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1. Introduction.

A statistic is ancillary if its distribution does not depend on the param-
eters of the model. It might appear at first sight as if ancillary statistics
could make no contribution to inference about these parameters. However,
as was pointed out by Fisher who first defined and named the concept (1925,
1934, 1935, 1936), this appearance is deceptive. By themselves ancillaries
of course carry no information about the parameters, but they may be very
useful in conjunction with other parts of the data.

Ancillarity has connections with many other statistical concepts, among
them sufficiency, group families, conditionality, completeness, information,
pre-randomization and mixtures. Its most important impact on statistical
methodology comes from the suggestion that inference should be carried out
conditionally given an ancillary statistic rather than unconditionally. For
small samples, the resulting conditional procedures could be less efficient
than their unconditional counterparts; however, they have the advantage
of greater relevance to the situation at hand and frequently are simpler.
Typically, the efficiency difference tends to disappear as the sample size
becomes large (see for example Barndorff-Nielsen (1983) and Liang (1984)).

Since ancillaries typically are not unique, the recommendation to condi-
tion on an ancillary is not sufficiently specific. Conditioning comes closest
to its purpose of making the inference relevant to the situation at hand if
the ancillary is maximal, i.e. if there exists no other (nonequivalent) ancil-
lary of which it is a function. The concept of maximal ancillary, which is
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basic to the theories of ancillarity and conditioning, was introduced by Basu
(1959) who showed that maximal ancillaries always exist!, but noted that
even they may not be unique. In the same paper he also pointed out some
measure theoretic complications which require the slightly weaker definition
of essential maximality for their resolution. Further results and some basic
examples were given in Basu (1964) and some additional generalizations in
Basu (1967).

Ancillarity is in a certain sense the dual to sufficiency. If T is a sufficient
statistic, then any inference can be based solely on T and the conditional
distribution of the full data set X given T is independent of the parameters.
Conversely, if V is ancillary, inference may be based entirely on the condi-
tional distribution of X given V, while the distribution of V' is independent
of the parameters. In this duality, a maximal ancillary corresponds to a
minimal sufficient statistic. They differ however in that a minimal sufficient
statistic is essentially unique and that explicit methods for its construction
are available, neither of which is the case for maximal ancillaries.

Systems including sufficient and ancillary statistics as special cases are
discussed in Basu (1967). Another common generalization of both suffi-
ciency and ancillarity are the corresponding concepts (partial sufficiency
and partial ancillarity) in the presence of nuisance parameters. Discussions
of these concepts can be found, for example, in Dawid (1975), Basu (1977),
and Barndorff-Nielsen (1978).

General discussions of various aspects of ancillarity are given by Cox
and Hinkley (1974), Hinkley (1980b), Buehler (1982), Kalbfleisch (1982),
and Lehmann (1986). A recent important development is the extension to
asymptotic ancillarity, i.e. statistics with limit distribution independent of
the parameters, and from that to higher order and local ancillaries. In the
present paper, we shall restrict attention to exact ancillaries with respect
to all unknown parameters, i.e. in the original sense considered by Fisher
and Basu. However, work on both partial and approximate ancillaries will

" 1For a more precise statement see Theorem 4.1



be included in the bibliography.

2. Relation to other concepts.

(i) Group families.

A group family or transformation model is obtained by subjecting a
random variable with a fixed distribution to a group G of transformations.
Any statistic V(X) that is invariant under § is ancillary. Thus in particular
a maximal invariant with respect to G is ancillary.

Example 2.1. Location family.

Let X = (Xi, ..., X,) be distributed according to a location family
with density

f(z1—6)---f(za—6).
This is a group family obtained by subjecting a random variable X =
(X1, ..., X,) with density f(z,, ..., z,) to the group of transformations

X/ =Xi+c, i=1,...;)')n, —0<c<oo.
A maximal invariant is the set of differences
Y=(X1—Xn, ey X,,_l—Xn).

This is the example with which Fisher introduced the concept of ancillarity.

For some general results for the case of group families see Barndorff-
Nielsen (1980).

(ii) Mixture experiments.

Suppose a family of experiment £,, z € Z is available, each experiment
consisting of a family of distributions P, = {P,4, 8 € 2}, labeled by the
same parameter 0, i.e. corresponding to the same states of nature. A value
of z is selected according to a known distribution II and the experiment
£, is performed, resulting in the observation of a random quantity X with
distribution P, 4. For the final result X of such a mixture experiment, Z is
ancillary since its distribution II is known.



Example 2.2. Two workers.
Let
E=(X,P), P={Py, b€ N}

& =(1,Q2), 2={Qs 6€Q}

be two experiments, corresponding for example to two different workers
A and B performing a needed experimental task. One of the workers is
chosen at random (with probability 1/2 each) and is assigned to perform
the experiment. Here a random variable taking on the values 0 and 1 as
worker A or B is chosen plays the role of Z. —The example, which was
first discussed in this context by Cox (1958), makes clear the appeal of
conditioning on the experiment actually performed.

Mixture models appear to represent a rather special case of models ad-
mitting ancillaries but in fact, unlike group families, they cover all cases.
To see this, suppose that X is distributed according to one of the distribu-
tions Py, 8 € Q and that V is ancillary for X. For each value v, let £, be
the experiment consisting in observing a random quantity X', distributed
according to the conditional distribution of X given v. Then X’ is the
outcome of a mixture experiment and its distribution is the same as that
of X.

Some authors have introduced distinctions between real and conceptual
(Basu, 1964) or experimental and mathematical (Kalbfleisch, 1975, 1982)
mixtures. However, these distinctions require going outside the postulated
models and are based on considerations involving other models.

(iii) Conditionality; pre-randomization.

Fisher’s suggestion that inference should be conditional on an ancillary
is called the principle of conditionality. As was discovered by A. Birn-
baum (1962), conditionality has surprisingly strong consequences for the
foundations of statistics since in conjunction with sufficiency it implies the
likelihood principle. For discussions of this result and its consequences see
Rao (1971), Basu (1975), Joshi (1983), Berger and Wolpert (1984), and
Evans, Fraser and Monette (1986).

Typically, conditioning on ancillaries seems reasonable. However, it
runs into difficulty when the design involves deliberate randomization (e.g.
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random selection of a sample, random assignment of subjects, or random
choice of a Latin square). Since the random selection process with known
probabilities is ancillary, the conditionality principle would require condi-
tioning on the selected arrangement, thus largely vitiating the purposes of
randomization. This difficulty is discussed, for example, in Basu (1969,
1978, 1980), Berger and Wolpert (1984), and Finch (1986).

(iv) Sufficiency.

Sufficient statistics provide data reduction without loss of information.
The amount of reduction that can be achieved in this way depends on the
situation.

‘Example 2.1. Location family (continued).

If the density f in Example 2.1 is the standard normal density, suf-
ficiency reduces the full n—dimensional sample X;, ..., X, to the single
statistic X = Y%, X;/n, regardless of the size of n. On the other hand, if
f is, for example, the logistic, Cauchy, or double exponential density, the
minimal sufficient statistic is the set of order statistics XL -ty £ Xn),
so that there is hardly any reduction. As discussed in Lehmann (1981),
the amount of reduction depends essentially on how much of the ancillary
information the minimal sufficient statistic retains.

(v) Completeness.

The most favorable situation for reduction by means of a sufficient
statistic T is that in which all ancillaries are independent of T. A suf-
ficient condition for this to occur is given by the following result which
(together with a converse) is known as Basu’s theorem (Basu, 1955, 1958,
1982 and Koehn and Thomas, 1975).

Theorem 2.1. (Basu).
If T is boundedly complete, then every ancillary is independent of T'.

That bounded completeness is not necessary for every ancillary to be
independent of T' can be seen for instance from examples in which the con-
stants are the only ancillaries. A condition that is necessary, but not suffi-
cient, is provided by the concept of weak completeness, introduced by Basu
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and Ghosh (1969), and independently in the present context by Lehmann
(1981) under the term Fo—completeness.

Definition 2.1. A statistic T is weakly complete with respect to a family
PT = {Py, 6 € Q} of distributions of T if

Eyf(T)=0 forall 62 = f(t)=0 (a.e.’PT)

for all two—valued functions f.

As we shall see later, this concept is central to the study of maximal
ancillaries.

Note. A (not very useful) completeness condition that is both necessary

and sufficient for every ancillary to be independent of T is given by Lehmann
(1981).

(vi) Conditionality and sufficiency in conflict.

The principles of conditionality and sufficiency may conflict, as in the
following example of Becker and Gordon (1983), which is essentially equiv-
alent to one considered in a different context by Fisher (1956 p. 47).

Example 2.3. Quadrinomial.

Consider n quadrinomial trials with the probabilities of the four out-
comes being

_l46  1-0 _1-6 246
D= 5ap2—' 5,P3— 5)?4"‘ 51 ’

and with Ny, ..., N4 denoting the numbers of the trials resulting in these
outcomes. Then T = (N;, N2 4+ N3, N,) is minimal sufficient and it
appears that there are no ancillaries based on T. On the other hand,
A = (N1+ N3, N3+N,) is clearly ancillary, and so is B = (N; +N3, N;+N,).
It seems clear to the present authors that here sufficiency should be given
priority over ancillarity, and inference should be based on T'. For otherwise,
given a trinomial situation with probabilities ((1 + 8)/5, (1 — 26)/5, (2 +
8)/5), (the distribution of T'), we would prefer a procedure that would
require dividing the trials in the middle category, each with probability 1/2
between two artificial subcategories. This seems very unappealing.
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(vii) Similar regions and regions of Neyman structure.

A set S in the sample space is a similar region with respect to a family
P = {Ps, 6 € Q} if Po(X € S) does not depend on 6, i.e. if its indicator
is ancillary. The set S is said to have Neyman structure with respect to a
sufficient statistic 7" if the conditional probability

P(X € S|t) is independent of ¢ a.e.

Suppose now that T is boundedly complete. Then by Theorem 2.1 ev-
ery ancillary — and therefore the indicator Is of any similar region — is
independent of T and therefore has Neyman structure. The characteriza-
tion of all similar regions as having Neyman structure in the presence of
a complete sufficient statistic is therefore mathematically (although not in
its interpretation) equivalent to Theorem 2.1.

(viii) Information.

Fisher’s primary interest in introducing ancillary statistics was the “re-
covery of information.” If Ix(@) and I;(f) denote the amount of Fisher
information in the sample X and the maximum likelihood estimator  re-
spectively, then it will often happen that? I;(6) < Ix(6), so that § is not
fully informative. Fisher discovered that the lost information can be recov-
ered if there exists an ancillary statistic V such that (é, V) is sufficient,
in the following sense. If Ij; () is the information carried by 6 in the
conditional distribution given V' = v, then

(2.1) B Iy(6) =" :(6).

‘For a discussion of the implementation of this program in two important
classes of models, see Barndorff-Nielsen (1980). When (2.1) holds, the
average conditional information equals the whole information in the sample;
for particular values of v, the conditional information of § given v may be
smaller or larger than Ix(6).

Recall now the other motive for conditioning on ancillaries: to make the
inference more relevant to the situation at hand. Cox (1971) points out that

2We have here assumed for the sake of simplicity that @ is real valued.



ancillaries are therefore most useful when the amount I,(6) of information
in the conditional distribution of X given v varies widely with v, so that
some values of v are much more informative than others. This point is
nicely illustrated by Example 2.2, where conditioning on the chosen worker
seems particularly important when there is a big difference in the quality
of their work.

In the light of this remark, Cox suggests that when the maximal an-
cillary is not unique, that ancillary should be preferred for which I,(9) is
most variable, e.g. for which the variance var[Iy(8)] is the largest.

3. Weak completeness.

The central concept for the characterization of maximal ancillaries is
weak completeness. It is easy to see that the definition of weak completeness
given in the preceding section is equivalent to the following statement.

(3.1) The family P = {P;, 6 € Q} is weakly complete if any measurable
set A with probability independent of 8 has probability 0 or 1.

This is the form in which the definition was given by Basu and Ghosh
(1969).

A simple restatement of (3.1) yields
Theorem 3.1. A family P admits no nontrivial ancillaries (i.e. any ancil-
lary statistic is almost surely constant) if and only if P is weakly complete.

To illustrate the situation of no ancillaries consider the following exam-
ples. '

Example 3.1. No ancillaries.

Let X; beindependent N(6;,1), i =1, ..., n. Then X =(X;, ..., X,)
is complete, hence weakly complete, and so there are no ancillaries.
Example 3.2. Sequential binomial sampling.

Consider a sequence of binomial trials, with success probability p and a
stopping rule (i.e. with probability 1 of eventually stopping). This can be
represented by a random walk in the plane starting at the origin, with a unit
step to the right for a success and a unit step up for a failure. The stopping
rule is represented by a set of stopping points. The observation is a path
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starting at (0,0) and ending at some stopping point (a, b). Since every path
ending at (a,b) has probability p®(1 — p)®, it follows that the coordinates
(a,b) of the stopping point constitute a sufficient statistic, which may or
may not be complete (necessary and sufficient conditions for completeness
are given in Lehmann and Stein, 1950). The path itself is of course not
complete except in the rare cases in which there is only one path to each
stopping point.

(i) In light of this it is very surprising that not only the endpoint but
also the path itself is weakly complete, provided the stopping rule has
a finite boundary point on the = or the y axis. To see this let S be a
set of paths with P,(S) = ¢ V p € (0,1). Suppose the stopping rule
has a finite boundary point (0,%k) for some k¥ > 1. Then the path =
from (0,0) to (0,k) is either contained in S or in its complementary set
of paths S°. It follows that either ¢ = Pp(S) > Py(m) = (1 —p)* = 1 or
1 —c = Py(S°) > Py(mo) = (1 —p)* = 1 as p — 0 so that either ¢ = 1 or
¢ = 0. The case of finite boundary point (k,0) is treated similarly. Hence
there are no ancillaries.

(ii) If there is no bound on the stopping rule along the z— or y-axis
then weak completeness may not obtain as the following example shows.
Perform the binomial trials in pairs until the first time that either (success,
failure) or (failure, success) is observed. Then the set S of paths that end
in (failure, success) has probability 1/2 for all p € (0, 1).

Note. Exactly the same result as in Example 3.2 with the same proof
applies to sequential sampling from trinomial (or any multinomial) trials.

The following example is due to Basu and Ghosh (1969) where many
additional examples can be found.

Example 3.3. Two-point location families.

Let X take on the two values 6 and 8 + ¢ with probabilities
PX=60)=n, P(X=0+c)=1—-7, —00<8< o0,

7 and ¢ known. Then X is weakly complete provided = # 1/2, but not
when 7 = 1/2. In the latter case any set A whose complement is A + ¢ has
probability 1/2, independent of 6.

It turns out that Theorem 3.1 is a special case of a general characteri-
zation of maximality for an ancillary statistic V, given in its proper setting
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in Theorem 5.1. Loosely, this characterization finds V' to be maximal if
and only if the family of conditional distributions of X given V is weakly
complete. In the situation of Theorem 3.1, where V' is constant, this family

of conditional distributions coincides with the family P of distributions for
X.

In the case when the only ancillary statistics are the a.s. constant
functions there (usually) does not exist a maximal ancillary (due to null
set problems) but a maximal ancillary o-field A,, does exists, see Theorem
4.1. The reason is that not every o-field is induced by a statistic. Since
the o-field induced by an a.s. constant function is essentially equivalent to
A, (to be made precise below) it makes sense to call such an a.s. constant
function essentially maximal ancillary; the alternative would be to admit
that there are no maximal ancillary statistics due to null set problems.
This state of affairs carries over to the general case and the above loosely
stated characterization is that of essential maximal ancillarity. Bearing

this in mind one may want to accept that characterization and skip or skim
Sections 4 and 5.

4. Notation and deﬁnitiohs.

Let (X,B) be an arbitrary measurable space and {Ps, 0 € Q} be a
family of probability measures on B. Considering X as the sample space
we denote the random element in X by X and write Py(X € B) = Py(B)
VB € B. We now give some definitions and a theorem taken from Basu
(1959).

Definition 4.1. A o-field A C B is said to be ancillary if Py(A) is constant
infdeQVAe A

Comment. One easily sees that A is ancillary iff [ f(z) dPy(z) is constant
in 6 € Q for all integrable and .A-measurable functions f : X — R.
Definition 4.2. ¥V : (X,B) — (¥,C) is a statistic (Ay := V~1(C) C B)
then V is said to be ancillary if Ay is ancillary.

Comment. Rather than dealing with (ancillary) statistics we follow Basu’s
example and continue the following theoretical exposition in terms of (an-
cillary) o—fields. When dealing with concrete examples we will use the more
intuitive term “statistic” in place of o—field. Hence it is understood that
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the following definitions in terms of o—fields have analogous counterparts
in terms of “statistics.”

Definition 4.3. An ancillary o—field A C B is said to be mazimal ancillary
if there exists no other ancillary o-field A* C B such that A C A*.

Theorem 4.1. (Basu, 1959). Given an ancillary o—field A C B there
exists a maximal ancillary o-field A,, C B such that A C A..

Definition 4.4.Two o-fields A;, A; C B are said to be essentially equiv-
alent if for any A, € A, (4; € A;) there exists an A4, € A; (4; € 4;) such
that

Py(A1A4) =0 YOeQ.

Definition 4.5. Any ancillary o-field that is essentially equivalent to a
maximal ancillary o—field is called essentially mazimal ancillary.

Comment. Although Theorem 4.1 guarantees the existence of a maximal

" ancillary o—field A,, containing any given ancillary o—field A the same does
not necessarily hold for statistics. The reason is that .A,, is usually too rich
to be generated by any statistic V.

The following definition of conditional weak completeness is a direct
adaptation of the concept of weak completeness to the conditioned case.

Definition 4.6. X given A is said to be conditionally weakly complete if
for any given function

9(z) = a(2)Ip(z) + b(z) Ip<()
with B € B, a(-) and b(-) A-measurable and such that
Vo e Ey(g9(X)|A)=0 a.s.(Ps)
we have
VoeQ Pyg(X)=0]A)=1 as.(P),
ie. Po(g(X)=0)=1V8e€Q.

An equivalent formulation of Definition 4.6, without the “a.s.” quali-
fiers, is

Definition 4.6.” X given A is said to be conditionally weakly complete if
for any given function

9(2) = a(z)Ip(z) + b(z)Ip<(z)
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with B € B, a(-) and b(-) A-measurable and such that

Ey(I4(X)9(X)) =0 VOEQ and VAe A

we have Py(g(X)=0)=1 Ve

Note that Definitions 4.6 and 4.6’ are not contingent on the existence of
regular conditional distributions. However, if X admits regular conditional
distributions given A a natural question is: how does weak completeness
of a family of regular conditional probability distributions relate to the
conditional weak completeness of X given A defined above? Lemma 4.1

will provide a partial answer under certain regularity conditions. These
conditions are as follows:

i) Q is a separable topological space,
ii) A is generated by the ancillary statistic V' : (X,B) — (J,C),

i) VoeY: {fo(:lv), 8 € R} is a family of conditional dcnsities for
X given V = v with respect to a o-finite dominating measure y on

(X,B),

iv) 3 N € C with P(V € N) =0 so that Vv € N¢
we have fy(z|v) — fg,(z|v) a.s. in z[u] whenever § — 6,

Lemma 4.1. Under conditions i)-iv) the weak completeness of the families
{fo(:]v), 8 € Q} V v € Nf with P(N;) = 0 implies the conditional weak
completeness (Definition 4.6) of X given A.

Proof: Let g be as in Definition 4.6, then for any § € Q we have
(41) 0=Eo(3(X)IV) = [ g()fo(=lV) du(z) a.s. P.

Since the exceptional null set may depend on 8 (through f;) we invoke
(4.1) for all @ in a countably dense subset of . Using Scheffé’s theorem in

conjunction with iv) it follows that there exists a set Ny € C such that for
v € N§ we have

0= / 9(z) fo(z|v) du(z) Vo€ Q
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which by weak completeness of the conditional densities entails for all v €
Ng

/ Igx)=0} fo(z|v) du(z) =1 Ve Q,

hence Py(g(X)=0)=1 Ve

It is not clear whether the converse of Lemma 4.1 is true under the
stated conditions.

5. Characterization of maximal ancillarity.

The following theorem will give necessary and sufficient conditions for
an ancillary o-field A C B to be essentially maximal ancillary. A special
case of Theorem 5.1 was proved by Basu and Ghosh (1969) for the case of
the dominated location family.

Theorem 5.1. f AC Bis a.ncxllary, then the following statements are
equivalent:

i) Ais essentially maximal ancillary.
ii) A B € B such that P;(B|.A) admits a version 5 (A-measurable)
independent of § € Q with P(0 < ¥5(X) <1) > 0.
iii) X given A is conditionally weakly complete.

Proof. i) = ii). A be ancillary and let B € B be such that Py(B|A)
admits a version 1p (A-measurable) independent of § € Q. First note that
the smallest o—field Ap containing both A and B is ancillary, since

P(ANB) = /A ¥s(z) dPz) A€ A

is independent of § € 2 (A is ancillary and ¥p is A-measurable and inde-
pendent of § € 2) and since this property extends to all of Ap by the usual
unique measure extension.

Next let Ag = {z € X : 0 < ¥p(z) < 1} € A. Assuming A to be
essentially maximal ancillary we can find A, € A such that N A1 A(AoN
B)e .AB has probability zero for all § € Q. Then

I (X) = Ly (X)Ip(X) V X € N°
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and taking conditional expectation given A we have
I, (X) = Ly (X)¥s(X) a.s.P; 6€Q
which implies P(0 < ¥p < 1) = 0, thus i) = ii).
ii) = iii). Let
9(z) = a(2)Is(2) + b(=)Ia:(z) = (a(z) - b(z))Is(z) + b(z)
B 6 B, a(-) and b(-) A-measurable such that
(5.1) VoeQ Ey(g(X)|A)=0 as.Pp.

Let Co = {z € X : a(z) # b(z)}, Bo = CoN B and

¥B.(2) = b(z)/(&(z) —a(z)) z€Co
=0 z € C§

The condition (5.1) on g implies that ¢3° may serve as a f—-independent
version of Py(By|A) V8 € R, since

0 = Ey(Ic, (X)g(X)|A) = (a(X) — ¥(X))Po(BolA) + (X )Ico(X) a.s. P,
X €Co = Py(BolA) = b(X)/(B(X) — a(X)) = ¥5,(X) as. Py

and for X € C§ = P3(Bo|A) =0 = 9p,(X) as. Py.
Condition (5.1) also implies

(5.2) 0 = Ey(9(X)Ios(X)IA) = 9(X)Ios(X) a.s. Py VOEQ.
Since P(0 < ¥p, <1) =1
ii) = P(p, € {0,1}) =1
= Ip,(X) = ¥5,(X) as. P, VOeQ
= g(X)I,(X)=0 as. P, VOeQ

14



0 = Eo(g(X)en(X)1A) = (a(X) = B(X)bz(X) + B(X)Ioo(X)

= (a(X) = 5(X)) 5, (X) + B(X)Ico (X) = I, (X)g(X) as. Ps VOEQ.

This together with (5.2) implies Py(¢(X)=0)=1 V8 € Q, i.e. i) = iii).
iii) = 1). By theorem 4.1 there exists a maximal ancillary o-field A,, D A.

Let Dy € A, and for some fixed 8, €  and some version FPy,(Do|A) let
¥Yp,(z) := Py,(Do|A), then for A € A:

/A Py(Do)A) dP; = Py(A N Do) = Py, (AN Do)

= [ #0u(@) Po(@) = [ ¥0(2) dPs(a),
i.e. p, may serve as a f-independent version of Py(Do|A) V 8 € . Let

9(z) = Ip,(z) — ¥p,(z)

then V 8§ € @  Ey(g9(X)|A) = 0 a.s. Py, which under iii) implies
Py(g(X)=0)=1 VOeQ,ie.

YD, (X) =Ip,(X) as. P, Ve

which shows A and A,, to be essentially equivalent, i.e. iii) = i) q.e.d.

6. Examples.

In the examples that follow it is understood that when claiming maximal

ancillarity what is really meant is essential maximal ancillarity. However,
these two concepts coincide when the null set idiosyncracies do not arise,
as in situations when that ancillary is discrete.
Example 6.1.With probability 1 let X;, ..., X, be iid. from N(4, 1),
and with probability 1 from N(6, 2). Let I = 1 or 0 as the first or the
second case obtains. Then V = (I, X; - X,, ..., X,; — X)) is maximal
ancillary since (I, X;, ..., X,) is equivalent to (X, V') and the conditional
distribution of X given V is complete.
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Example 6.2. Let X,, ..., X, be iid. with continuous and strictly
increasing c.d.f. F'. This model is invariant under the group G of common,
continuous, strictly increasing transformations X} = ¢(X;), ¢ =1, ..., n.
Maximal invariant is the vector of ranks (R, ..., R,) of the n X’s. Since
the group G is transitive, the maximal invariant is ancillary. Is it maximal
ancillary? Since the conditional distribution of the X’s given the ranks is
the same as the joint distribution of the rank permuted order statistics and
since the distribution of the latter is complete, hence weakly complete, it
follows that the ranks are maximal ancillary.

Example 6.3. In Example 6.2, suppose attention is restricted to F' with
median 0. Now the ranks are no longer maximal ancillary since the ranks
together with the number of positive observations are ancillary. This latter
ancillary is maximal since the order statistic given the number of positive
and negative observations are complete. (We are dealing with n, and n_
observations from arbitrary continuous and strictly increasing distribution
functions on (0, 00) and (—o0, 0) respectively. Note: This maximal ancillary
is a maximal invariant under a smaller group than in Example 6.2, namely
the group G of transformations g which are continuous, strictly increasing
and satisfy ¢g(0) =0.)

Example 6.4. Let X;, ..., X, beii.d. N(6,1). Here of course the vector
of differences (X3 — X,, ..., Xn,-1 — X,) is maximal ancillary since the
distribution of X is complete.

As has been pointed out by Basu (1959) and others, maximal ancillarity
does not mean that there are no other maximal ancillaries. As a well known
example, in the present case with n = 2, we have that V = (X;—X,)sign(X)
is ancillary. To see that it is also maximal note that (X;, X;) is equivalent
to (X, V) and that X and V are independent. Now the completeness of
X entails the conditional weak completeness of (X, V) given V.

Another maximal ancillary is V' = X; — X;. Which of these two ancil-
laries is preferable? The Cox criterion discussed in Section 2 (viii) does not
distinguish between them; however, a criterion advanced by Barnard and
Sprott (1971) applies and gives preference to X; — X, since it is invariant
under translations (see Padmanabhan, 1977).

Example 6.5. Let X;, ..., X, be ii.d. uniform on [0, 8§ +1). Here
(denoting by [z] the integer part of z) (X; — X, ..., Xao1 — X,,) together
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with X, — [X,] are ancillary and are easily seen to be maximal ancillary
since the conditional distribution of [X,] (all that is left of the data for
any fixed 6) given that ancillary is just a one point distribution which is
complete.

Basu (1964) treats this example in the case n = 1; Basu and Ghosh
(1969) treat the same example for the case of arbitrary n for which they
determine the maximal ancillary o—field.

.Basu and Ghosh (1969) show that a sufficient condition for weak com-
pleteness of the location family of densities {f(z — ) : 8 € R} is that the

characteristic function f (t) = [ exp(—itz)f(z) dz of f has at most a finite
number of roots on the real line.
Example 6.6. (Basu and Ghosh). Let X have density f(z — 6) with
f(z) = z? exp(—z?/2)/V2r. Since f(t) = (1 — t?) exp(—t?/2) which has
only two roots it follows that X is weakly complete and hence admits only
the a.s. constant functions as ancillaries.
Example 6.7. The general location family.Let X;, ..., X, beii.d.
~ f(z—0) where f(z) is a density with respect to Lebesgue measure on R.
The differences V = (V2, ..., V;) = (Xi — X;, ..., X; — X,)) are ancillary
and the question is for which f may one claim also maximal ancillarity?
Examples 6.4 and 6.5 show that the answer depends on f. The conditional
density of U = X, given V = v = (v3, ..., va) is he(ujv) = ¢ f(u—0)f(u—
0 —v;) -+ f(u—0—v,) with c being the appropriate normalizing constant.
Since this yields a univariate location family {hs(ulv) = h,(u—6): 6 € R}
with h,(z) = ¢ f(z)f(z — v2)- - f(z — v,) one could appeal to the above
sufficient criterion of Basu and Ghosh to establish weak completeness for
this family by showing that k,(t) has only a finite number of roots.
Unfortunately, the Basu—Ghosh criterion of a finite number of roots
frequently is not satisfied and then does not provide an answer concerning
maximality. Examples for which this is the case are the Cauchy and double
exponential distributions with n = 2.

Example 6.8. Cox and Hinkley (p.33, 1974) give the following simplified
version of an example due to Basu (1964) which points out the dilemma of
multiple ancillaries. Consider N quadrinomial trials with probabilities

1 1 1 1
6(1 - 0)7 g(l + 9)’ 6(2 - 9)’ 6(2 + 0) .
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If the number of outcomes in the four categories are X, U, Y, V, respec-
tively, then X + U is ancillary, as is X + V. The question is whether either
is maximal ancillary. The answer is somewhat surprising and still mostly a
conjecture.

(i) First consider the case of X +U. The conditional distribution of (X,Y")
given X+U=m,Y+V =n, (n+m=N)is that of two independent
binomial random variables, distributed respectively as b(p,,m) and b(pz, n)
with p; = (1 — 6)/2 and p, = (2 — 6)/4. Since the conditional expectation
of X/m —2Y/n+1/2 vanishes for all § we do not have conditional bounded
completeness, whenever m > 1 and n > 1. If m =0 or n = 0 completeness
follows easily.

To establish weak completeness (conditionally) one needs to show that
for any indicator function f(z,y) with constant conditional expectation
for all @ it follows that f is either identically one or zero with conditional

probability one. For 0 < a < 1 consider therefore the following identity for
all 6:

£ 5 (1) () (59 (597 (5 (459

Show that f = 0 and f = 1, or equivalently that @ = 0 and a = 1, are the
only solution. Reparametrizing A = (1 — 6)/(1 + 6) the identity becomes

a .

m

2 Z": f(z,y) (T:) (:) A7(14+30)Y(3+ A)*Y = ad™(1 + A)™*" .

z=0 y=0

Comparing the coefficients of A' and A™*+"*~% for i = 0, 1, 2 on both sides
of the identity and exploiting the binary nature of f it is easy yet tedious
to show weak completeness for the following cases: 1) n =1 and m = 1,
m > 3 and 2) n =2 and m > 1. For the case (m,n) = (2,1) we don’t have
weak completeness as can easily be seen by using f(0,1) = f(2,0) =1 and
f(z,y) = 0 otherwise.

Using the reparametrization A = (2 — 6)/(2 + 6) one can show weak
completeness for all (n,m) with3) m =1andn > 1 and 4) m = 2 and

n > 1 (no counter example here). The above approach does not appear
promising for the situations n > 3 and m > 3.
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(ii) Similar results can be obtained when considering the other ancillary,
X + V, except that the above counter example does not obtain, i.e. the
conditional distribution of (X,Y) given X + V = m is weakly complete for
(m,n) in the following cases 1) n =1and m > 1,2) n =2and m > 1,
3)ym=1landn>1,4)m=2andn>1.

What does this mean with respect to maximal ancillarity of X + U and
X +V? For N = m +n < 5 the latter is maximal ancillary whereas the
former is maximal ancillary for N = 1, 2, 4, 5 but not for N = 3. The
maximality in the cases N > 5 at this point can only be conjectured.

References

Amari, S. (1982). Geometrical theory of asymptotic ancillarity and condx-
tional inference. Biometrika 69, 1-17

Andersen, E.B. (1967). On partial sufficiency and partial anci]la.rity. Skand.
Aktuar. Tidskr. 50, 137-152.
Barnard, G.A. and Sprott, D.A. (1971)." A note on Basu’s examples of

anomalous ancillary statistics. In: Foundations of Statistics (Godambe
and Sprott, eds), Holt, Rinehart and Winston. Toronto.

Barndorff-Nielsen, O. (1978). Information and ezponential families in sta-'
tistical theory. John Wiley. New York

Barndorff-Nielsen, O. (1980). Conditionality resolutions. Biometrika 67,
293-310.

Barndorff-Nielsen, O. (1983). On a formula for the distribution of the
maximum likelihood estimator. Biometrika 70, 343-365.

Basu, D. (1955). On statistics independent of a complete sufficient statistic.
Sankhya 15, 377-380.

Basu, D. (1958). On statistics independent of a sufficient statistic. Sankhya
20, 223-226.

Basu, D. (1959). The family of ancillary statistics. Sankhya (A) 21, 247-
256.

719



Basu, D. (1964). Recovery of ancillary information. Sankhya (A) 26, 3-16.
Basu, D. (1967) Problems relating to the existence of maximal and minmal
elements in some families of statistics (subfields). In Proc. Fifth Berkeley
Symp. on Math. Statistics and Probability Vol. 1, 41-50, Univ. of Calif.
Press.

Basu, D. (1969). Role of the sufficiency and likelihood principles in sample
survey theory. Senkhya 31, 441-454.

Basu, D. (1971). An essay on the logical foundations of survey sampling.
In: Foundations of Statistics (Godambe and Sprott, eds), Holt, Rinehart
and Winston. Toronto.

Basu, D. (1975). Statistical information and likelihood (with discussion).
Sankhya (A) 37, 1-71.

Basu, D. (1977). On the elimination of nuisance parameters. J. Amer.
Statist. Assoc. 72, 355-366. ,

Basu, D. (1978). Relevance of randomization in data analysis. In Survey
Sampling and Measurement (Namboodiri, ed.) 267-292.

Basu, D. (1980). Randomization analysis of experimental data: The Fisher
randomization test (with discussion). J. Amer. Statist. Assoc. 75, 575-
595.

Basu, D. (1982). Basu Theorems. In Encycl. Statist. Sci. 1, 193-196.
Basu, D. and Ghosh J.K. (1969). Invariant sets for translation-parameter
families of measures. Ann. Math. Statist. 40, 162-174.

Becker, N. and Gordon, I. (1983). On Cox’s criterion for discriminating
between alternative ancillary statistics. Int. Statist. Rev. 51, 89-92.
Berger, J.O. and Wolpert, R.L. (1984). The Likelthood Principle, IMS
Lecture Notes—Monograph Series, Vol. 6.

Birnbaum, A. (1962). On the foundations of statistical inference (with
discussion). J. Amer. Statist. Assoc. 57, 269-306.

Buehler, R.J. (1982). Some ancillary statistics and their properties. J.
Amer. Statist. Assoc. 77, 581-589.

Cox, D.R. (1958). Some problems connected with statistical inference.
Ann. Math. Statist. 29, 357-372.

20



Cox, D.R. (1971). The choice between alternative ancillary statistics. J.
Roy. Statist. Soc. (B) 33, 251-255.

Cox, D.R. (1980). Local ancillarity. Biometrika 67, 279-286.

Cox, D.R. (1984). Discussion of a paper by F. Yates. J. Roy. Statist. Soc.
(A) 147, 451.

Cox, D.R. and Hinkley, D.V. (1974). Theoretical Statistics, Chapman and
Hall. London.

Dawid, A.P. (1975). On the concepts of sufficiency and ancillarity in the
presence of nuisance pasrameters. J. Roy. Statist. Soc.-B 37, 248-258.

Efron, B. and Hinkley, D.V. (1978). Assessing the accuracy of the maxi-
mum likelihood estimators: observed versus expected Fisher information.
Biomeirika 65, 457-487.

Evans, M., Fraser, D.A.S. and Monette, G. (1986). On principles and
arguments to likelihood. Can. J. Statist. 14, 181-200.

Finch, P.D. (1986). Randomization I. In Encycl. Statist. Sci. 7, 516-519.
Fisher, R.A. (1925). Theory of statistical estimation. Proc. Camb. Philos.
Soc. 22, 700-725.

Fisher, R.A. (1934). Two new properties of mathematical likelihood. Proc.
Roy. Soc. (A) 144, 285-307.

Fisher, R.A. (1935). The logic of inductive inference. J. Roy. Statist. Soc.
98, 39-54.

Fisher, R.A. (1936). Uncertain inference. Proc. Am. Acad. Arts and Sci.
71, 245-258.

~ Fisher, R.A. (1948). Conclusions fiduciaires. Ann. Inst. Henri Poincaré
10, 191-213.

Fisher,. R.A. (1956). Statistical Methods and Scientific Inference, Oliver
and Boyd. Edinburgh.

Fraser, D.A.S. (1973). The elusive ancillary. In: Multivariate Statistical
Inference, edited by D.G. Kabe and R.P. Gupta, North Holland, American
Elsevier.

Fraser, D.A.S. and Reid, N. (1988). On conditional inference for a real

parameter: A differential approach on the sample space. Biometrika 75,
251-264.

21



Gordon, I. (1983). Ancillarity and minimal sufficiency. Austral. J. Statist.
25, 273-277.

Hinkley, D.V. (1980a). Likelihood as approximate pivotal distribution.
Biometrika 67, 287-292.

Hinkley, D.V. (1980b). Fisher’s development of conditional inference. In
R.A. Fisher: An Appreciation (101-108). Springer. New York.

Hosoya, Y. (1988). The second order Fisher information. Biometrika 75,
265-274.

Joshi, V.M. (1983). Likelihood principle. Encycl. Statist. Sei. 4, 644—647.

Kalbfleisch, J.D. (1975). Sufficiency and conditionality (with discussion).
Biometrika 62, 251-268.

Kalbfleisch, J.D. (1982). Ancillary Statistics. Encycl. Statist. Seci. 1,
77-81.

Kempthorne, O. (1986). Randomization II. Encycl. Statist. Sei. 7, 519-
524.

Koehn, U. and Thomas, D.L. (1975). On statistics independent of a suffi-
cient statistic: Basu’s Lemma. Amer. Statist. 29, 40-42.

Lehmann, E.L. (1981). An interpretation of completeness and Basu’s the-
orem. J. Amer. Statist. Assoc. 76, 335-340.

Lehmann, E.L. (1986). Testing Statistical Hypotheses. 2" Ed. John Wiley.
New York.

Lehmann, E.L. and Stein, C. (1950). Completeness in the sequentlal case.
Ann. Math. Statist. 21, 376-385.

Liang, K.Y. (1984). The asymptotic efficiency of conditional likelihood
methods. Biomeitrika 71, 305-313.

Padmanabhan, A.R. (1977). Ancillary statistics which are not invariant.
Amer. Statistician 31, 124.

Rao, C.R. (1971). Some aspects of statistical inference in problems of sam-
pling from finite populations (with discussion). In: Foundations of Statis-
tics (Godambe and Sprott, eds), Holt, Rinehart and Winston. Toronto.

Sandved, E. (1967). A principle for conditioning on an ancillary statistic.
Skand. Aktuar. Tidskr. 50, 39—47.

22



Sandved, E. (1972). Ancillary statistics in models without and with nui-
sance parameters. Skand. Aktuar. Tidskr. 55, 81-91.

Skovgaard, I. (1986). Successive improvement of the order of ancillarity.
Biometrika 73, 516-519.

Sverdrup, E. (1966). The present state of the decision theory and the
Neyman-Pearson theory. Rev. Int. Statist. Inst. 34, 309-333.

Young, A. (1986). Conditioned data-based simulations: Some examples
from geometrical statistics. Rev. Int. Statist. Inst. 54, 1-13.

23



