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Abstract

We propose a procedure for the locally optimal window width in nonparametric
spectral estimation, minimizing the asymptotic mean square error at a fixed frequency
A of a lag-window estimator. Our approach is based on an iterative plug-in scheme.
Besides the estimation of a spectral density at a fixed frequency, e.g. at frequency A =
0, our procedure allows to perform nonparametric spectral estimation with variable
window width which adapts to the smoothness of the true underlying density.
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1 Introduction

The well known nonparametric estimators for the spectral density of a stationary, real-
valued process all involve a smoothing parameter, the bandwidth for the smoothed peri-
odogram or the window width for the lag-window estimators (cf. Priestley (1981)). These
parameters are of crucial importance and can influence the outcome of a spectral estimate
very much. We treat here the problem of local window width selection for lag-window
estimators in nonparametric spectral density estimation. We introduce an iterative plug-
in estimator for the optimal local window width, minimizing the mean square error of a
spectral estimate at a fixed frequency A. We derive some asymptotic results and obtain
under appropriate mixing conditions on the underlying process, which implies a highly
smooth behavior of the corresponding spectral density, the rate of order nl/2te (¢ > 0)
for the relative error. Our estimation procedure is motivated by the work of Brockmann
et al. (1993). They propose an iterative plug-in estimator for the optimal local bandwidth
in nonparametric regression for i.i.d. observations. A different approach is given by Chiu
(1990). In particular the iterative nature of their plug-in procedure is an attractive idea
which we adapted for spectral estimation. A nice feature of these methods is its simple
underlying idea and its fast computability.

Often the estimation at frequency A = 0 is interesting. The asymptotic variance
of the arithmetic mean of stationary observations equals the spectral density at zero of
the observation process. Thus, to construct an approximate confidence interval for the
expectation based on the mean we need to estimate the corresponding spectral density
at zero. Brillinger (1994) proposes a wavelet estimator for reconstructing a deterministic
signal from observations with additive stationary errors. For the limiting variance of
this estimator one needs an estimate of the spectrum at zero of the error process. The
same is true for kernel estimators in nonparametric regression with stationary errors.
Another application of interest is the blockwise bootstrap in time series (cf. Kiinsch
(1989), Politis and Romano (1992), Biihlmann (1994)). There, the optimal blocklength
minimizing the mean square error of the bootstrap variance of a linear statistic depends
again on a corresponding spectral density at zero.

Similarly as in Brockmann et al. (1993) we describe a modified procedure for adaptive
lag-window spectral estimation over the whole interval [0, 7] with variable window width.
In particular for spectra with peaks there is an advantage of using variable window widths.

In spectral estimation Beltriao and Bloomfield (1987) have given a global bandwidth
choice for kernel estimators based on cross-validation, see also Beltrao and Hurvich (1990).
Miiller and Gasser (1986) use some autoregressive fitting (with fixed order) for the same
objective and Park and Cho (1991) give some estimators of the integrated squared spec-
tral density derivatives which could be used for a plug-in estimator for global bandwidth
selection of a kernel estimator. Nothing seems to be known about optimal local bandwidth
selection.

The finite sample behavior of our procedures is illustrated in a simulation study and
on a published data-set.



2 Window width selection

We consider a stationary process { X;}+cz and for simplicity we always assume that E[X;] =
0. Furthermore we assume that {X;};cz has a spectral density f which can be written as

f() = (2r)! f: R(k)e ™% —_z <A<, (1)

k=—o0

where R(k) = Cov(Xo, Xi) = E[X0Xk]. In the following we denote by

n—|k|
R(k)=n""! Z XXy (k] £n—1)

t=1

a nonparametric estimate of R(k).
The representation (1) motivates the so called lag-window estimator for f:

oo}

fub)y=(2m)7" 30 w(kb)R(k)e ™, —r <A<, (2)

k=—o00

where the window width b is a function of n with b = o(1) (n — o), bn — oo (n — o0)
and w is a so called window.

Definition 1 w is ¢ window if w: R — R* is even with w(0) = 1. w is a C"-window, if.
the window w is r times continuously differentiable (if the support of w is finite, one-sided
r-th continuous differentiability at the boundaries is sufficient) (r € N). A C"-window
has characteristic ezponent r if w*¥)(0) = 0 (k < r), w((0) # 0 (r € N) (cf Priestley
(1981)).

The outcome of f (A; b) usually depends strongly on the nuisance parameter b and therefore
the problem of estimating b is of crucial importance.
Examples for windows are:

Bartlett window: w(z) = maxz(0,1 — |z|).

(14 cos(rz))/2 : |z| <1,

Tukey-Hanning window : w(z) = { 0 : Jz/>1

The asymptotic bias and variance of the estimator in (2) are well known, under some
regularity conditions it holds that (cf. Priestley (1981)):

Bartlett window:

E[f(X;0)] = () ~ —bf(N),
Var(f(x;6)) ~ «(A)b™"n™"2/3(f(A)*. (3)

where f(A) = (27)"' o2 _, |k|R(k)e~"** (generalized first derivative) and ¢(A) =
1+ 1j0,~m,n}1(A)-



C?-window:

E[f(X;0)] - f(A) ~ =1/2w"(0)b2 D) (N),
Var(F(A;6)) ~ c(A)b~1n! /oo w¥(2)dz(f(N)?, (4)

where f(2)(,\) = —(27r)"1 Y2 o k‘zR(k)e““‘)‘,

The case with the Bartlett window is interesting because this window spectral estimate
is directly related to the blocklength ¢ for the blockwise bootstrap in time series. The
connection is based on an equivalence of the bootstrap variance of the mean to the Bartlett-
window spectral estimate at zero with window width ¢=! (see Biihlmann and Kiinsch
(1994)).

The mean square error MSE(X;b) = E[(f(A;b) — f()))?] provides a local measure
for the quality of the estimate at A, the global behavior can be measured by the mean
integrated square error MISE(b) = E[f™_(f(A;b) — f(A))2dA] = JT. MSE(X;b)d)\. We
introduce now the asymptotic mean square error. Consider an estimator U, for . The
asymptotic bias By, (Uy, ) and the asymptotic variance Vo (Uy,) are defined as the leading
terms of the bias and variance respectively such thatE[U,]-8 ~ B, (U,,0) and Var(U,) ~
Vo(#). Then the asymptotic mean square error of U, for 8 is defined as AMSE(U,,0) =
(Boo(Un, 0))? + Voo (Uy). By formula (3) or (4) respectively we get the asymptotic mean
square error AMSFE(A;b) and AMISE(b). We define the optimal value of the local or
global window width as

bopt(A) = argmin,AMSE(X;b), bop = argmingAMISE(b).
Set down by Parzen (1957,1958), we obtain now by simple calculus:

for the Bartlett window:

2
bopt(A) = ™2 ((A) % )3,

o, TN e
G, )

bopt =

for the C%-window:

4 Too WA (z)dz (£ (N))?
bopt(A) = n /2 (L(X) f(um(())()zzf(ﬂ(/\))2 "
) oSy w?(z)dz ff'rr(f(’\))2d’\)l/5.

(w"(0))? [Z, (fP(A))2dA

bopt = n-l/5(

(6)

The formulas (5) and (6) are somewhat disappointing since the optimal window widths
depend on the unknown spectral density. One way out of this impasse is to plug in some
estimates for the unknown spectral density and its (generalized) derivatives. Our approach
relies on an iterative plug-in method.



2.1 Iterative plug-in for local window width selection

Our procedure is in its ideas similar to the one of Brockmann et al. (1993). However, our
context is completely different, the estimators we consider are in the frequency domain of
stationary time series, whereas their estimates are in nonparametric regression for i.i.d.
observations. We use an iterative scheme which consists of global- and local iteration-
steps, i.e., we first estimate b,p; and then use this global estimate for a local estimate of
bopt(A) at some frequency A.

Formula (5) or (6) respectively indicate, that one has to estimate different quantities
depending on the unknown spectral density f. Denote by w(.) and w(.) windows with
finite support which can be different from the window w(.) of the estimator defined in (2).
We consider the following estimators:

k*—n+l

—l

R(k)e=**)2d\ for /_ " (FA)2dA

((2m)~! k——n+1 R(k)e™** is the periodogram);

fa(x;b) = (2m)7 1 i w(kb)R(k)e=** for f(A);
k=~—00
FP ) = (2m) ! f‘, o(kb) k| R(k)e™** for fH()),
k=—00
FD ) = —(2m)1 i w(kb)k?R(k)e™"** for f(2)(,\)
k=—o00

Remark 1. The estimate ((27)~! Z;ln-i-l R(k)e="**)2/2 is not consistent for (f(}))?,
whereas the integral is \/n-consistent (see Lemma 1, Section 4). For the integral of the
(generalized) derivatives of the spectral density one has to use again a window having
width b such that b = o(1), bn — oo. :

Remark 2. Because kR(k) and k2R (k) are usually not decaying very fast as a function
of the lag k we propose to take a splitted rectangular-cosine window for estimating f(1)(.)
or f(2)(.) respectively, e.g.,

1 : |z/ <08
w(z) =< (14 cos(5(x —0.8)7))/2 : 08<|z| <1
0 : otherwise

The specific choice for the cut-off point 0.8 is based on some simulation results.

Procedure for the Bartlett window:
We denote by @ and @ C%windows with characteristic exponent > 2.

(I) Let by = n~! be the starting window width, independent from the data.

(IT) Global steps: According to (5) iterate

_1/3(1/2f Hm) T R R(k)e_m\)zd)‘)l/z’ i=1,...,4.
3f_7r Au‘; A; bz—1n4/21))2d’\ , s




(IIT) Local step: According to (5),

(fo(X; bant/21))?
3(f (1)(/\; bynt/21))2

6opt(/\‘) = n—1/3(1’( )

Procedure for the C?-window:
To have a faster algorithm we start with n~1/2; note that bopt is also of a smaller order in
this case. Denote by @ and w C?-windows with characteristic exponent > 2.

(I) Let bo = n~1/2 be the starting window width, independent from the data.
(IT) Global steps: According to (6) iterate

p-v/s d wh@)dal /2 [T ((2m) " Ly Rk)e )N
(w(0))2 7, (FE (X; bi_yn#/45))2d\

(III) Local step: According to (6),

booi(A) = n~ /3, 12 w(z)dz(fa(r; bentl19))? |
P( ) ) ( (’\) (’LU”(O)) (f(2)(/\ b n4/45))2

Remark 3. In the global steps the deterministic terms are dominating, that is why
the global steps stabilize the procedure (compare with Brockmann et al. (1993)). After 4
global steps the procedure achieves the correct asymptotic order, i.e., by = const.n~1/3(14
op(1)) or by = n~Y/3(1+0p(1)) respectively. Based on the results of a simulation study we
propose to perform only one local step, further local iterations do not appear to improve
the rates of the error terms. Moreover, they could be dominated by stochastic terms which
again could cause a loss of accuracy of the algorithm.

Remark 4. The inflation factor n*/?! or n%/#% is motivated by asymptotics and leads

to an estimate for the window width with best possible order. It can also be seen as an
adjustment to the optimal order for estimating f (1)(.) or f)(.) respectively; note that the
error terms arising from estimating the (generalized) derivatives are dominating. Smaller
factors improve the rate of bias at the expense of variability (see Theorem 2).
We also tried to inflate only the window width for the estimates of the derivative f(1)(.)
or f(2)(.) respectively, and to use no inflation factor for the local estimate of f(.). Based
on results from our simulation study it seems that in general this version of the procedure
is less stable and less accurate.

Remark 5. Based on empirical evidence, we propose to take for w the Tukey-Hanning
window (see discussion following (2)) and for @ the split rectangular-cosine window as
given in Remark 2. A simulation study yields similar results by using the cut-off point
1.0, i.e., the rectangular window. :

Remark 6. By using Parseval’s identity for expressions of the form
ST (@2m) 1o g(k)e™™F)2dX = (2m) 7! T§-_. g%(k) we can avoid numerical integra-
tion.

We are going to make the following assumption:



(B1) {Xi}iez is stationary with E[X,] = 0, 3777, _ —ocumn(Xo, Xij, ..., Xiy_,) < 00
for h < 8 and

o0

Z(i + 1)*|R(3)| < oo for the Bartlett-window procedure
1=0

Z(i + 1)®|R(7)| < oo for the C%-window procedure.

1=0

(B2) w and w are C?-windows with finite support and characteristic exponent 2 (cf.
Definition 1).

(B3) The frequency of interest A € [—m, ] satisfies:

FW(X) # 0 for the Bartlett window procedure,
F@(X) # 0 for the C?-window procedure.

Remark 7. The summability of cumulants up to order 8 holds for example for strong-
mixing (cf. Rosenblatt (1985)) processes with 752, (i+41)%af/(144+9)(3) < 0o, E|X,|3+% < oo
(6 >0).

Remark 8. In Remark 5 we propose a window @ which is C® with characteristic
exponent co. This is more than we assume in assumption (B2) but does not change the
asymptotic results in the following Theorems 1 or 2. ‘

Remark 9. Very often (B3) holds at the frequencies —, 0, 7, where the spectral density
has local extrema.

Theorem 1 Assume that (B1)-(B3) hold.
Then we have:

Eopt(A) = bopt(A) (1 + Op(n"2/7)) for the Bartlett window procedure,
bopt(A) = bope(A) (1 + Op(n~%%)) for the C*-window procedure.

To see the effect of the characteristic exponent r of a window and of an arbitrary
inflation factor n¢, we give a more general result. For such factors we have to iterate over
m global steps, where m is the smallest integer satisfying m > 2/(3¢) for the Bartlett
window procedure and m > 3/(10¢) for the C%-window procedure respectively. Our
assumptions are:

(B1’) {X.}iez is stationary with E[X;] = 0, fo’_“’,-h_l:(,cumh(Xo,X,-l,...,X,-h_l) < 00
for h <8 and forr € N
Z(z +1)"*2|R(i)] < co for the Bartlett-window procedure
1=0

Z(z + 1)"**|R(i)| < oo for the C*-window procedure.
1=0

(B2’) w and @ are C"-windows with finite support and characteristic exponent r.



Theorem 2 Assume that (B1’),(B2’) and (B3) hold.
Then we have:

bopt(A) = bopt(A) (1 + O(n™"/*+7¢) +-O(n™%) + Op(n™/%)) (1 + op(maz {n~7/*+7¢, n=%/2}))
(0 < ¢ < 1/3) for the Bartlett window procedure,

bopt(A) = bopt(A) (1 + O(r™7/547¢) + O(n™¢) + Op (n™5¢/%)) (1 + op (maz{n~"/5+7¢, n=5¢/2}))
(0 < ¢ < 1/5) for the C*-window procedure.

If the autocovariances decay exponentially, e.g. for ARMA-models, and for windows
of order oo, (B1’) and (B2’) hold for r = co. Then we almost achieve the parametric rate
by choosing ( arbitrarily close to 1/3 or 1/5 respectively, i.e.,

Bopt(A) = bopt(A)(1+ Op(n~Y**)) (¢ > 0) for both window procedures.

The proof of Theorem 1 is given in Section 4, the proof of Theorem 2 follows exactly
the same lines.

2.2 Iterative plug-in for semi-local window width selection

Some problems remain at frequencies A for which f()(X) = 0 or f(?)(A) = 0 (inflection
point), respectively. In these cases the formulas (5) and (6) respectively for b,p:(A) do not
hold anymore. As in Brockmann et al. (1993) we propose an alternative procedure which
is a step away from the purely local algorithm above. We replace the local step (III) by

62;rtniloc.(/\) — ,n—l/3( L(A)Sf@(Av b4n4/21))2 1/3
32 (J5) (X ban*/21))2d
for the Bartlett window;

6scmiloc.(/\) — n—l/s l’(’\) f.?ooo w2(z)da:(f,;,(,\;b4n4/45))2 1/5

(w(0))? J.(F§) (s bant/45))2dA

, ¢ = byn?/?!

4/45
b

, C= b4n
for the C?-window.

If (B3) holds we can always use the purely local estimation and do not need the modifica-
tion above. However, if we are interested to estimate the spectral density as a function of
frequencies in [0, 7] with locally adaptive window widths, we suggest to use the modified
version to obtain a curve without some artificial spiky peaks at frequencies, where (B3)
fails to hold.

3 Simulation Study

We investigate the finite sample behavior of our procedures. The data are simulated from
autoregressive processes X; = Zf=1 ;i Xi—i + €42

(M1) AR(1) model: ¢; = 0.8, ¢ i.i.d. M(0,1)..

(M2) AR(2) model: ¢y = 1.372, ¢, = —0.677, ¢, i.i.d. N(0,0.4982).

(M3) AR(5) model: ¢; = 0.9, ¢ = —0.4, ¢3 = 0.3, ¢4 = —0.5, ¢5 = 0.3, &; i.i.d. N(0,1).
The spectral densities of (M1)-(M3) are given in Figure 1 and 2. The lag(1)-correlations
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in (M1) and (M2) are approximately equal, whereas the lag(2)-correlations differ consider-
ably. By choosing 02 = 0.4982 in (M2) we force Var(X;) in (M2) to be equal to Var(Xy)
in (M1). The model (M2) exhibits a ‘pseudo-periodic behavior’, the corresponding auto-
correlation function can be described as ‘damped periodic’ (cf. Priestley (1981), Chapter
3.5.3); this phenomenon is not present in model (M1). The models (M1) and (M2) are
considered in simulation studies in Kiinsch (1989) and Biihlmann (1994). We choose the
sample size n = 480 and n = 120. To compare the estimation procedures at the differ-
ent models we do not vary the distribution of the innovations. Our procedures are not
restricted to the normal distribution. Our study is always based on 300 simulations.

(M1) (M2)
<t 1 -
o
™ o
~ o |
o
o 1 r T - o v T v Y v T T
0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0

Figure 1: Spectral densities of (M1) and (M2)

3.1 Estimation at frequency zero

We consider the purely local estimates with adaptively chosen w1ndow widths for the
spectrum of a stationary process at zero.

To estimate the spectrum at zero we consider f,,(0;b) as defined in (2) with
(E1) w(z) = max(0,1 — |z|) (Bartlett window),
(E2) w(z) = max(0,1 — |.|) * max(0,1 — |.])(z) (convolution of the Bartlett window).
By using (5) and (6) we can compute the optimal window width (under the assumed
model). The following table reports the performance of f (O;i)opt(O)) in comparison with
f(0; bopi(0)). The estimates Bap,(O) are calculated according to our proposal in Remark
5, and using the inflation factors minimizing the total error as in Theorem 1. For each
of the 300 simulations we compute f(o; I;opt(O)) with its individual window width Eopt(()).
We denote by RMSE' the relative mean square error MSE(£(0,b,,:(0)))/f(0)? and by
M S E-ratio the ratio MSE(£(0, b,pi(0)))/MSE(£(0, b,p:(0))). An estimate of the standard
deviation of RMSFE is given in parentheses.



n =480 | f(0) | E[f(0;b,p:(0))] | S.D.(f(0;5,,:(0))) | RMSE | MSE-ratio

(M1),(E1) | 3.98 2.95 0.91 0.118 (0.006) 1.09
(M1),(E2) | 3.98 3.06 0.92 0.106 (0.006) 1.06
(M2),(E1) | 0.85 1.00 0.22 0.098 (0.007) 1.81
(M2),(E2) | 0.85 0.94 0.27 0.109 (0.008) 1.70
(M3),(E1) | 0.99 0.80 0.16 0.064 (0.004) 1.33
(M3),(E2) | 0.99 0.85 0.16 0.048 (0.004) 0.87

n =120 | £(0) | B[f(0;b0pe(0))] | S.D.(f(0;6,2(0))) | RMSE | MSE-ratio

(M1),(E1) | 3.98 2.00 0.91 0.299 (0.010) 1.14
(M1),(E2) | 3.98 2.13 0.95 0.274 (0.010) 1.07
(M2),(E1) | 0.85 1.07 0.34 0.227 (0.023) 1.27
(M2),(E2) | 0.85 1.21 0.41 0.336 (0.030) 1.96
(M3),(E1) | 0.99 0.77 0.23 0.102 (0.006) 0.89
(M3),(E2) | 0.99 0.82 0.26 0.098 (0.007) 0.63

The method (E2) usually has smaller bias than (E1) at the expense of variability. From
a mean square error point of view there is no overall optimality, (E2) is better in model
(M1) and (M3). This is in accordance with the theoretical minimal relative AMSE. The
performance measured in terms of RMSFE is in all cases quite satisfactory.

Our adaptive procedure works well in model (M1) considering the M .S E-ratios, this
might be due to the simple structure of the autocovariance function. The ‘damped-
periodic’ autocovariance function in model (M2) might be an explanation for the bigger
M S E-ratios. The large M S E-ratio in (M3),(E1) for n = 480 can be explained by the be-
havior of the spectral density around zero, in particular the fluctuation of the generalized
first derivative: the optimal window width in (E1) is larger than in (E2) and hence the
estimation is disturbed by other local extrema of the spectral density in a neighborhood
around zero (cf. Figure 2).

The variability of Z»opt(()) is in all the cases quite large. The same fact also occurs in
the global bandwidth selection procedure of Beltrao and Bloomfield (1987). Nevertheless,
our procedure works quite well for the original aim, i.e., the estimation of the spectral
density at zero.

3.2 Estimation of the whole spectrum

We consider the semi-local version of our plug-in procedure for the estimation of the
whole spectrum. For comparison we also studied a global plug-in procedure which is our
algorithm stopped after the iteration over the global steps (II).

Figure 2 shows the estimates with semi-locally and globally adaptive chosen window
widths based on a realization of model (M3) with sample size n = 480. The local procedure
is everywhere at least a little bit better and considerably better in the peaks. This also
justifies to use a local procedure for estimating the spectral density at zero, i.e. at a
local extremum. The window width is adapting to the flat and rough parts of the true
underlying spectral density.

A common criterion for comparison is the (one sided) mean integrated relative square
error (M]RSE)E[fO"((f(/\) —F(A)/f(AN)2dA] = Jot RMSE(X)dA (cf. Beltrao and Bloom-
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field (1987)). We actually computed the integrated square error as

(n+ D)7 S OG) = FON/FAN A = i/,

7=

Spectral estimates Window widths
N
o | N
v o‘ T o ___l
@ |
o
Q
© | S
o
<
o. ] 8 -1
o
(qV]
S
o | S
o T T L) T T T T o T T L L3 L] T L)
0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0

Figure 2: Estimation (E2) for (M3) with n=480; true spectral density (solid line), semi-
local procedure (small dashes), global procedure (large dashes).

The following tables show the MIRSE, computed over 300 simulations. The estimates
are according to Remark 5 with cut-off point 1.0 for w. An estimate of the standard
deviation of MIRSFE is given in parentheses.

n =480 | MIRSE,local | MIRSE, global
(M1),(E1) | 0.075 (0.002) | 0.077 (0.002)
(M1),(E2) | 0.059 (0.001) | 0.040 (0.001)
(M2),(E1) | 0.172 (0.003) | 1.011 (0.023)
(M2),(E2) | 0.082 (0.002) | 0.063 (0.003)
(M3),(E1) | 0.119 (0.003) | 0.441 (0.010)
(M3),(E2) | 0.070 (0.002) | 0.132 (0. 010)
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n =120 | MIRSE,local | MIRSF, global
(M1),(E1) | 0.201 (0.007) 0.246 (0.010)
(M1),(E2) | 0.164 (0.005) 0.132 (0.005)
(M2),(E1) | 0.677 (0.023) 4.168 (0.169)
(M2),(E2) | 0.357 (0.013) 0.486 (0.031)
(M3),(E1) | 0.473 (0.017) 1.580 (0.052)
(M3),(E2) | 0.292 (0.012) 0.590 (0.028)

The estimation method (E2) (C?-window) outperforms (E1). The semi-local procedure
is always better for method (E1). The global estimate usually has a smaller variability (cf.
Lemma 1 (iii) or Lemma 7 (ii)) than its local counterpart. However, the global procedure
estimates a window width which is not optimal with respect to the MIRSFE. The tendency
of the global procedure to have a smaller variability explains the better performance of the
global procedure in (M1), (E2) for both sample sizes and in (M2), (E2) for n = 480. But
the semi-local procedure is in these cases only slightly worse, whereas the gain for more
spiky densities as in (M3) is much bigger, and we conjecture that it yields better results
particularly in the peaks which is also interesting from an explanatory point of view.

Finally we tested our method on the delicate AR(4) data-set from Percival and Walden
(1993) (equation (46a) and figures 45, 313, 314). Tapering of this data-set is crucial (see

Globally adaptive spectral estimate

dB
10

-10

0.0 0.5 1.0 1.5 20 2.5 3.0

Figure 3: AR(4) series from Percival and Walden: true spectral density (solid line), global
procedure (small dashes).

Percival and Walden, chapter 6.18), so we modified our procedure in the obvious way
by noting that formula (6) will change under tapering. We used a Parzen lag-window
estimator, as in Percival and Walden, and for ease of computability the Hanning taper
which differs a little from the NW=2 dpss-taper in Percival and Walden. The global
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procedure does at least as good as the method in Percival and Walden, our inverse adaptive
window width is 1/b,,; = 170.9, whereas they mainly consider 1/b = 128 and 1/b = 256
(see Figure 3). We point out that our method is not designed for estimating the spectrum
on the variance-stabilizing dB-scale, however for reasons of comparison with Percival and
Walden and because the true underlying spectral density is almost zero and flat at low
and higher frequencies, we show our result on this scale. The almost constant zero-ness
of the spectral density at low and higher frequencies makes it more difficult for the local
procedure to work well. The ratio (f/f(?))2, which governs the optimal window width,
takes values in a reasonable range, and thus compensates the flat almost zero-ness (i.e.,
f =0, f =~ 0). But estimation of f@) is less accurate than estimation of f and usually
destroys the latter compensation effect. The locally adaptive procedure selects at these
frequencies a very small window width, yielding almost the periodogram-estimates for the
lag-window estimator. The global procedure overcomes this problem.

4 Proofs

We first give the proof in the case of the Bartlett window procedure. We denote by Gg(b) =
T ((2m)= SR R(k)emtk)2dA _

_1/3 2 f 3f (;(1)(;;))2‘1/\ )1/3 and LB(/\ b) = n 1/3(1, ) !fw!?)\bb“))z 1/3 the
expressions correspondlng to the global and local steps for the Bartlett window. For the
iteration steps in our procedure we have to evaluate Gg(.) and Lg(A;.) at some stochastic
b. This causes some additional difficulties (see Lemma 2 and 3).

In the sequel we denote by const. different constants. These constants are functions of
higher order cumulants of {X;}:ez and we implicitly assume that these constants do not
vanish, which usually holds under dependence. Otherwise we would even get better rates
of convergence.

Lemma 1 Assume that (B1)-(B3) hold. Let b be deterministic with b = o(1), bn —
0o (n — 00).

"Then:
(1)
E[1/2 Z R(k)e™**)2d\] — / (f(A\)2dX ~ const.n™ !,
_" k=-n+1
Var(l/2 Z R(k)e"*M)2d\) ~ const.n™
_" k=—n+1
(ii)

E[ (l)(/\ b))2d\] - (fD(A) 2\ ~ const.b® + const.b™3n71,

7I'

Var(/ (F9)(A:8))2dA) ~ const.b~5n "2 + const.n™1,
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(iii)

Gp(b) = bom(lt O(max{b?,6=%n~"}) + Op(max{6=>*n~",n"1/2})) | b~3n~1 =0(1),
const.b(1+ op(1)) , b73n7! 5 co.
Proof:
(i) By Parseval’s identity we have:
i n—1 . ) n—1 A
(@07 Y R(k)e™*Ma=(2m)7t YT R(k).
- k=—n+1 k=—-n+1

Assertion (i) follows now by Lemma 11 (i) and (ii).
(ii) As above we get:

oo

/ "D = 2t Y w(kb)K2RR(K).
- ' k=—o00

Assertion (ii) follows now from Lemma 11 (iii) and (iv).
(iii) The assertion follows by a Taylor expansion and (i) and (ii). a

Lemma 1 tells us only about the behavior for some deterministic window width b.
The hope is that for a stochastic b = b(1 + op(1)) (b deterministic) the iteration-function
G B(i)) behaves asymptotically the same. In the next Lemma we give a uniform result in
an arbitrary small compact set, i.e., we show stochastic equicontinuity for Gg(.) which

allows us to describe the behavior of the iteration-function for some stochastic b.

Lemma 2 Assume that (B1)-(B3) hold. Let by be deterministic with by = o(1), bon —
0o (n = o0). Denote by Uy, (6) = [bo(1—6),bo(1406)] (6 > 0). Let a(n,by) be a normalizing
constant such that a(n, bo)n!'/3G g(bo) = Op(1), (a(n,bo)n'/3Gp(bo))~! = Op(1).

Then: Ve > 0Vn >0 36 (0 <6 < 1) and 3ng € N such that

P[ sup a(n,bo)n'/3|Gg(b) — Gg(bo)| > €] < n Vn > ng (b deterministic).
b€U, (8)

Proof: The proof is given in Section 4.1. O
Lemma 3 Assume that (B1)-(B3) hold. Let b = b(1 + op(1)), where b is deterministic

with b = o(1), bn — 0o (n — 00).
Then: Gg(b) = Gp(b)(1+ op(1)).

Proof: We have:

a(n,b)|Gp(b) — Gp(b)|

_sup_a(n, b)|GB(8) — GB(0)|Ljey, sy + a(n, b)(IGBB)] +IGB(B)) gy,
beUy($)

=1 Fi(n) + F(n), (7)

IA

a(n,b) as in Lemma 2.
Because |b—b| = op(b) it holds that for every § > 0: n'/3Fy(n) = op(1). Hence by Lemma
2 and (7) we obtain: Ve > 0 Vn > 0 Ing € N such that

Pla(n,b)n'/*|G(b) — GB(b)| > €] < 7,
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ie., QB(B) — Gp(b) = op(n~3(a(n,b))"") and therefore:
Gp(b) = Gp(b) + op(n~'/*(a(n,b))™") = Gp(b)(1+ op(1)). o

By Lemma 1 (iii) and Lemma 3 we are able to control the global steps (II) of our
procedure. We denote by c¢; some constants in R.
by = c;n /2 (1 4+ 0p(1)) (by Lemma 1 (iii));
bk = Gp(ck-1n" T/ (1 4 0p (1)) = cxn ™ HH4/2 (1 + 0p(1)), k = 2,3;
by = Gp(can™/?) (1 + 0p(1)) = bopt(1 + 0p(1)).

Now, let us in turn consider the local step (III). As for the global steps we analyze
first the behavior for some deterministic window width 4 and show then that the effect of
a stochastic width b with the same order is negligible.

Lemma 4 Assume that (B1)-(B3) hold. Let b be deterministic with b = o(1), bn —
oo (n — o).

Then:
(i)
E[(f5(X;0))F = (f(A))? ~ const.b? + const.b™'n"!,
Var((fa(A; b))% ~ const.b™ a1,
(i1)
E[(f(A;8))3] — (FD(N)2 ~ const.b? + const.b~3n"!,
Var(( 1(;,1)(/\; b))?) ~ const.b™3n"t.
(iii)
LB(A;0) = bope(A) (14 O(b?) + Op(b~3/2n~1/2)).
Proof:

(i) It is well known that

E[fa(X;0)]— f(A) ~ const.b?,
Var(f,;,(/\; b)) ~ const.b™'n"!,

(see also (3)). Hence the assertion for the expectation follows. For the variance we write:

Var((fo(A;0))?) =
(QLW)2 ST w(kid).. 0 (kqb)e~ M E1ttk) Cov(R(ky) R(k2), R(k3) R(ks))-

kl ,...,k4=—00

The assertion follows now by Lemma 11 (v) (see Section 4.1).
(ii) By (8) and (9) (see Section 4.1)) we get:

E[f (A 8)] - FD(N) ~ const.b?,
Var( “)(/\ b)) ~ const.b™>n71.
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Hence the assertion for the expectation follows. Similarly as for Var(fz(A;b)) the result
for the variance follows by Lemma 11 (v).
(iii) follows directly from (i), (ii) and a Taylor expansion. ]

Very similarly to the global steps we give the results for the local step which involves
a stochastic window width.

Lemma 5 Assume that (B1)-(B3) hold. Denote by Uy, (6) = [bo(1 — &), bo(1+8)] (6 > 0),
where by ~ const.n™1/3+¢ (0 < ¢ < 1/3) is deterministic. Let d, = min{bj?, bg/znlﬂ}.
Then: Ye > 0Vn >0 36 (0<d < 1) and Ing € N such that

P[ sup n'/3d,|Lp(b) — Lp(bo)| > €] < 7 Vn > ng (b deterministic).
beUbo(‘s)

Proof: The proof is given in Section 4.1. a

Lemma 6 Assume that (B1)-(B3) hold. Letb = b(140p(1)), where b ~ const.n=1/3+¢ (0 <
¢ < 1/3) is deterministic.
Then: Lg(A;b) = Lp(A;b)(14 op(mazx{n=2/3+2¢ n=3¢/2})),

Proof: As in the proof of Lemma 3 we can show by using Lemma 4 and 5 that
Lp(A;b) — Lp(A;b) = op(n~1/3d7Y), with d,, = min{b52,bg/2nl/2}. This completes the
proof. a

By Lemma 4 and 6 we obtain for the local step (III):

I;opt(/\) = L(A;bsn’?) = Lp(X; const.n™' /3442y (1 4 op(n=2T))
= bop(A)(1+Op(n=2T)).

Note that the inflation factor n%/?! is of optimal order leading to the error term Op(n=2/7).
Lemma 4 (i) and (ii) tell that the O-terms in Lemma 4 (iii) cannot be improved (unless
one of the constants vanishes). This explains why further iterations do not improve the
asymptotic rate in Theorem 1.

The proof of Theorem 1 in the case of the C%-window is very similar. Denote by
o L n —1 51 B (k) e—iAk)2
15 2 wi(z)dz1/2 [T ((27) bosngt RB)eT2
Gob)=n=( (@ (0)? = (7P (b))% )% and
T W (@)dz(fa(A:h))?
Le(x;b) = n-1/5(d= 200
) = R a2
Instead of Lemma 1 (ii) and (iii) we have:

)1/5 the expressions corresponding to the C2-window.

Lemma 7 Assume that (B1)-(B3) hold. Let b be deterministic with b = o(1), bn —
o0 (n — 00).
Then:

(i)
E[ (fg)()\; b))2d/\] - (f(2)(/\)2d)\ ~ const.b® + const.b=°n"!,

Var(/ ( ;(;,2)(/\; b))2d\) ~ const.b™n"? 4 const.n™!,

-7
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(ii)

Go(ty = | b1+ O(max{B,6=5n=1Y) + Op(max{t=>/7n=",n=2))) | 404 = 0(),
YT const.b(1+ op(1)) , b7°n71 5 co.

Proof:
(i) By Parseval’s identity we have:

[ uPra= oo 3 KR,
k=-—o00

/ G0N =@ 3 @ (ko) R (k).

k=—0o0
Hence (i) follows by Lemma 11 (iii) and (iv).

Assertion (ii) follows by (i), Lemma 1 (i) and a Taylor expansion. o

Lemma 8 Assume that (B1)-(B3) hold. Let b = b(1 + op(1)), where b is deterministic
with b = o(1), bn — oo (n — 00).
Then: G¢(b) = Ge(b)(1+ op(1)).

Proof: The Lemma can be shown in the same way as Lemma 3. We prove stochastic
equicontinuity (see Lemma 2) with the same arguments. Note that we have to replace
some constants, e.g. n~'/3 by n=1/% =3 by b~ etc. .. ]

By Lemma 7 (ii) and Lemma 8 we analyze the global steps (II) of our procedure. We
denote by ¢; some constants in R.

by = e;n=37/9%0(1 4 0p(1)) (by Lemma 7 (ii)):
b = G (cp_y n~ V204451 4 op(1)) = pn~1/24K4/95(1 L op(1)), k=2,3;
by = Gp(can™ /(1 4 0p (1)) = bopi(1 + 0p(1)).

For the local steps we need the following two Lemmas.

Lemma 9 Assume that (B1)-(B3) hold. Let b ~ const.n™'/5*¢ (0 < ¢ < 1/5) be deter-

ministic.

Then:
(i)
E[(f2(A;6))% = (P (A))? ~ const.b® + const.b™®n™",
var((ff,.f’(,\; b))?) ~ const.b>n"",
(ii)

Lo (A;5) = bopr (M) (1 + O(b?) + Op(b~3/2n~1/2),

Proof: For assertion (i), the expectation part follows from (8) and (9), the variance
part follows by Lemma 11 (v). Assertion (ii) follows by (i), Lemma 4 (i) and a Taylor
expansion. O
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Lemma 10 Assume that (B1)-(B3) hold. Let b= b(1 + op(1)), where b ~ const.n=1/5+¢
(0 < ¢ < 1/5) is deterministic.
Then: LC(/\; b) = Lc(A; b)(]_ + OP(max{n—2/5+2<, n“SC/2)).

Proof: The Lemma can be shown in the same way as Lemma 6. We prove stochastic
equicontinuity (see Lemma 5) with the same arguments. Details. are left to the reader. O

By Lemma 9 and 10 we complete the proof of Theorem 1 for the C%-window, the
inflation factor n*/#® leads to the error term Op(n~%/°). Lemma 4 (i) and Lemma 9 (i)
tell that the O-terms in Lemma 9 (ii) cannot be improved (unless one of the constants
vanishes), therefore further local iterations do not improve the rate for the C?-window in
Theorem 1.

4.1 Additional proofs

We first give some results for the estimated autocovariances.

Lemma 11 Assume that (B1)-(B3) hold, if necessary a distinction between the Bartlett-
and the C*-window procedure will be made with the index r = 1 and r = 2, respectively.
Let b be deterministic with b= o(1), bn = oo (n = ).

Then:
(1) 1
1 n— R (o o] 2 3
EE[k Z R*(k)] - Z R*(k) ~ const.n™.
=—n+1 k=—o00
(it)
n—1 . .
> Cov(R*(ky), R*(k2)) ~ const.n™".
ki, ky=-n+1
(ii1)
E[ > @*(kb)k R (k)] - Y k™ R%(k) ~ const.b® + const.b™> " n"! r=1,2
k=—-0c0 k=-00
(iv)
SO @ (kib)w?(keb) (k1) (k2) 7 Cov(R2(ky), B2 (ky))
ky ky=—ox )

~ const.b™ " 1n"2 4 const.n™!, r=1,2.

(v) If b=3n~1 = o(1),

Yo w(kib) .. w(kab) k| .. . |ka|" e M EHHR) Cov(R(ky) R(k2), R(ks)R(k4))
kl ..... k4=—00
~constb™ ¥ 1p7l r=0,1,2.
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Proof: (i) Observe that
E[R(K)] = R(k)(1 - |k|/n), | (8)

n—|ki| n—|kz2|
Cov(R(k1), R(k2)) =n"2 Y Y {R(t1 — t2)R(t1 — t2 + k1 — k2)

t1=1 to=1

+ Rlti—t2 - k)R(ti —t2 + k1) +cum‘i(xinXt1+|k1|’Xt21Xt2+|k2|)} 9)

By (8) and assumption (B1): k__n+1E2[R )] = %2 R%(k) ~ const.n™
By (9) and again (B1) we have:

n—1 n—1 n—|k|
Z Var(R(k)) ~n~ Z Z 2ty —t3)
k=—n+1 k=—=n+1t;,to=1
- n—|k|-1 ' n—1 n—|u|-1
~ n7? Z Y. R(w)n-lkl-|u)=n"? Y R*u) D (n—|kl—]|u)
=n+1 u=—n+|k|+1 u=n+1 k=—n+|u|+1
n—1
= n? Z R*(u)(n — |u|)? Z R*(u
u=-n+l u=—00

Assertion (i) follows now by using the identity E[R?(k)] = Var(R(k)) + E*[R(K)].
(ii) By using well known results about cumulants of a two way array of random variables
(cf. Rosenblatt (1985), Theorem 2, Chapter II):

Cov(R?(k1), R*(k2)) =
4E[R(k1)IE[R(k2)]Cov(R( 1)
B[R (ky)]cums(R(ky), B(ks)

cunu(i%(h) R(kl) ( 2), R(k

R(k ))+2qu2(R(k1),R(kz))+ ,
R(k2)) + 2E[R(ka)]cuma(R(k1), R(k1), R(k2)) +
2))- (10)

To analyze the third- and fourth-order cumulants we use again the combinatorical results
about cumulants (cf. Rosenblatt (1985), Theorem 2, Chapter II):

cumg(R(kl), R(k2), R("’S)) =
n—|k1 | n—|ka| n—|ks|

n=3 Z Z Z thm(X,-J.;ij Ev).. .cum(X,-J.;ij € Vp),

ty=1 to=1 1t3=1 v
cumg(R(ky), R(k2), R(k3), R(ks)) =
n—|k1 | n=lkz| n—lka] n—|ka|

- Z o3 S Y eum(Xisi; € m) .. ccum(Xisi; € vp), (1)

ti=1 tr=1 ta=l t4=1 Vv

where the summation )~ is over all indecomposable partitions v; U ...U v, of the corre-
sponding two-way table, i.e.,

Xty X4k Xt Xi4ik|
Xt, Xiytlks) Xty Xtyilky
Xt3 Xt3+|k3| th Xt3+|k3|

X, Xi4+|k4|'
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By (8) - (11) and assumption (B1) assertion (ii) follows.
(iii) By a Taylor expansion we obtain:

w(kb) = ®(0)+ 1/20"(€)(kb)?
= 1+ 1/2@"(€)(kb)%, 0 < £ < kb.

Now assertion (iii) follows by (8), (9) and (B1).
(iv) By (8)-(11) and (B1) we get by a straightforward calculation:

(o]
left hand side of (iv) ~ (const.n™! 4 const.n™? Z w*(kb)k*") (1 4 0(1))
k=-00

b—4r-—ln—2

~ const + const.n™!

(the const.n!-term stems from the first term on the right-hand side of (10), the next
term from the second term on the right-hand side of (10), the third and fourth term on
the right-hand side of (10) and the fourth-order cumulant term in (10) are of negligible
order).

(v) More generally than (10) we have:

Cov(R(ky)R(ks), R(ks)R(ks)) =

STE[R(ki,)JE[R(ki,)|Cov(R(ki,), R(ki,)) +
Py

Cov(l?(k:l ), R(ka))qou(é(@), R(k:,)) + Cov(R(kl): R(k4))cov({‘z(k2), 1?(1«3)) +
ZE[R(kil )]Cumi’»(R(kiz )’ R(kia)s R(k,’,)) + cum4(R(k1), R(k2)7 R(k3)’ R(k‘l))v

P2
. - . .. 1 2
where P; = {indecomposable partitions i; U iy U {i3,14} of 3 4 1
. ... . . 1 2
P, = {indecomposable partitions i; U {i3,13,14} of 3 4 }-

By a straightforward calculation using (8), (9), (11) and (B1) we get:

o0

left hand side of (v) ~ {4(f)(A\)%(A)n71672 S w*(kb)[kb|*"(f())?
k=—0c0
£ S SRR (FA)DPH(L + o(1))
k=—0c

~ const.b™? " 1p

(the first term stems from the terms in ) p , the second from the product covariance
terms, the terms in 3 p, and the fourth-order cumulant term are of negligible order; the
assumption b=3n~! = o(1) allows us to use some rough bounds for the negligible terms,
we do not strive for maximal generality and use this additional assumption which actually
yields no restriction for our procedures). ]

Proof of Lemma 2:
Denote by D(b) = ff,,(f,f-})(,\;b))‘*d)\, DY(b) = ¢(n, bo) D(b) with ¢(n, bo) = a(n, bg)~1/3.
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Then ¢(n, bo) is a normalizing constant for D(b) (b ~ const.by), i.e., D¥(b) = Op(1) and
(Dt (b))~ = Op(1) for b ~ const.by. We will show stochastic equicontinuity of D¥(d), i.e.,
Ve >0Vn >036 (0<é<1)and Ing € N such that

P[ sup |DY(b) — D(bo)| > €] < 0. (12)
beUbo(‘s)

To prove (12) we replace the supremum by a discrete maximum plus an error term, the
idea of this approach is well known (cf. Billingsley (1968), Theorem 12.2 and Theorem
22.1). The discrete neighborhoods of b are defined by Vi, = {bo(1+0i/Kpn;i=0,... Ky},
View = {bo(1 = 8i/K,);1=0,...,K,}l, where K,, = [b54c(n,b0)] + 1 and [z] denotes the
greatest integer < z. Then:

sup |D'(b) — DY(bo)| < max |D'(b) - D¥(bo)| + sup |D'(b) — D'(z)|, (13)
bEUs, (6) b€ViowUVupp bEU4, (5)

where z, € Vypp, U Vi, is the closest point of b € Uy, (6).
Let us now analyze the difference D1(b;) — D1(by) for by ~ const.by, by ~ const.by. We
have:

DY(by) = DY(ba) = ¢(n, bo) i (w?(kby) — w? (kb)) k?R%(k), (14)

k=—o00

where by the Lipschitz continuity of the window |@?(kb;) — w?(kby)| < const.by'|by — ba|.
From (14) we obtain by the Cauchy-Schwarz inequality the estimate:

|DY(b) — DY(2)| < const.c(n, bo)by*|b — 2| R*(0).

Since supyey, (s) |b— 2| < §/K, < bd(c(n,bo)) 16 we arrive at:
Ve >0Vn>036 (0<é<1)and Ing € N such that

P[ sup |D'(b)— D¥(z)| >¢] < n. (15)
b€, (8)

On the other hand:

tp) — Dt ba)| < t(p) - Dt tp) — Dt
bev‘{gﬁﬁmll) (b) D(bo)l_bren‘gzplD (6) D(bo)l+br€n‘g§ulD (6) = D'(bo)l-  (16)

From (14), the Lipschitz continuity of w, (8), (9) and (B1) we obtain:
[E[D! (b)) — D(b2)]| < const.by'|by — by| (by ~ const.bg, by ~ const.bp). (17)

From (14), the Lipschitz continuity of w, (8)-(11) and (B1l) we obtain (compare with the
proof of Lemma 11 (iv)):

Var(D(b)) — DY(ba)) < const.by?|by — by)? (by ~ const.bg, by ~ const.bg). (18)

Let us consider maxpev,,, |Dt(b) — D*(bo)|. Denote by v; = bo(1 + 6i/K,) i =0,...,K,
and S; = Y)_,(D'(v;) — DY(v,_1)) = D'(vj) — D'(bg). Then for j > it S; — S; =
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D¥(v;) — DY(v;), vj — vi = bod(j — i)/ K. By (17) and (18) we get for j > i
Ve >0Vn>036 (0<d<1)and Ing € N such that
P[|S; - Si| > €] <e72C8%j - i|*/ K2 = ( Z u,)?, u, = e 'VC8/K, (C a constant).
‘ i<r<j
Hence by Theorem 12.2 from Billingsley (1968): Ve > 0 Vn > 0 36 (0 < 6 < 1) and
Jne € N such that

t(p) — D = . —2v52
Plmax DY) - DYoo)l > &) = Pl max 15| > ¢l <e72C8 <, (19)
by choosing & sufficiently small. Analogously for P[maxsev,,, |DT(b) — Dt(bo)| > €].

By (13), (15) and (19) we have shown (12).

By using a Taylor expansion we have:
a(n, bo)(GB(b) — Gp(bo)) =

T n—1
nTA1/6 [ ((2m)7h YD R(k)em%)2dA]M3(=1/3)[c(n, bo) I (n)]*3(D(5) — D' (b)),
- k=—n+1
where ¢(n,bo)I(n) = Dt(by) + T(Dt(b) — Dt(bo)) (0 < 7 < 1). By (12) we have:
¢(n, bo)I(n) = D¥(bo) + op(1) uniformly for b € Uy, (8), D(b) — D¥(bo) = op(1) uniformly
for b € Uy, (8). We complete the proof by Lemma 1 (i). a

Proof of Lemma 5:
The proof follows closely the lines of the proof of Lemma 2. Denote by Q(A;b) =
(fo (X 6))2, S(A;b) = (ZS—,”(/\;b))? By Lemma 4 (i), (i) and since by ~ const.n™!/3+¢,
(0 < ¢ < 1/3) we don’t need any normalizing constants for Q(A;b) and S(X;b). We show:
Ve>0Vnp>034(0<4d<1)and 3Ing € N such that

P[ sup da|Q(A;b) - Q(A;bo)| > €] < m, (20)
beUbo(‘s)

P[ sup d,|S(A;b0)— S(A;bo)| > €] < 1. (21)
beUbo(‘s)

To show (20) and (21) we proceed in the same way as in the proof of Lemma 2. Instead
of (14) we have:

Q(A01) — Q(A;09)
= S (w(kiby)w(kabr) — (kiba)(kabz))e M 1R R(ky) R(k), (22)

ky,kp=—00
S(A;by) = S(A;ba)
= ¥ (W (k1b1)W(kaby) — W (kyba)w(kaba))|ka||kzle™ 2 *1¥E2) R(ky) R(k2). (23)

ki,kp=—o00

We write

B(kyby)(kabr) — @ (k1ba)w(kabs)
(W(k1br) — w(kib2))w(kab1) + (W(k2b1) — w(k2b2))w(k1b2)
(the same holds for w). (24)
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By the Lipschitz continuity of @ and @ this leads to

dn|Q(A;b) — Q(A; 28)| < const.dnby>|b — 2| R*(0),
dn|S(A;0) — SN )| < const.dnbaslb - zb|R2(0).

This suggests to take K§ = [d,b5°]+1, K5 = [d,b5°]+1 for the neighborhoods V,?w, v,

‘/lfw’ Vf;,p (the capital letters @, S indicate the correspondence). For the analogue of (17)

we use (22)-(24) and d,, < const.min{by?,b3n'}. Then we get in a straightforward way
by using (8), (9), (B1) and the Lipschitz continuity of @ and w:

[E[dn(Q(A; 1) = Q(A; b2))]] < const.by by — bal,
[E[d(S(A;b1) = S(A;2))]| < const.by'|by — bgl.

Instead of (18) we get from (22)-(24) and analogously to the proof of Lemma 11 (v):

Var(d,(Q(X;61) — Q(X;82))) < const.by?|by — bo)?,
Var(d,(S(A;b1) — S(A;b9))) < const.b52|b1 - b2|2,

(these bounds are sufficient). ‘
Then (20) and (21) follow by the same arguments as in the proof of Lemma 2. Finally we
complete the proof by a Taylor expansion (compare with the proof of Lemma 2). ]
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