19 (8(y) _)2, 0 X-.

By L.D. Brown's identity p(c) = 1-I (4D* c), where l(F) denotes the Fisher information f(f '2/f, and

c*X denotes the convolution of X with the standard Normal distribution function 1 (see, for example,
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Bickel (1981)). Thus, puting I*(v) = inffI(b* X): XE Vu), we have PN(V,1) = 1-I* (v). AsI is con-

vex, evaluation of I (v) presents a problem of minimizing a convex functional subject to the convex

constraint se flv. The appendix explains how a numerical approach was used to get numbers I(v)

approximating upper bounds to *(v). Assuming no programming error was committed, and that

machine arithmetic is performed with advertised accuracy, the numbers AN(v) = 1-I(v) may be shown

to rigorously obey

PN(V,l) > 1N(V) .0001 V E [.42,4.2] (3.8)
Thus, they are "lower bounds to four digits accuracy".

Table 1 presents a small selection of the numerical results we have obtained; it shows the

numbers N. together with the corresponding PL and the ratio a = Pl/(AN-.0005) w

Table 1 Risks in the 1-dimensional problem

v 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
PL 0.038 0.138 0.265 0.390 0.500 0.590 0.662 0.719 0.764 0.800
PN > 0.037 0.137 0.261 0.373 0.449 0.491 0.534 0.576 0.614 0.644

ratio < 1.032 1.009 1.016 1.046 1.114 1.201 1.239 1.248 1.244 1.242
PN __ _ _ _ _ _ __ _ _ _ _ _

v 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
PL 0.829 0.852 0.871 0.887 0.900 0.911 0.920 0.928 0.935 0.941
PN > 0.669 0.692 0.714 0.733 0.750 0.765 0.779 0.792 0.804 0.814

ratio <P 1.239 1.231 1.220 1.209 1.200 1.191 1.181 1.172 1.163 1.156

Professor Hasminskii has informed us that a set of calculations he performed in Moscow con-

vinced him that p is about 5/4. Professor Brown has informed us that a recent thesis at the Hebrew

University by I. Feldman makes it practically certain that the precise value of i is between 1.246 and

1.247. Taking into account all the limitations of numerical approaches the best we can say with cer-

tainty is

Theorem 1. Suppose (3.8) holds. Then * . 1.25.

The proof is given in the appendix, where considerably more information about our procedure and

the claim (3.8) are available. An unconditional result is possible. Let PT(t,a) = min(t2,a2. This is
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the minimax risk of the truncation rule which estimates 0 by zero if 'r<a and by y if r . a (see section

6). We have

Theorem 2.

maX 1 2.22 (3.9)v0 PN(V1 PNpx(1,l

The proof is in the appendix. As PT 2 PL it follows that R* < 2.22.

4. Hyperrectangles

Return now to the hyperrectangle problem. If we let Oi be a random variable distributed accord-

ing to the prior supporting the minimax rule g&, , and independent of the other Oi's, then the Bayes risk

for estimation of 0 is easy to calculate; due to the independence of yi's it is just the coordinatewise

sum pN (t,, a) As the coordinatewise estimate &V = (5',a(Yj)) is Bayes for the indicated prior, and

as the indicated prior is least favorable for this estimator, this Bayes risk is the minimax risk and this

estimator is minimax.

Proposition 3. The minimax risk for Problem (2.1)-(2.2) is

RN (a) = inf su E I 0112 = IPN(t ,c). (4.1)

By similar reasoning, the linear estimator 0L = (&Li,CYi)) is the minimax linear estimator, and

Proposition 4. The minimax linear risk for Problem (2.1)-(2.2) is

RL (CS) = £PL (Xi,a).
The minimax linear risk has been studied intensively in several papers by R. Bentkus and members of

his school; Proposition 4 appears implicitly in several of their papers. The minimax risk has apparently

not been intensively studied, apparently because there is no tractable closed form expression for

PN (ti ,a). However, in view of Theorem 1, we know that each PL ('ri, a) < 4* PN (ti, a), giving

Corollary.

RL (a) R < 1.25R (a) (4.4)
Thus the best nonlinear estimate of 0 cannot improve on the best linear one by very much.
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An asymptotic comparison, as a-cO, of the two different risks can be made as follows. Recalling

the definition of j(v),

RX(c) = (I PL (i ,)

and so

RN~~I Y,5_L £i a)

RL (S PL (ri . C)
As PL 2 0 one may view this right hand side as defining an "average" of g( with respect to a

"probability distribution" PL (i,a) /£ PL ('i, a) on i. As many of the terms ti occur at T / a large,

and an infinite number occur at ;i /a small, (3.2)-(3.3) might suggest that with high "probability"

p.(-) is close to one. Consequently, the actual ratio of minimax risks will be closer than the bound

1.25.

Theorem 5. Let q > 1/2. Suppose that xi = ciU. Then

R; (ay)
lim = Cj (q ) - (v)-I gq (v)v
0-+O R4 (ay)

where the probability density gq is supported on [0,ool and is defined by

l+v2
gq(V) = - (4.5)

v
2

--l+llq d
b l+v

The proof is given in the Appendix. A table of lower bounds on t; (q) is given below. The bounds

were affved at using techniques described in Gatsonis, MacGibbon, and Strawderman (1987), and in

section 3 above.

Table 2.

Bounds on CL (q) and CT (q)
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q) CT (q )<
.75 _ 1.23
1.0 1.27
1.2 .897 1.27
1.4 .903 1.25
1.6 .904 1.24
1.8 .906 1.22
2.0 .912 1.21
2.2 .915 1.19
2.4 .918 1.18
2.6 .921 1.17
2.8 .926 1.16
3.0 .927 1.12
4.0 .940 1.12
5.0 .949 1.10
10.0 .971 1.05
25.0 .98 1.02
50.0 .99 1.01

Corollary. For q e (1/2,o), L(q) <1. Consequently, 0L is not asymptotically minimax as a-+0.

CL(q) -+1 as q ->1/2 or oo. Consequently, 0L is nearly asymptotically minimax in the cases where the

problem is very difficult (q near 1/2) or very easy (q near co).

The proof of the first two sentences consists in the observation that p(v ) > 1 for all v e (0,oo), as

the minimax estimator is not linear. (Indeed, a minimax estimator is Bayes for some prior supported on

[-v,v]; it is therefore bounded in absolute value by v, whereas nontrivial linear estimators are not

bounded). Thus, the expectation of g(v)-l with respect to gq is strictly less than 1. Equivalently,

Q (q) < 1, which prohibits minimaxity.

For sentences three and four, note that by (3.2)-(3.3), g(v) is near 1 for v near 0 and oo. Now the

limit of gq, as q-oo, is a measure concentrated at +oo. Indeed, let x > 1 and q > 1. Then

x 2 1 x

1+v --I+l'q)d . 1v1-llqdv + v-ldv < - + log(x).

Also if q > 1,

cw~2 -(I+Jv dv=q
1+v2 v 2dv 2 2 f v q dv =

2

Hence
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x
I ~~+ log (x)/2Jg (v)dv < o q

which tends to zero as q - co. Then as q -*)0 we must have

Jf(v)- gq(v)dv -* limr(v)1l = 1.
v -4).C

On the other hand, the limit of gq, as q 2-j, is a measure concentrated at 0. To see this, note

that if x<1 and 1/2<q <1,

f v 2 q dv S Jv q + fv-2dv < Jv1+1 =1 -log (x),
z1+v z

while

Jv 2v q dv > |v q dv 2 1
b[1+V2 0 2--1

q

Consequently,

J gq(v)dv < 2(2-1)(1-log(x)),
x ~~~~q

which tends to zero as q- It follows that as q-*-,
2 ~~~~~2

fg(v)'lgq(v)dv - lim(v)-' = 1.
v -40

As CL(q) is the expectation of i(v)-1, this completes the proof. O

Thus, 0L is not asymptotically minimax for typical infinite dimensional hyperrectangles, although

it is not far from minimax, as Table 2 shows. If 0 is a finite-dimensional hyperrectangle, of course,

then 0L is asymptotically minimax as a 0. This is just a consequence of

d

XPL (Ti 'a)
1 < SupPL (iSA/

XpN(t5,a) .dpN(ti ,a) I.Sy(ti/a) -* 1

as a-A0.

6. Quadratically Convex Sets

Suppose now that we observe data according to (2.1), but instead of (2.2) we know that O E 0,

where 0 is convex, but not a hyperrectangle. If 0 contains a hyperrectangle 0(X), h=(t)s=, e prob-
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lem of estimating 0 under (2.1)-(2.2) is called a rectangular subproblem. The minimax linear risk of

the full problem is as large as that of any subproblem, so

R(C(a) 2 supi R (a; E(T)): 0(T) c0 (5.1)
When equality holds here, we have

RN(a) 2 sup R; (r; O(r)): 8(r)c )

2 sup{ 1,RL(a; 0(t)): 0(t)c}0 (by (4.4))

= * Ri (a). (5.2)

This proves

Lemma 6. If the difficulty, for linear estinates, of the hardest rectangular subproblem, is equal to the

difficulty, for linear estimates, of the full problem, then

RL(a) <5 1i RN(a) < 1.25R() (5.3)

We now show that equality often holds in (5.1). First, some definitions.

We say that 0 is orthosymmetric if, whenever 0= (0,)' belongs to e, (±0i)+ also belongs to

0 for all choices of signs ±. Examples of orthosymmetric sets include: Ellipsoids, sets of the form

(0: EajO2 < 1) where all ai 2 0; more generally, weighted lp-bodies, of the fonn, (0: ai 10, IP < 1),

sets (0: 2 aiiq( tOi I) c 1), and of course hyperrectangles. We say 0 is quadratically convex if

{(0?) , 0 E 0) is convex. Ellipsoids and weighted lp -bodies with p . 2 are quadratically convex, as are

hyperrectangles, and sets (0: Xaij(02) < 1) where Vj is convex. (To make these examples more con-

crete, recall from the function smoothing interpretation in section 2 that constraints on the q-th deriva-

tive of a function can be expressed by weighted 1,, bodies with weights a0=0, a2i1 = a2 = ciPq, i .1l.)

Theorem 7. If e is compact, quadratically convex, and orthosymmetric, the difficulty, for linear esti-

mates, of the hardest rectangular subproblem is equal to the difficulty, for linear estimates, of the full

problem:

RL (a) = sup ( RL(a; 0(t)): 0(t) c e) (5.4)
Thus, the factor 1.25 which we have established applies not only to hyperrectangles, but also to com-

pact ellipsoids and compact Ip bodies, p >2. Note that the set (0:,ai 1Oi IP < 1 and 110II2<C) is
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ortiosymmetric and quadratically convex, and compact if all but a finite number of the a, are nonzero

and ai -+ o°.

The result (5.4) is also true for some noncompact cases -- 0=RI being an obvious example.

Also, if e=ox01, and (5.4) is true for each factor e,, then (5.4) is true for 0. These two remarks

may be combined. If a finite number of the a, are zero, and if ai - oo, then e=fO: ,a; I P <_1 } is

the product e = R" x e', where 0' satisfies the hypotheses of the theorem. Thus (5.4) is true for all

ellipsoids and lp-bodies with p >2, not just compact ones. Probably (5.4) is true even if 0 is just

closed.

Proof. The idea is as follows. First, we show there is a hardest rectangular subproblem 0(t). Let &

be the minimax linear estimator for that subproblem; we have automatically that for any linear estima-

tor 0

sup R(0, 0) > sup R(,0).

The key step is to show that X is as hard for & as the full problem:

R(& ,X )>R(&*,O) forall 0e0. (5.5)

It follows that

RL(a) = R(& ,
R

)
(a; ))-

Hence, (5.4).

To start, we identify the hardest rectangular subproblem. Let e+ denote the positive orthant of 0.

As 0 is orthosymmetric, if 0e 0, then so is (±Oi) , for all sequences of signs ±. As 0 is convex, if

,re 0+, all (±Oi),* with IOi I <.ri must belong to 0. Therefore, 0(t) cO iff te i+. Hence, if we

define for X e 0e

J (X) = XPL (Ti ,a) = RL(c.,(T)).
then

sup{RL(ay;0(t)): 0(t)cO) = supJ(t)

We claim that J is an 12-continuous functional on e+. From
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r2i72 S2c2 < Ir2_s21
r2+a12 s2+a2 -

we get I J(O)-J(t) I <
, 107-,21. Let (0,) be a sequence in e+ converging lrstrongly totr. Putting

t 02 and ti =,-, we have t,,, >O., and ti > 0. From the convergence 0,, to r, we have t,,, -ti for

each i, and I tn ti. Applying Sheff6's Lemma, t,, converges to t in I1. Thus 1 I0o2.-Ij -* 0.

By the inequality above I J(0)-J(r) I -4 0.

As J is continuous, it follows from compactness of 0 that J has a maximum in 0+; r*, say.

0(@r*) is the hardest rectangular subproblem for linear estimates.

To avoid typographical excess, let ri denote the i-th component of Xr. The minimax linear esti-

2

ximator for 0Cr*) is of the form (c5y,),=, where c5 = 2+ 2. For the mean-squared error of this esti-

mator, we have

R (0 O) = Bias2 + Variance

= X(1-_C)2oi +(29 C,2.

As we saw earlier, the theorem follows from the inequality (5.5). As the variance of & does not

depend on 0, the inequality is equivalent to saying that Bias2(0) is maximized at 0=T. As Bias2(0)

does not depend on the signs of the components of 0, it is enough to check that it is maximized in the

positive orthant at *, i.e.

,l )(- 072) 2 0 for all 0 E 0+. (5.6)

Consider once again the functional J. We are going to show that J(0) <J(x ) implies (5.6); the

theorem then follows by definition of r* as the maximizer of J in e+. We first change variables. For a

generic 0 in 0+, put t = (07); put 0. for the set of all such t. As e is quadratically convex, 0. is

ta2
convex. Define J(t) = £ so that J (t) J(0). With to = (7)i0, we have

J(t) . J(to), t E e2. (5.7)
We claim J is Glteaux differentiable on 12 at to, with derivative

<DtOJ-,h> = ( - c )2 hi. (5.8)

Now the maximum condition (5.7) gives <D,J,h> < 0 for all h = (t-to). Using this and the definition
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of t and to will establish (5.6).

We provide the needed details. Let r and s denote scalars; a bit of algebra yields

(r +esW _ ra2 (1-c)2
r +eS + 2 r +&2 = F'(1rc)2+s2s2 (5.9)

where c=rf(r+a2). Now if both r20 and r+es 20, then (1c < Nowlh12; if
r +es+ -

to+eh >0 coordinatewise, applying (5.9) coordinatewise to the components of J, with r =ti and s =hk,

gives

I(J(to+eh)-J(t)) - e,(1-ci)2hi I < Jzh2. (5.10)

Now let 0 e 0 and let t be the corresponding element of 0.2. Define tE = (1-e)to+et. By convexity of

e2, teE82. By (5.7), J (tE) -J (to) < 0. It follows that

£71 [J(t)-J(o)) < 0 for £E (0,1]. (5.11)

Now t= to+eh for h = t -to. Also,

,h12 (02-t.2)2 = X(0, -_C)2(0. +i.)2 < 4M2X(0i -_r)2 < 16M4 (5.12)

where M = sUP( 110 11: 0 E ) < , by compactness of e. Using (5.10) and (5.11) with (5.12) gives

(lC,)2(t, _t0w ) < M, 16M4

for all Ee (0,1]. Taking into account the definitions of ti=-0i and t0=t2, this implies that (5.6) holds

for every 0 Ee+.O

Remarks.

1. The concept of hardest rectangular subproblems appears to be new. Pinsker (1980) established a max-

imin property for ellipsoids which can be shown to imply (5.4) for ellipsoids (see eqs. 17-18, page 122

of the English translation). Thus our result is an abstraction and generalization. However, even for

ellipsoids, the implication (5.3) seems to be new.

2. Theorem 7 does not cover lp-bodies with p <2. In fact (5.4) is not true in those cases. However, see

sections 8, 9, and 10.

3. Pinsker (1980) showed that for certain ellipsoids,
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RL(a) (5.13)
RN(a)

as a -*0. Fundamental to his argument is the idea that the hardest rectangular subproblem be finite

dimensional. This is not true for 1p-bodies with p >2, as one could discover from straightforward cal-

culations based on Theorem 7. Possibly, ellipsoids are the only sets where (5.13) holds. As we saw in

Theorem 5 and its corollary, (5.13) cannot hold for most hyperrectangles. So the class of cases where

(5.13) holds is strictly smaller than those where the 25% bound holds.

6. Truncation estimates

Suppose, once again, that 0 = 0(t) is a hyperrectangle, and recall that the minimax estimator and

minimax linear estimator for this situation are &N and 0L A simple alternative to these estimates is the

truncated series estimate 0T, obtained by letting yi serve as the estimate of Oi in those coordinates at

which ti > a and letting 0 serve as the estimate of Oi at those coordinates where xi < ca. Thus

Toi = YiI[-i>C)-

We remark that OT uses the data to estimate 0 at those coordinates where the "signal-to-noise" ratio

xi / a is bigger than one; at other coordinates it ignores the data and just uses zero.

The term "truncated series estimate" derives from the function-smoothing viewpoint. The esti-

mate fT (t) = Os 4(t) estimates f by a series which is truncated as soon as the estimated coefficient

has signal/noise < 1. The maximum risk of 0, as an estimate of Oi,

PT (i,a) = max E(0i -0Oi)
is just a2 or tr depending on whether Ti > a or Ti < ca. Thus we have the simple formula which was

used already in section 3. From this, we have the worst-case risk of OT:

R;() = supE 11 FT112 SPT(Ti*a)
In fact, R; (as) is the minimax risk among all truncation estimates. Indeed, let Ao = y,I (i e p f where

P (a) is a set of indices. The worst-case risk of 0p is

yCy2s M(min (a2,tX) = R * (a).
Thus .isinimaqamon t T e imates.

Thus 0' is minimax arnong truncation estimates.
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A common objection to truncation estimates is that their transition from "using the data" to

"ignoring the data" is too abrupt Estimates such as 0N and 6L in some sense manage a smooth transi-

tion from using the data (; > ac) to ignoring the data (i -c a). Surprisingly, truncated estimates do

not do too badly in terms of minimax risks. We have

PT min@(2,cy2) = min (T, 9)2 +(a) - (T2 + Cy)/max(2,a2) 2.

so

T(c5)=,PT (Ti C) < ,2* PL(Ti,S) = 2RL(C).
From Theorem 2 we have, for similar reasons, R*(a) < 2.22R;(a). This proves

Theorem 8. To minimize, among truncation rules, the worst-case risk over the hyperrectangle e(X),

the optinal rule is to truncate at signal-to-noise ratio 1. The resulting risk is never worse than twice

the minimax linear risk, and never worse than 2.22 times larger than the minimax risk.

For asymptotics as a -+ 0 we can use the same averaging argument that led to Theorem 5, but

this time on the ratio PT/pL rather than onlL This leads to

Theorem 9. Let q > 2 . If , =ci qthen

lim R( ) = J(1+V2)gq (v)dv+f(1+v2)/v2gq(v)dvcT.4O RZQY 0 1

where the density gq is defined in (4.5).

We omit the proof. We find the relatively good performance of truncation in this minimax setting

surprising. See table 2.

7. N-widths and Minimax Risk

Suppose now that 0 is convex but not a hyperrectangle, and we are interested in estimating 0

from data (2.1). Consider truncation estimates defined using projections -- 0 = py, p2=p . Define

R*(a;0) = infsupE llPy_0112
where the infimum is over all linear projections. For hyperrectangles, the optimal projections are of

course parallel to the coordinates, so this definition agrees with the one in section 6, and

R;(Ca; 0()) = IPT(Ti,C,). If 0 is not a hyperrectangle, there is an obvious lower bound -- the full
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problem is at least as bad as any rectangular subproblem. Under quadratic convexity, the bound is near

sharp:

Theorem 10. Let 0 be compact, quadraically convex, and orthosymmetric. Then the difficulty, for

truncation estimates, of the hardest rectangular subproblem, is at least half the difficulty, for truncation

estimates, of the full problem:

R;(a) :5 2 sup( R;(cs; i(X)): e(Xr)c ) (7.1)

Proof. We use notation from the proof of Theorem 7. Put J (T) = ,PT(ti 'a) for t e +0. We have

IJ(0)-J(T)I .! 10,-TX2I, so arguing as in the pro ofoTheorem 7, J is 12-continuous on 0+. A

maximizer = (t,i)i. exists by compactness. 0(r*) is the hardest rectangular subproblem for runca-

tion esimates.

For a generic 0e e+, define a corresponding t e0,2 by ti=07; put j(t)=Fmin(t8,() and

t0,i =t,2. Note that J(O)=J(t). J is a concave functional maxnimized over 012 at t0. The Gateaux

differential of J is not, in general, additive. Nevertheless, for the differential Di of J at to, in direction

h, the maximum condition gives

DJto(h) < 0 (7.2)
for every h of the form t - to, t e0+2. Let P denote the set of indices i such that tOj > a2, and let Q

denote the set where to, = (2. A calculation gives

DJto(h) = hi - 2;(hi)-; (7.3)
j P iEQ

where (a)_ = la II. 0. We omit details here; they are similar to those given in the proof of Theorem 7.

From (7.2) and (7.3) we get ,(ti -tt) . 2;(t1-to,)-, or, as (ta-to.B)_ c (2,
i BEQia

zi to4 + a
2

i P EP ieQ

Translating back to 0-coordinates, we get

i2< z Ti + a2 1. (7-4)
iEP ijP iEQ

Consider the minimax truncation estimator & for 0(T); given by O = y1I(P). It has risk
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R(0*O) = YO.2+2Z1.
idP ieP

Since Q cP, (7.4) gives

R (3 .O) < 1 Ti + 2-cr2 1 < 2 * ( )
idP ieP

The last step follows from the definition of P, via PT(tO,a) = ti2h P + 3IySeP .°

Corollary. If 0 is orthosymmetric, compact, and quadratically convex, then

RT(a) < 4.44-RZ(Y)
As in Theorem 9, one could show in specific cases a more precise result in the asymptotic case a ->0.

It follows that n-widths of the set 0 determine the difficulty of estimation quite precisely. The

(Kolmogorov Linear) n-width of 0 is defined as (see Pinkus, 1984)

d,, = infsupIIP.0-011

the infimum being over all n-dimensional projections. Then we have

R;(c) = infd,2+nna2.

Thus, for 0 orthosymmetric and quadratically convex, the corollary shows that the purely geometric

quantity infd,,2+n&2 is within a factor 4.44 of the minimax risk. In particular, if the n-widths go to

2r

zero at rate n', then RN(a) - 0 at rate (O.) 2r+

8. Non Quadratically Convex Sets

Let 0 be a set. The quadratically convex hull of e is

QHull(0) = (0: (02) E Hull (0. ) (8.1)

For quadratically convex, closed orthosymmetric sets, of course, QHull (e) = 0. On the other

hand, for weighted tp-bodies with p <2, the hull is strictly larger than the set itself. Indeed, if 03p(a)

denotes f0:Xai I Oi IP <1-), one can easily compute

QHull (0p (a)) = O: J:aiq21p"Io, p<1) (8.2)

Thus for all the weighted 1p-bodies with p E (0,2), the quadratic hull is an ellipsoid. (More is true.

Consider the function-smoothing interpretation, with ai =iPq representing smoothness constraints on the

q -th derivative. For every p E [0,2), the quadratic hull is the ellipsoid with weights ai =i2q 1) The key
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fact about quadratic convexifications is that it preserves minimax risks of linear estimators.

Theorem 11. Let 0 be orthosymnetric and compact.

R;(C5;e) = R*(arQHull (0)) (8.3)

RZ(cr;0) = RL(a;QHull (0)) (8.4)

Before giving the proof, some remarks. First, for linear estimation, Ip -type constaints, with p <2, do not

add anything new; by (8.2)-(8.4) the difficulty is the same as with the ellipsoidal constraints of the

corresponding quadratic hull. Second, Theorems 7 and 11 together say that the minimax linear risk is

still determined by the hardest rectangular subproblem -- of the enlarged set QHull (0). Finally, let

0(* ) be the hardest rectangular subproblem of QHull (0) for truncation estimates. Then

R; (a;0) 2 R *(aS;O(

> (;E))r 2 4-RT(a;QHull (0)) = 4 (a;O)

which proves

Corollary. Let 03 be orthosymmetric and compact. Then

R(a;0) < 4R*(a;0).

So for weighted lp-bodies with p E (0,oo), the minimax linear estimator never improves drastically on

minimax truncated series estimators.

As a final remark, note that the fornula R*(a) = inf d,2+n9 always determines the difficulty of

truncated series estimates. It follows from the Corollary that under orthosymmetry the n-widths deter-

mine the difficulty of linear estimation to within a factor 4.

Proof of Theorem 11.

Let C be a compact linear operator on 12, and let 0= Cy be the estimator it induces. Then

R(0,0) = II(C-I)0112+(9IICIIHs
where I denotes the identity and 11 IIHS denotes the Hilbert-Schmidt norm. The appendix proves the

inequality

S@)UV )II(C_I)O112> s)up )II(Diag(C)_I)0112 (8.5)

and we also have
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IIC IIHS 2 IIDiag(C)IIHS (8.6)

Together, these imply that Diag (C) has a smaller worst-case risk than C. Hence there is a minimax

linear estimator of the diagonal form Oi=c,yj, and in fact with each ci E [0,1]. Similarly, there is a

minimax truncation estimator of the form Oi =ciyi with each ci e (0,1}. The risk of such estimators

has the form

R (0,9) = Y(1 -ci )20 + a2X (8.7)

Now let 0 be an element of QHull(e). Let t be the corresponding point in Hull (0,2), defined by

ti= . We have an integral representation t = ft dp(t) with ji a probability measure on O.. Let X be

the probability measure on 0+ induced by i via the change of variables formula. Now obviously

supR (0,O) > R(0,0) d (o);
but, using (8.7)

fR (0,0)d X(o) = f I(1 - ci)20,2] d X(0) + C C2.

Now by the construction of X and j, and the change of variables fornula,

f02dn(0) = Jti dpl(t) = ti =0i
so

fR (0,0)d X(o) = Z(l c, )26? + IC2 = R (0,0).
Hence suR (0,0) 2 R (0,0) for every 0E QHUll (0): QHull (0) is no harder for such an estimator than

0 itself. Results (8.3)-(8.4) follow. 0

9. Difficulty of Non-Quadratically Convex Classes

If 0 is orthosymmetic but not quadratically convex, QHull (0) is larger than 03 itself. The two sets

can, in fact, be quite different. Consider the 11 body with weights ai =iq. A calculation based on the

results of the last two sections reveals that the hardest rectangular subproblem of QHull (0) has risk

2q
which goes to zero as (a)2q+1. However, as explained in section 10 below, the hardest rectangular

2q+1

subproblem in 0 has difficulty comparable to (o2)2q+2, which is much smaller.

A difference of this sort guarantees that linear estimators are not nearly minimax. This follows from
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Theorem 12. Let pe (0,oo). Consider the 1, -body 0p (a) with weights ai . ciPq for some q >0. Then

RN(a;Ce) < M(a) sup(R;(cY;0(')): (X) ceO) (9.1)

where

M (a) = O (I log Cy 12) (9.2)

as a--0.

In words, the hardest rectangular subproblem of 0p (a) is, to within logarithmic factors, as hard as the

full problem. Hence if the difficulty of the hardest subproblem of QHull (0) tends to zero at a different

rate from the difficulty of the hardest subproblem for 0, the risk of linear estimators cannot tend to zero

at the optimal rate. So, for example in the li-body case mentioned above, linear estimators are not

nearly minimax.

Proof. By Theorem 8, the difficulty of the hardest subproblem is within a factor 2.22 of

sup{R;(ca,E(t)):0(t)c0). The result (9.1) therefore follows if we can show that

RZ(a;E) < M (a) sup min(0,a2) (9.3)

with M (a) satisfying (9.2).

We now construct an estimator which proves that (9.2)-(9.3) hold. Pick C = C(a) so that C >1

and C2(a) z I log a 12 as a- 0. Define

T = {i:supIoi I >C).

Define the estimator 0 by the rule

fsgn(YiXIyi I -Ca)+ i E T
= lo i d T (9.4)

In words, 0 is zero at those coordinates which cannot possibly be large, and translates towards zero in

those coordinates which might possibly be large; compare Bickel (1983).

To analyze the worst-case behavior of 0, fix es (0,1). Given 0, define

B = {i:10jI2ea)
S = (i:10,1<ea)

the indices of the "big" and "small" coordinates of 0, respectively. Note that if i E T, then

Oi =yi + V(yj ), where I ij(y ) I < Co. Therefore, if i E T,
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2E (0i - Oji)2 E (yi - 0, + ly(yi))2
4(4E(yjj_0)2+ ] (a+Ca)2 (9.5)

Also, if i d T

E ($di -) 02 (9.6)
and, finally, if ie SnT

E(0i - 9i)2 < 20?(1+44(C-e)) + 4a C+11C-e) (9.7)
where 4(t) is the N(O,1) density (this is proved in the appendix). For small a, C-e> 1, and so

44(C -e) < 1. Combining (9.5)-(9.7),

XE (O0_ 0 )2 < (C+1)22;c2+ 4oiV + , cr24[C+1]0(C-e)
i ieB ieS ieSnT

Now as C 21,

(C+1)2(;12(l^ l, + 4 o .I) C (C+1)2iI <W) 2 min(0j a2)
Recalling the definitions of B and S, we have

J(-. _ 8 )2 < (C+1)2 min(0g2a2) + Rem (C ,)

where

Rem (C,a) = 42[C+lICard(T)4)(C-e)
Now, by the assumption that ai>ciPq, we have Card(T) = O(csf') with r=r(q)=1/q+l. Also,
C+l = O(IlogaI) by definition of C. Therefore, as a-0,

Rem (C,ay) =- ( I loga I o'exp(- I loga I2/2)).

As a->0, exp(- I log csI 2/2) = o (exp(-R I log a I)) = o (a' ) for every R > 0. In particular, for R > r. We

conclude that

Rem (C ,a) 0 (9.8)

as a -* 0. On the other hand, as 0 contains nonzero elements (otherwise the theorem is trivially true),

suX,min(0i2,c2) 2 a2(1+o(1 ) (9.9)

as a - 0. Defining
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M(a) (C+1)2 Rem(C,cs) (9.10)
F2 a2 (1+o0(1)) (.0

with the o (1) term the same as in (9.9), we have

RN
<

supE(0_-0i)2

5 sup[ (C +1)2 , min(O2,a) + Rem (Cg)

< M (a) sup 2;min(0?,a2)

This is of the same form as (9.3), where M(a) satisfies (9.2) because of (9.8). 0

10. Hardest Cubical Subproblems of Ip bodies, p <2

Definition: a standard n-cube of radius X is a set 0,,(t,i) of elements 0 such that IOLl 9X for indices

iei, 0, = 0 for indices i d i, and Card (i) = n.

Theorem 13. Let =ep (a) for O<p .2. Let n0=no(a) be the largest n for which an n-cube of

radius a fits in 0. Then the difficulty, for truncation estimates, of the hardest rectangular subproblem, is

essentially the same as the difficulty of this no-cube:

noF2 = sup(R;(a;0,,(a,i)): 0,(a,i)co) (10.1)

(no+ 1)a2 sup(R(a;0(t()):10(t))c 0). (10.2)
The proof is given in the appendix. Ignoring constants, the Theorem reduces the calculation of asymp-

totic behavior for the hardest subproblem to calculation of no(a). This is straightforward. Consider the

lp -body with weights ai = iPq for p <2. If an n-cube of size as fits in e at all, it can be fit using the first

n -coordinates for i. Therefore, no satisfies

xo I

op , in < 1
0

no
Up :ipq > 1.

0

One sees immediately that cP ngq+1 - pq+1, and

2pq +2-p

noa2= o ((a2) 2pq+2 (10.3)
As p <2, this goes to zero faster than the risk for the linear minimax estimator in this case, which by

2q trt
section 7 is (cr)2q+'. Hence, the conclusion of the introduction: there exist settings in which nonlinear
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estimates improve on linear ones by an arbitarily large factor in the worst case.

Remarks.

1. Formula (10.3) shows that p is, to some extent, a smoothness parameter. Think of the function-

smoothing interpretation. With q, the "order of differentiability", fixed, the optimal rate of conver-

gence improves as p gets smaller. As p -4 0, in fact, the rate tends (modulo logarithmic factors) to a2,

which is the rate which would obtain if 0 were finite-dimensional.

2. The quantity no is closely related to the so-called Bernstein (or inner) n-widths of 0 (Pinkus, 1985).

Let bR,. denote the largest radius of an n+l-dimensional I..-ball which can be inscribed in e. Then

n = 1+sup{n: b.,..>a). Theorems 12 and 13 attribute a central role for bo,. in determining the

difficulty of estimation for Ip-bodies with p .2. In particular, if the be... go to zero at rate n', then, in

-2s+1

the cases covered by Theorems 12 and 13, the minimax risk goes to zero as (() 2 (ignoring loga-

rithmic factors).

As seen above, the Kolmogorov n -widths of ep (a) determine the performance of truncated series esti-

mates, and more generally, of linear estimates. Thus, if the d, go to zero at rate n', the minimax

-2r

linear risk goes to zero at rate (9) .

Comparing the last two paragraphs, we see that for the minimax linear risk and minimax risk to con-

verge to zero at the same rate requires that 2s1= 2irl Hence, s = r + 1/2. In other words, for n2s 2+

sufficiently large and some c >0,

b,,la > c-.d (10.4)

A comparison of d. and b,1. can be effected as follows. Let b^,2 denote the largest radius of any

n+l-dimensional 12-ball which can be inscribed in 0. (This is the classical Bemstein n-width; see

Pinkus). As the sphere of radius 1 inscribes the cube of radius 1, and as the cube inscribes the sphere

of radius 4n+1,

bAlso we b,,2 have (Pnu5bP,. (10.5)
Also, we have (Pinkus, 1985, Page 13)
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b,.< d,. (10.6)

Combining (10.5) and (10.6), a sufficient condition for (10.4) is b.,2= d,. This equality of Bernstein

and Kolmogorov n-widths occurs for ellipsoids (Pinkus, 1985, Chapter VI, Theorem 1.3, Page 199), but

for very few other cases. The lp -bodies, with p <2 show that we can have

bn,2 (n +1)1/p-1/2

If this sort of relation holds, and we put p < 1, (10.4) must fail, no matter how favorable the relation

between b; and be,.. in (10.5).

To summarize, when Theorems 12 and 13 apply, the statement that the minimax linear and minimax

nonlinear risks go to zero at different rates is basically equivalent to the statement that certain Bernstein

n-widths are significantly smaller than the Kolmogorov n-widths. While this cannot happen for Ir

bodies, this is precisely what happens for 1p -bodies with p <2.

The linear n-widths of Kolmogorov have commonly been regarded as fundamental by approxima-

tion theorists, while Bernstein n -widths have been regarded as simply a tool for getting bounds on the

n-widths of Kolmogorov (Pinkus, 1984, page 12). In this setting of statistical estimation, the reverse is

true. Certain Bernstein n-widths determine (up to logarithmic factors) the difficulty of estimation, while

the Kolmogorov n-widths measure the difficulty of linear estimation, which is in our view less funda-

mental.

11. Use of II-loss

We could have considered the problem (1. 1)-(1.3) with the 11-loss function:

110- 011l = ; 10i - Oi In.I order to do so, we would need to know the minimax risks in the bounded

normal mean problem for 11-loss. These apparently have not been studied previously. Let XN(t,a),

XL(tf,a) and XT(da) be the minimax nonlinear, linear, and uncation risks, respectively. We have

XT(t,c) = min (t, a)

and from numerical work parallel to that described in this report,

XT(r,a) < 1.87 XN(t,a)
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AL(X9,) < 1.23 Xffk.(s) .

Also, the minimax risks over hyperrectangles are l; ,(sia)-, Z X, (.la), £ T(ti a) respectively.

Finally, by an argument similar to the proof of Theorem 10 we have

Theorem 14. * Let e be orthosymmetric, convex, and compact for the 1 1-norm. Then the 11-difficulty

for truncation estimates of the hardest rectangular subprobkm in 8 is at least half the 1 1 -dfficulty of

the full problem.

In short for the 1p-bodies p > 1, the minimax II risk is within a factor 3.8 of the geometric quantity

inf dd,,t + n w

where d,,,, denotes the Kolmogorov linear n-widthi of e in 1 -norm.
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12. Appendix

Proof of (3.5)

Casella and Strawdeman (1981) show that for v < 1.05, PN(v,l) = p(%2,V), where

1(8V +-,). Le Cam (1985, page 42) gives a formula for the exact Bayes Risk in estimation

problems with squared error loss, which says that to estimate 0 E {0,1) from one observation of Pe, the

minimax risk is

inf supE0( )2 = 1 01
AMr) 2fJdPO+dP1

Now consider the problem of estimating t E (-v,v) from one observation from 0,, the distribution of

N(t,1). With t = 2v (O- ), Po = &,,, P1 = Ov, we have
2

inf sup Et (t-t)2 = 4V2 f (12.1)
fe -V,V) 2 d4 _ +dD (1.1

Now using

e -(yv)2/2 e--Y+v)2/2 = e -y2+v2)

e*--y-v)2/2 e y2+v 2Y2 e vY

e--y+v)2i2 =e{~y4v2Y2e-vy

we have, using 4, for the density of 4D,

f ovI-f e _2_)/2/4_2 -ev2/2 0() dy¢>v + O v e vy +e-vyf 2cosh(vy
which, combined with (12.1), gives (3.5). 0

Lemma 12.1 (Monotonicity) For v 2 3,

[1+v2] [ V cosh (v)]

is monotonically decreasing as v increases.

Proof. Symbolically differentiating m(v) using the Macsyma symbolic manipulator, we have
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1l_s]>1- s 20. s s
v~~~~~~ c 2

&n 2 v2 L ~~~~~~~vc2 v]

2~~~~2

where s =sinh(v) c =cosh(v)

Note that, for v . ,

Take the common denominator for the last term in -. The numerator will be

FF 2] [Sc + v2 s2_ 2

thetrmi squre L 1-~vc (v2+ 1)

2v i~c]
t v c ][ 2 v c ]

Call the term in square brackets I. If I 2 1, then m'(v) < 0. Thus the lemma reduces to showing that

sinh.-I > 1 for v 2 3. Since sh is monotone increasing for v . 0, we have for v > 3 that
cosh

S VS2 ri~112 .3
2+v 2 v L >J 3 s 1 =3 = 2.970 .2

which completes the proof. 1

Description of Numerical Approach

Our approach to bounding pN('r,l) works in two stages.

Stage 1. With N, M, and Q parameters, define x, = (i/N) (T + Q); dx =xi -xi -1. Put

N

I°(F) 2 , (f '(xi))21f (xi) dx
. =0

This is intended as a crude approximation o | (f (x )) dx.

Let tj =
j

- , Ij I . M, and put fin = (it: supp(C) c (tj)l. Now I`I is a convex, 2M + 1 dimen-

sional set, and there are explicit formulas for f ' and f when F = D * ic with I E rIm. The problem

min (JO(b * i): n e r1vM1
is therefore one of optimizing a smooth convex function over a finite dimensional convex set. We used
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the optimization system NPSOL developed in the Systems Optimization Laboratory at Stanford Univer-

sity --- see Gill, Murray, Saunders, and Wright (1986) --- to find a numerical "solution" to this prob-

lem; call it 1P. We claim no optimality of 7P.

Stage 2. with N1, x, n, and ii parameters, we attempt to find an upper bound on I ((I * i). Let

xi =N (r + Q), I i I < N1, and put

N,~~ ~~~~~~~N-

P1(F)= 2 - dx I sup + 2 C
i=0 X

e (x, Xi+1) f (X)

Here C = C(r,S) is an absolute constant so that

C >sup f :F =c'* c,n7E rl,);
+a f

for example, with Q = 6 and X = 5, C < 2 * 107. Because of this, we have at once

Il(4)* c).I(Q1* nO)
However, l is not actually computable, because of the "sup" specified in its definition. Note, how-

ever, that for f = 0 * no, g = (f ')2/f is an analytic function; an absolute upper bound on the number

S of sign changes of g' follows immediately from just the fact no E rFl. In any interval [xi, xi+1J

where there is no zero of g', max (g(x): x E [xi, xj+1) = max (g(xi), g(xi+1)}. In any interval

where there is a zero of g', a conservative bound on max fg(x) x E [Xi, xi+l]) is

max (g (xi), g (xi+,)} + D * dx / 2

with D > sup I g'(x) 1. Define now

12(F) = 2 - dx , maxu( + (dx)2 D - 5 + 2C
i L f(xi) ' f(x,+1) +d)2 2

we have

I2(0>* no) 2P(0 xP)-a1((D 1P).

Justification of (3.8)

The numbers printed in columns 2 and 6 of Tables 3.1 - 3.3 are numerical evaluations of

5N = 1 -I2(Q * e) on a SUN-4 computer using IEEE-standard double precision arithmetic. From the

above, (3.8) follows provided we can evaluate I2 to 4 digits accuracy. This is the same as saying we
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can evaluate a sum of the form

N1- 1 (f'&))2
=o ff(Yi)

to 4 digits relative accuracy, where each y, = xi or xi+,. Now

M

f '(y) = - P(t,) (x tj) eXcp(_(X _ tj)2 / 2) /2i
j =-M

M
f (y) = , e (tj) exp(-(x _ tj)2 / 2) /2

j =-M

By lengthy but standard arguments, it is possible to show that this is possible with double precision

arithmetic, assuming that the exponential function can be evaluated on the computer to 14 digits accu-

racy, that N1 <20,000 and M <100, and that addition, division, and multiplication work on the com-

puter precisely according to iEEE standards. Details of the argument are available from the authors.

Proof of Theorem 1. We proceed in three steps, showing that PL() < 1.25 on each of the three
PN(v,)

ranges [0, .42], [.42, 4.2], [4.2, co).

Range [0, .42]. As PL(V,l) < PT(V,J),

PL(V,1) PT(V,l) PT(.42,I) .1762
sup <<sup2
v .42 PN(V,l) v .42 PN(V,1) PN(.42,1) - (.145669-0.0005)

by the monotonicity of PT(V,1) / PN(v,1) for V E [0,1] (see the proof of Theorem 2).

Range [4.2, oo). By (3.6),

PL (V,l) v2 (1 + V2) 1 (4.2)2 (1 + (4.2)2)l .1.25
Sv222PN(V,l) v 2. sinh (v) 1 _ sinh (4.2)

v cosh (v) (4.2) cosh (4.2)

where we have used Lemma 12.1, which establishes the monotonicity of the ratio for v > 3.

Range [.42, 4.2]. Suppose we have numerical approximations iN(i,1) accurate to within 5, at

a sequence (t, }. As PL(X,l) and PN(t,1) are both monotone in X,

PL(X,1) PL<(t+1,l)
PN(TO)ppropiately

where xi < X < ri+,. Tberefore, picling ({i ) appropriately
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PL (T,1) PL (Ti+1,1)
sup <max.IW.42S:4.2 PN(T,1) T AN(Til) -

Our computations used the 656 points [(T1 = (.42,.44,.46,. .. ,4.2} u (1.381,1.382,. .. 1.859,1.860}.

By (3.8) 8= .5 (.1) - 10 (4 digit accuracy), giving 1.2497... for the right hand side of the above

display. See Tables 3.1 - 3.3 El

Table 3.1

'Ti PN (2) PL

0.40 0.136657 0.1379310
0.42 0.148601 0.1499490
0.44 0.160750 0.1621980
0.46 0.173063 0.1746450
0.48 0.185501 0.1872560
0.50 0.198025 0.2000000
0.52 0.210596 0.2128460
0.54 0.223178 0.2257660
0.56 0.235734 0.2387330
0.58 0.248229 0.2517210
0.60 0.260629 0.2647060
0.62 0.272902 0.2776650
0.64 0.285016 0.2905790
0.66 0.296941 0.3034270
0.68 0.308649 0.3161930
0.70 0.320112 0.3288590
0.72 0.331304 0.3414120
0.74 0.342202 0.3538380
0.76 0.352783 0.3661260
0.78 0.363025 0.3782640
0.80 0.372909 0.3902440
0.82 0.382417 0.4020570
0.84 0.391533 0.4136960
0.86 0.400241 0.4251550
0.88 0.408528 0.4364290
0.90 0.416382 0.4475140
0.92 0.423792 0.4584060
0.94 0.430750 0.4691020
0.96 0.437248 0.4796000
0.98 0.443278 0.4899000
1.00 0.448838 0.5000000
1.02 0.453812 0.5099000
1.04 0.458418 0.5196000
1.06 0.462554 0.5291020
1.08 0.466554 0.5384050
1.10 0.470593 0.54751 10
1.12 0.474670 0.5564230
1.14 0.478781 0.5651420
1.16 0.482925 0.5736700
1.18 0.487098 0.5820100
1.20 0.491297 0.5901640

max g(v) < gj
ki-i'i]

1.108271
1.101295
1.095188
1.089829
1.089829
1.081075
1.077567
1.074587
1.072101
1.070088
1.068530
1.067414
1.066728
1.066468
1.066629
1.067208
1.068208
1.069631
1.071477
1.073751
1.076461
1.079611
1.083209
1.087262
1.091780
1.096772
1.102249
1.108223
1.114702
1.121700
1.129234
1.137312
1.146231
1.146231
1.165242
1.174781
1.183645
1.191855
1.199441
1.206425
1.212837

Ii

1.86
1.88
1.90
1.92
1.94
1.96
1.98
2.00
2.02
2.04
2.06
2.08
2.10
2.12
2.14
2.16
2.18
2.20
2.22
2.24
2.26
2.28
2.30
2.32
2.34
2.36
2.38
2.40
2.42
2.44
2.46
2.48
2.50
2.52
2.54
2.56
2.58
2.60
2.62
2.64
2.66

PN (>) PL

0.624035 0.7757650
0.627203 0.7794640
0.630282 0.7830800
0.633270 0.7866170
0.636023 0.7900750
0.638818 0.7934570
0.641513 0.7967640
0.644105 0.8000000
0.646627 0.8031650
0.649135 0.8062620
0.651631 0.8092910
0.654117
0.656593
0.659049
0.661504
0.663951
0.666366
0.668777
0.671183
0.673583
0.675973
0.678326
0.680668
0.683001
0.685323
0.687790
0.690089
0.692376
0.694648
0.696905
0.699132
0.701331
0.703513
0.705677
0.707823
0.709949
0.712055
0.714139
0.716201
0.718239
0.720253

0.8122560
0.8151570
0.8179970
0.8207760
0.8234960
0.8261600
0.8287670
0.8313200
0.8338210
0.8362700
0.8386680
0.8410170
0.8433190
0.8455740
0.8477840
0.8499490
0.8520710
0.8541510
0.8561900
0.8581880
0.8601480
0.8620690
0.8639530
0.8658010
0.8676130
0.8693900
0.8711340
0.8728450
0.8745230
0.8761700

max Ii(v).p,
1.249858*
1.249271*
1.249524
1.249030
1.248597
1.248510
1.248225
1.248025
1.247916
1.247838
1.247684
1.247454
1.247148
1.246769
1.246340
1.245826
1.245246
1.244646
1.243976
1.243241
1.242446
1.241601
1.240757
1.239869
1.238935
1.237960
1.236667
1.235622
1.234543
1.233440
1.232312
1.231188
1.230067
1.228929
1.227778
1.226615
1.225444
1.224268
1.223090
1.221911
1.220736
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0.495520 0.5981350
0.499764 0.6059270
0.504025 0.6135410
0.508302 0.6209820
0.512591 0.6282530
0.516888 0.6353560
0.521190 0.6422950
0.525495 0.6490740
0.529920 0.6556950

1218702
1.224045
1.228892
1.233270
1.237200
1.240709
1.243823
1.246564
1.248954

2.68
2.70
2.72
2.74
2.76
2.78
2.80
2.82

0.722242 0.8777860
0.724205 0.8793730
0.726140 0.8809300
0.727877 0.8824580
0.729754 0.8839580
0.731601 0.8854310
0.733416 0.8868780
0.735200 0.8882980

Table 3.2

PN (O)

0.736950
0.738666
0.740348
0.741997
0.743620
0.745226
0.746827
0.748424
0.750012
0.751572
0.753121
0.754665
0.756203
0.757734
0.759259
0.760769
0.762254
0.763728
0.765195
0.766654
0.768105
0.769548
0.770981
0.772406
0.773821
0.775226
0.776621
0.778000
0.779360
0.780704
0.782038
0.783360
0.784672
0.785973
0.787261
0.788538
0.789801
0.791053
0.792290

PL

0.8896930
0.8910630
0.8924080
0.8937300
0.8950290
0.8963040
0.8975580
0.898790
0.900000
0.9011900
0.9023590
0.9035080
0.9046380
0.9057490
0.9068420
0.9079160
0.9089720
0.9100100
0.9110320
0.9120370
0.9130250
0.9139980
0.9149540
0.9158960
0.9168220
0.9177330
0.9186300
0.9195130
0.9203820
0.9212380
0.922080
0.9229080
0.9237250
0.9245280
0.9253200
0.9260990
0.9268660
0.9276220
0.9283670

max R(V) < F

1.210961
1.209943
1.208953
1.207991
1.207056
1.206137
1.205219
1.204284
1.203331
1.202369
1.201428
1.200483
1.199523
1.198552
1.197571
1.196580
1.195592
1.194625
1.193656
1.192681
1.191699
1.190714
1.189723
1.188732
1.187738
1.186743
1.185749
1.184755
1.183771
1.182802
1.181844
1.180888
1.179936
1.178987
1.178041
1.177103
1.176170
1.175245
1.174326

¶i PN (.)

3.82 0.805000
3.84 0.806078
3.86 0.807147
3.88 0.808212
3.90 0.809272
3.92 0.810324
3.94 0.811370
3.96 0.812410
3.98 0.813446
4.00 0.814475
4.02 0.815499
4.04 0.816517
4.06 0.817526
4.08 0.818521
4.10 0.819504
4.12 0.820479
4.14 0.821449
4.16 0.822411
4.18 0.823366
4.20 0.824314
4.22 0.825257
4.24 0.826193
4.26 0.827123
4.28 0.828047
4.30 0.828964
4.32 0.829874
4.34 0.830777
4.36 0.831672
4.38 0.832561
4.40 0.833442
4.42 0.834316
4.44 0.835182
4.46 0.836040
4.48 0.836890
4.50 0.837732
4.52 0.838566
4.54 0.839391
4.56 0.840208
4.58 0.841018

PL

0.9358660
0.9364900
0.9371050
0.9377120
0.9383100
0.9388990
0.9394800
0.9400540
0.9406190
0.9411760
0.9417260
0.9422690
0.9428040
0.9433310
0.9438520
0.9443650
0.9448720
0.9453720
0.9458650
0.9463520
0.9468320
0.9473060
0.9477740
0.9482360
0.9486920
0.9491420
0.9495860
0.9500240
0.9504570
0.9508840
0.9513060
0.9517230
0.9521340
0.9525400
0.9529410
0.9533370
0.9537290
0.9541150
0.9544970

122
1.24
1.26
1.28
1.30
1.32
1.34
1.36
1.38

1.219566
1.218403
1.217250
1.216110
1.215269
1.214161
1.213072
1.212005

'i

2.84
2.86
2.88
2.90
2.92
2.94
2.96
2.98
3.00
3.02
3.04
3.06
3.08
3.10
3.12
3.14
3.16
3.18
3.20
3.22
3.24
3.26
3.28
3.30
3.32
3.34
3.36
3.38
3.40
3.42
3.44
3.46
3.48
3.50
3.52
3.54
3.56
3.58
3.60

max IL(v).J

1.164876
1.164065
1.163271
1.162481
1.161688
1.160895
1.160105
1.159315
1.158526
1.157736
1.156947
1.156159
1.155372
1.154591
1.153823
1.153066
1.152312
1.151560
1.150812
1.150068
1.149328
1.148588
1.147853
1.147120
1.146390
1.145664
1.144943
1.144225
1.143514
1.142806
1.142104
1.141406
1.140715
1.140029
1.139350
1.138678
1.138011
1.137353
1.136701
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3.62 0.793515 0.9291000
3.64 0.794725 0.9298230
3.66 0.795921 0.9305340
3.68 0.797103 0.9312360
3.70 0.798270 0.9319260
3.72 0.799421 0.9326070
3.74 0.800557 0.9332780
3.76 0.801679 0.9339390
3.78 0.802795 0.9345910
3.80 0.803904 0.9352330

1.173417
1.172516
1.171626
1.170746
1.169876
1.169018
1.168173
1.167341
1.166520
1.165697

4.60 0.841817 0.9548740
4.62 0.842606 0.9552460
4.64 0.843388 0.9556140
4.66 0.844164 0.9559770
4.68 0.844936 0.9563360
4.70 0.845705 0.9566910
4.72 0.846470 0.9570420
4.74 0.847231 0.9573880
4.76 0.847986 0.9577300
4.78 0.848735 0.9580680

where g. = - S. and 8 = 0.0005 for all nummbers except those numbers with a "*" are calculated by 8 = 0.0001.aPAN(Cri-I ,T)-38

Table 3.3

¶; PN ()

continue
1.385 0.531473
1.390 0.532547
1.395 0.533621
1.400 0.534695
1.405 0.535768
1.410 0.536840
1.415 0.537912
1.420 0.538984
1.425 0.540054
1.430 0.541124
1.435 0.542193
1.440 0.543262
1.445 0.544329
1.450 0.545395
1.455 0.546461
1.460 0.547525
1.465 0.548588
1.470 0.549650
1.475 0.550711
1.480 0.551771
1.485 0.552829
1.490 0.553886
1.495 0.554941
1.500 0.555995
1.505 0.557048
1.510 0.558098
1.515 0.559148
1.520 0.560195
1.525 0.561241
1.530 0.562285
1.535 0.563327
1.540 0.564367
1.545 0.565405
1.550 0.566441

PL max j(v):Yi,

0.6573260
0.6589480
0.6605600
0.6621620
0.6637550
0.6653390
0.6669140
0.6684790
0.6700350
0.67158200
0.6731200
0.6746490
0.6761680
0.6776790
0.67918100
0.68067400
0.68215900
0.68363400
0.6851010
0.6865600
0.6880090
0.6894510
0.6908830
0.6923080
0.69372400
0.69513100
0.6965310
0.69792200
0.69930500
0.70067900
0.70204600
0.70340500
0.70475600
0.70609800

1.239541
1.240085
1.240611
1.241117
1.241604
1.242074
1.242527
1.242960
1.243375
1.243776
1.244159
1.244526
1.244874
1.245210
1.245530
1.245833
1.246123
1.246398
1.246659
1.246905
1.247137
1.247357
1.247564
1.247759
1.247940
1.248108
1.248267
1.248411
1.248546
1.248669
1.248781
1.248884
1.248975
1.249058

Iti PN (>)

1.625
1.630 0.582696
1.635 0.583689
1.640 0.584679
1.645 0.585666
1.650 0.586650
1.655 0.587631
1.660 0.588608
1.665 0.589582
1.670 0.590553
1.675 0.591520
1.680 0.592484
1.685 0.593444
1.690 0.594401
1.695 0.595355
1.700 0.596304
1.705 0.597250
1.710 0.598192
1.715 0.599130
1.720 0.600065
1.725 0.600995
1.730 0.601922
1.735 0.602844
1.740 0.603762
1.745 0.604676
1.750 0.605586
1.755 0.606492
1.760 0.607394
1.765 0.608291
1.770 0.609183
1.775 0.610072
1.780 0.610955
1.785 0.611835
1.790 0.612709
1.795 0.613579

1.136054
1.135418
1.134791
1.134169
1.133551
1.132935
1.132319
1.131705
1.131092
1.130483

PL

0.581700
0.7265440
0.7277600
0.7289680
0.7301690
0.7313630
0.7325510
0.7337310
0.7349040
0.7360710
0.7372310
0.7383840
0.7395310
0.7406710
0.7418040
0.7429310
0.7440510
0.7451650
0.7462720
0.7473730
0.7484670
0.7495550
0.7506370
0.7517130
0.7527830
0.7538460
0.7549030
0.7559550
0.7570000
0.7580390
0.7590720
0.7601000
0.7611210
0.7621370
0.7631470

max )I(v) i

0.7253220
1.249217
1.249167
1.249112
1.249051
1.248985
1.248914
1.248838
1.248759
1.248675
1.248586
1.248494
1.248398
1.248299
1.248196
1.248088
1.247980
1.247868
1.247754
1.247638
1.247518
1.247398
1.247275
1.247152
1.247027
1.246901
1.246773
1.246644
1.246513
1.246383
1.246254
1.246122
1.245993
1.245861
1.245732



37 -

1.555 0.567475 0.7074330 1.249130 1.800 0.614444 0.7641510 1.245602
1.560 0.568507 0.70876100 1.249192 1.805 0.615305 0.7651490 1.245474
1.565 0.569536 0.71008000 1.249245 1.810 0.616160 0.7661420 1.245344
1.570 0.570564 0.71139100 1.249291 1.815 0.617011 0.7671290 1.245218
1.575 0.571589 0.71269500 1.249326 1.820 0.617857 0.7681110 1.245091
1.580 0.572611 0.71399200 1.249353 1.825 0.618698 0.7690860 1.244966
1.585 0.573632 0.71528000 1.249374 1.830 0.619534 0.7700570 1.244842
1.590 0.574649 0.71656100 1.249383 1.835 0.620365 0.7710220 1.244720
1.595 0.575665 0.71783500 1.249389 1.840 0.621191 0.7719810 1.244599
1.600 0.576677 0.71910100 1.249383 1.845 0.622011 0.7729350 1.244479
1.605 0.577687 0.72036000 1.249373 1.850 0.622827 0.7738840 1.244364
1.610 0.578695 0.72161100 1.249355 1.855 0.623637 0.7748270 1.244248
1.615 0.579699 0.72285500 1.249329 1.860 0.624442 0.7757650 1.244136
1.620 0.580701 0.72409200 1.249299

where .gi
PL (ri ,1)

PN(ri-1,l) - 0.0001

Proof of Theorem 5.

Note that XpL(Ti,a) <0c iff XPT(ti,C) < iff 2 <oo iff q > 1/2. Define the measure

M,U[O,Vl Y)L ('ri -(Yf (VoSsTi/f51-V)
Ma[vo,v 1] = XPL (i ,)

As q > 1/2, M<, is a probability measure. Now if Aj(v) is any function,

ZY(` )PL (t ,Ca)

XpL(=,a) fV(V)da(V).
Therefore, putting ij(v) = p(V)-1, the theorem is equivalent to f V(V)dMa(v) fJ(V)gq (V)dV. AS

g(v) is bounded and continuous ((3.2)-(3.3)), this will follow if we can show that Ma, converges weakly

to gq, i.e.

VI

Mj[vovuj] -o Jgq(v)dv (12.4)
vo

for O<v0<vI <oo. Now define the measure

Na[VO,V1] = C1/q #fi:VO<.¶/a<Vl)
From the definition of Na, and 'ri, we have

Nja[VoVI] = yIt f( _ lq ( )-l_q +Ra(Vov I)]

where IRaI < 2. Hence, if O<v0<v1<oo, we have as c-O0 that
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Nj[vo,v1] - Hq [VoViII (12.5)

where Hq[Vo,Vi] _(°)-1/4 _(I )-l Let hq(v) = cllq V-(l+lIq) be the density of the measure Hq.
C C

Now as PL (v,1) is continuous and bounded, (12.5) implies that for >0,

f PL (V ,j)dNa(v ) f|PL (V,l)hq(Yv)dv. (12.6)
£ e

Moreover, as lemma 7.2 (following) shows, for small a and e,

[PL(V,1)d1VO(V) < Ce q *'PL(V,1)Na(dV) (12.7)
6

It follows from (12.6), (12.7), and Fatou's lemma that

00

I PL(V,1)dNVa(v) * 1PL(V,l)hq(V)dV. (12.8)

Using (12.6) and (12.8) we then have

V1 vi

M PL(V,l)dN.a(v) f PL (V,l)hq (V)dV VI

M CS[V oyII= 0o fIgq(v)dv
PL (v , )dN'0(v) PL (v ,l)hq (v )dv

which establishes (12.4) and completes the proof. E

Lemma 11.2. For all sufficiently small co and ao, there exists C (co,ao) so that (12.7) holds for all e <£o

and all a<as0.

Proof.

E

f pL(v,1)dN(v) = 2i-2qI
0 2 ~~~~~~~~~~~~1-2q

< f c2(x-)-2qd = 2c1 [(ea/)-lq'_

IPL(V,1)dWa(v) 2 2|JPL(V ,1)dNr(V) = 2dcV
2 2~~~~~~~~~

> f c2(x+1)2dx 1 C __)-lq+2
(Te.)-I +o1 2 2q-1 Lc J

The ratio of the two terms is less than
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(I1_( C)11)12
2E2-ltq C

(1+2(a)lq)1-2q

so that (12.7) holds with

(1 + 2( -0)Iq )2q
C = 2 C .

(1_O e: )llq )2q-1

Proof of (8.5). Suppose first that t has a finite number of nonzero coefficients. Then

II(C-I)0112 = [(cu-)0i + cij Oj]2
i ~~~j*i

= (cij-1)20i + 2X, , (c -1) Oi cij Oj + c( 0 X0j)2
i i j* i j!li

2 II (Diag (C )_I )O II 2 + 2y, F, (cui -1) Oi ci; Oj (12.9)
j*i

Let now si be an i.i.d. sequence of ±1 gotten by tossing a fair coin. Let Oi = s5it. Let E denote expec-

tation with respect to coin-tossing measure. As E is linear, and all sums are finite,

E [ (cii- ) Oi cij Oj] (cii -1) cij ri rj E [si sj I
i j*i i j*i

As si and sj are independent, zero mean random variables under coin tossing measure,. Esisj =0. It fol-

lows that there exists 0 of the form (0i)=((±i) which makes the last term in (12.9) nonnnegative. (8.5)

follows.

The case of general t follows by approximation. O

Proof of (9.7)

E(0 -_0,)2 - 0 E(O=0)+E((-0-)211 .0)P(0,.0)

Now from (X_y)2 < 2(x2+y2)

E(( Oi)2 O 0 < 20 + 2Ef0 1 O'i .0)
But, as 02<y2and i e S

E (OV I Oj .O)P(0j *0) <
E (yi2 I y,2>C2a23)P (y,2>C2af2)

< 2 J (0i +az)2(z)dz
C-c

with 4 the density ofN (0,1). Using (x +y)2 <2(x2+y2), we get
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< 40i2 J 4z )dz + 4 z24(z )dz
C-C C-e

- 40i (1-4(C-E)) + 4a3(C-e)4(C-e)+ l-4(C-e))

Applying 1-<>(a) S
a
¢(a) (Mills' Ratio) and putting the pieces together gives (9.7). 0

Proof of Theorem 13.

We prove only the special case where all ai>0. Define new variables wi via wi= ai r. In terms of

these variables, the problem of finding the hardest rectangle is to Maximize

J(w) = Ymin(wi21P/ai2/pg,2)
i

subject to the constraints (C1) each wi .0, and (C2) Fwi < 1. As J is monotone increasing in each
i

wi, a maximum exists satisfying (C3) ,wi = 1. Moreover, as J is constant in wi as soon as w?P is

largerthan a2ai2P, it follows that a maximum exists satisfying (C4) each wi <o"ai. Let W denote the

set of w satisfying the constraints (Cl), (C3), and (C4). A maximum of J with respect to the original

constraints (Cl)-(C2) exists in the special set W, and W is convex.

The restriction of J to W is just Xwi2'Pla?2' -- this functional is convex, as p <2, and strictly

convex if p < 2. Any member ofW may be expressed as a mixture of extreme points, and by convexity

of J, the value of J at any member is less than the maximum value of J at some extreme point occur-

ring in this representation. It follows that the desired maximum value of J is the maximum over

extreme points.

An extreme point ofW can be characterized as follows. First, the coordinates sum to 1. Second,

in all but one coordinate, the coordinate value is either the minimum or the maximum value allowed for

that coordinate. In the remaining coordinate, the value is detennined by the condition that the coordi-

nate sum be 1. Let now an extreme point w be given, and let i be the indices of the coordinates taking

on their maximum possible values under (C4). The value of J at w is bounded by

£ (maimum allowed value for coordinate i )2' iai2'P = (Card (i)+l)c92 (12.10)
a:wi *0
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We now interpret (C4) in terns of the original t-variables. Given an extreme point w, define X

by xi = (wila5)11P. The condition that w satisfy (Cl) and (C2) implies that the corresponding point X is

in the positive orthant of 0; as we have argued before, orthosymmetry implies that 0(r)c0.The

extreme point w has the property that wi = (a2a,)P2 for i Ei. This is completely equivalent to saying

X,2_ for iEi. The rectangle 0(X) therefore contains the cube E0, (a,i) (n = Card (i)). Hence

0,, (a,i) c0, and so Card (i) < no(a). Hence (12.10) implies inequality (9.2). (9.1) is immediate. 0
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