$$
\begin{aligned}
& \theta=1-e^{-c x_{n}^{2}}\left[1-2 c \frac{x_{n}^{2}}{3-2 x_{n}^{2}}\right] \\
& x_{m}^{2}=x_{n_{\infty}^{2}}^{2}+\varepsilon=1.5+\varepsilon, 3-2 x_{n}^{2}=3-2 x_{n_{\infty}}^{2}-2 \varepsilon, \frac{x_{n}^{2}}{3-2 x_{\infty}^{2}}=\frac{1.5+\varepsilon}{-2 \varepsilon} \\
& 1=e^{-c x_{m}^{2}}\left[1+c \frac{1.5+\varepsilon}{\varepsilon}\right]=e^{-c_{x} / 5}(1-c \varepsilon)\left(1+c \frac{1.5+\varepsilon}{\varepsilon}\right)=e^{-1.5 c}\left(1-c \varepsilon+c \frac{1.5+\varepsilon}{\varepsilon}-c_{1}(1.5 \varepsilon)\right. \\
& \left.1+\varepsilon+\frac{1.5}{\varepsilon}\right) \\
& e^{1.5 c}-1=-c^{2}(1.5+\varepsilon)-c\left(\varepsilon+\frac{1.5+\varepsilon}{\varepsilon}\right)=c^{2}(1.5+\varepsilon)-c\left(\frac{1.5+\varepsilon+\varepsilon^{2}}{\varepsilon}\right) \\
& c=4,402.43=16(1.5+\varepsilon)-4\left(1+\varepsilon+\frac{L 5}{\varepsilon}\right) \stackrel{\varepsilon 20}{\approx 20-\frac{6}{\varepsilon}} \\
& \begin{array}{llll}
y_{x}=1.85 & \frac{1,85}{0.35}=\frac{34}{4} & \frac{34,4}{\frac{80}{60}} \frac{5.2854}{40} & 6.2854 \\
e^{1.85}=6.3598 & 633: 2 \\
314
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 1.5+\frac{1.5}{3.9814}=1.5\left(1+\frac{1}{4-0.0183}\right)=1.5\left[1+\frac{1}{4(1-0.0046)}\right]=1.5\left[1+\frac{1}{4}(1+0.0046)\right] \\
& =1.5+\frac{1.5}{4}+\frac{15}{4} 0,0046=\begin{array}{l}
1.5000 \\
0.3950 \\
0.3094 \\
1.8764
\end{array} \text { /forth } 1.846
\end{aligned}
$$

$7_{0}=F_{0}^{0}\left(1-\frac{1}{(1+c)^{2}}\right), d w=e^{-y} y\left(1-e^{-c y}\right) d y, y=\frac{c^{2}}{\alpha^{2}}$
$C=1: \frac{1}{\left(1+C^{2}\right.}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}, 25 \%$ overall weakeniaing

$$
\begin{aligned}
& y=1, c=\alpha, c y=1, e^{-1}=0.368,36.8 \% \text { missing } \\
& y=2, c=\alpha \sqrt{2}, c y=2, e^{-2}=0.135,13.5 \% \\
& y=\frac{1}{2}, c=\alpha \frac{1}{\sqrt{2}}, c y=0.5, e^{-0.5}=0.604,60.4 \% \\
& y=\frac{1}{4}, c=\alpha \frac{1}{2}, c y=0.25, e^{-0.25}-0.449, \quad 44.9 \%
\end{aligned}
$$

$C=2 \quad \frac{1}{(1+)^{2}}=\frac{1}{3^{2}}=\frac{1}{9}, 11.1 \%$ overall weakening

$$
\begin{aligned}
& y=1, c=\alpha, c y=2, e^{-2}=0.135 \quad 13.5 \% \text { missing } \\
& y=2, c=\alpha \sqrt{2}, c y=4, e^{-4}=0.018 \quad 1.8 \% \\
& y=\frac{1}{2}, c=\alpha \frac{1}{12}, c y=1, e^{-1}=0.368 \quad 36.8 \% \\
& y=\frac{1}{4}, c=\alpha \frac{1}{2}, c y=0.5, e^{-0.5}=0.604 \quad 60.7 \% \\
& e^{-x^{2}} x^{3}: x=\frac{c}{\alpha}=\sqrt{y}, \frac{d e^{-x^{2}} x^{3}}{d x}=3 x^{2} e^{-x^{2}}-2 x^{4} e^{-x^{2}}, 3-2 x_{n}^{2}=0, x_{n}^{2}=\frac{3}{2}, x_{n}=\frac{c_{x}}{\alpha}=\sqrt{1.5} \cdot 1.22 .5 \\
& e^{-x^{2}} x^{2}: \quad=2 x e^{-x^{2}}-2 x^{3} e^{-x^{2}}, 1-x_{m}^{2}=0, x_{m}=\frac{c_{m}}{\alpha}=1 \\
& e^{-x^{2}} x^{3}\left(1-e^{-c x^{2}}\right): 3 x^{2}\left(1-e^{-c x^{2}} e^{-x^{-2}}-2 x^{4} e^{-x^{2}}\left(1-e^{-c x^{2}}\right)+2 c x^{4} e^{-x^{2}} e^{-c x^{2}}\right. \\
& =3 x^{2} e^{-x^{2}}-3 x^{2} e^{-x^{2}} e^{-c x^{2}}-2 x^{4} e^{-x^{2}}+2 x^{4} e^{-x^{2}} e^{-c x^{2}}+2 c x^{4} e^{-x^{2}} e^{-c x^{2}} \\
& a=3-3 e^{-c x_{n}^{2}}-2 x_{n}^{2}+2 x_{n}^{2} e^{-c x_{n}^{2}}+2 c x_{n}^{2} e^{-c x_{n}^{2}} \\
& =\left(3-2 x_{n}^{2}\right)-e^{-c x_{n}^{2}}\left[3-2 x_{n}^{2}-2 c x_{n}^{2}\right]
\end{aligned}
$$

Appiose:

$$
\begin{aligned}
& 3-2 x_{n}^{2}=[] e^{-c x_{n}^{2}}, 2 x_{n}^{2}-3=\left[2 x_{m}^{2}-3+2 c x_{n}^{2}\right] e^{-c x_{n}^{2}} \\
& c=\infty, 2 x_{m_{\infty}^{2}}^{2}-3=0, x_{m}^{2}=\frac{3}{2} \\
& 1.14, x_{m}=x_{m}+\varepsilon, x_{m}^{2}=x_{m_{\infty}^{2}}^{2}+2 \varepsilon x_{m_{0}}, 2 x_{m}^{2}-3=4 \varepsilon x_{m_{m}}=4 \sqrt{1.5}=\varepsilon \\
& 4 \sqrt{1.5} \times \varepsilon=[4 \sqrt{1.5} \varepsilon-3 c+4 c \varepsilon \sqrt{1.5}] e^{-c \frac{3}{2}}=[4 \sqrt{1.5} \varepsilon(1+c)-3 c] e^{-c \frac{3}{2}}
\end{aligned}
$$

$e^{-4} y^{\frac{3}{2}} \quad \frac{d\left(y^{2}-y\right)}{d y}=\frac{3}{2} y^{\frac{1}{2}} e^{-y}-y^{\frac{3}{2}} e^{-y}, \frac{3}{2}-y_{x}=0, y_{x}=\frac{3}{2}$

$$
\begin{aligned}
& \frac{d y^{\frac{1}{2}} e^{-y}\left(1-e^{-c y}\right)}{d y}=\left(\frac{3}{2} y^{\frac{1}{x}} e^{-y}-y^{\frac{3}{x}} e^{-y}\right) \cdot\left(1-e^{-c y}\right)+y^{\frac{3}{2}} e^{-y} c e^{-c y} \\
& \text { 3y }\left(\frac{3}{2}-y_{n}\right)\left(1-e^{-c y_{x}}\right)+y_{n} c e^{-c y}=0 \\
& y_{m_{\infty}=\frac{3}{2}} \quad y_{m}=y_{m_{\infty}}+\varepsilon, e^{-c y_{n}}=e^{-c y_{m_{\infty}}} e^{-c \varepsilon}=e^{-c y_{n \infty}}-c \varepsilon e^{-y_{2}} \\
& -\left(\frac{3}{2}-y_{n}\right) e^{-c y_{n}}+y_{n} c e^{-c y_{n}}=y_{n}-\frac{3}{2}=\left[y_{m}(1+c)-\frac{3}{2}\right] e^{-c y_{n}} \\
& \varepsilon=\left[y_{m}-\frac{3}{2}+y_{m} c\right] e^{-c y_{m}}(1-c \varepsilon)=\left(\varepsilon+c \frac{3}{2}+\varepsilon c\right)(1-c \varepsilon) e^{-\frac{\pi}{2} c} \\
& \left(\varepsilon+\frac{3}{2} c+\varepsilon c-\varepsilon^{2} c-\frac{3}{2} \varepsilon c^{2}-\varepsilon^{2} c^{2}\right) e^{-\frac{3}{c} c} \\
& \varepsilon \ll 1, \varepsilon=\left[\frac{3}{2} c+\varepsilon\left(1+c-\frac{3}{2} c^{2}\right)\right] e^{-\frac{3}{c} c}=\frac{3}{2} c e^{-\frac{3}{2} c}+\varepsilon\left(1+c-\frac{3}{2} c^{2}\right) e^{-\frac{3}{2} c} \\
& \varepsilon\left[I-\left(1+c-\frac{3}{2} c^{c}\right) e^{-\frac{3}{2} c}\right]=\frac{3}{2} c e^{\frac{3}{2} c}, \varepsilon=\frac{\frac{3}{3} c e^{-\frac{3}{2} c}}{1-\left(1+c-\frac{3}{2} c^{2}\right) e^{-\frac{3}{3}} c} \\
& \varepsilon=\frac{3 c}{e^{\frac{3}{2} c}-1-c+\frac{3}{2} c^{2}} \\
& c=1, \varepsilon=\frac{\frac{3}{2}}{e^{\frac{\varepsilon}{2}}-1-1+\frac{3}{2}} \cdot \frac{\frac{3}{2}}{4.48-2+1.5}=\frac{1.5}{3.98}, y_{n}=y_{m}\left(1+\frac{\varepsilon}{y_{n}}\right)=1.5\left(1+\frac{1}{3.98}\right) \text {. } \\
& c=2, \varepsilon=\frac{3}{e^{3}-1-2+6}=\frac{1.5}{\frac{1}{2} e^{3}+\frac{3}{2}}=\frac{1.5}{\frac{20+3}{2}}=\frac{1.5}{11.5}, y_{\pi}=1.5\left(1+\frac{1}{1.5}\right) \\
& c=4, \varepsilon=\frac{3}{2} \frac{4}{e^{6}-1-4+24}-\frac{3}{2} \frac{4}{403.4+19}=\frac{3}{2} \frac{1}{4224}=\frac{3}{2} \frac{1}{105.6}, y=1.5\left(1+\frac{1}{105.6)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& c=1, y_{m}=1.80,1+\frac{1.8}{0.3}=7, e^{1.8}=6.05, y_{n}=1.81,1+\frac{194}{994} 1+5.412=6.412 e^{1.84}=630
\end{aligned}
$$

$\frac{\sin \alpha \int \frac{x^{\prime}+1 \sin \alpha}{\cos \alpha-\cos \alpha}}{\frac{\cos }{2}}$

$$
\mu_{0}=m v^{4} \rho_{y_{0}}=0, \alpha_{x_{0}}=\mu \cos \left(\gamma_{e}-R\right)=\mu \sin \gamma_{0}, \mu_{y_{0}}=\mu \cos \gamma_{0}
$$

sjecalar refl. $\mu_{y}=0, p_{x}=\mu_{x_{0}}=\mu \cos (\delta-b)=n_{n} \sin \sin \gamma_{i} \mu_{t}=\mu \cos y_{0}, \delta_{0}+\delta=2 R$ laid. diffiaction $p_{y}=\frac{h}{d}=p \cos \beta, p_{x}=\mu_{x}=p \sin \gamma_{0}, p_{z}=\mu \cos \beta$

$$
\begin{aligned}
& \mu_{y}^{2}+\mu_{z}^{2}=\mu_{y_{0}}^{2}+\mu_{z}^{2}, \frac{h^{2}}{d^{2}}+\mu^{2} \cos ^{2} y^{2}=\mu^{2} \cos ^{2} \gamma_{0} \\
& \cos ^{2} y=\cos ^{2} y_{0}-\frac{1}{\mu^{2}} \frac{h^{2}}{d^{2}}=\cos ^{2} \gamma_{0}-\frac{\lambda^{2}}{d^{2}}
\end{aligned}
$$

$\operatorname{tg} \psi=\frac{\mu_{y}}{p_{y}}, p_{y}=\frac{h}{d}, p_{x}=p_{x_{0}}, \mu_{z}^{2}=p_{x_{0}}^{2}+\nu_{y_{0}}^{2}+\mu_{z_{0}}^{2}-\mu_{x}^{2}-\mu_{y}^{2}=\alpha_{h_{0}}^{2}-\frac{h^{2}}{d^{2}}$
adsorpaion: $\mu_{y}^{\prime}=\frac{h}{d}, p_{x}^{\prime}=\mu_{x}, \mu_{x}^{\prime}=0,0=\mu_{z}^{2} \frac{h_{2}}{d_{0}^{2}}-\frac{h^{2}}{d^{2}}+2 m Q\binom{\frac{1}{2 m} \mu^{2}=\frac{1}{2 m} \mu_{0}^{2}+Q}{n^{2}=\mu_{0}^{2}+0 m Q}$

$$
\begin{aligned}
& \operatorname{tg} \psi=\frac{h_{y}}{\lambda_{z}}=\frac{\frac{h}{d}}{\sqrt{\frac{h^{2}}{d^{2}}}-2 m Q}=\frac{1}{\left.\sqrt{1-\frac{2 m Q}{\frac{h^{2}}{d^{2}}}}, 1-\frac{2 m Q}{\frac{h^{2}}{d^{2}}}=\frac{1}{\operatorname{tg}^{2} \psi}, \frac{2 m \theta}{\frac{h^{2}}{d^{2}}}=1-\frac{1}{\operatorname{tg}^{2} \eta}\right) Q=N \frac{1}{2 m} \frac{h^{2}}{d^{2}}\left(1-\frac{1}{\operatorname{tg}^{2} q}\right)} \\
& \psi=50^{\circ} \operatorname{tg} \psi=1,192, \operatorname{tg} \psi=\frac{d .988}{1.421}=1.421,1-\frac{1}{\operatorname{tg}^{2} \varphi}=\frac{0.421}{1.421}=0.294 \\
& \frac{h^{2}}{d^{2}}=\frac{6.55^{2} \times 10^{-54}}{}
\end{aligned}
$$

$$
100: 45=20: 9=2.2
$$

$$
\begin{aligned}
& d F=F_{0} d s_{s_{\alpha}}^{s_{\alpha}} e^{-\frac{s_{0}}{s_{0}-s_{0}}}\left(\frac{s_{\alpha}}{s-s_{0}}\right)^{3} \\
& \left.y=\frac{s_{\alpha}}{s_{0}}\right) \frac{s-s_{0}}{s_{\alpha}}-\frac{s_{0}}{s_{\alpha}}=\frac{1}{y}, \frac{s_{0}}{s_{\alpha}}=\frac{s}{s_{\alpha}}-\frac{1}{y} \\
& d\left(\frac{s_{0}}{s_{\alpha}}\right)=-d\left(\frac{1}{y}\right)=\frac{d y}{y^{2}} \\
& d \frac{7}{y_{0}}=\frac{d y}{y^{2}} e^{-y} y^{3}=e^{-y_{2}} y d y \\
& \frac{7}{7_{0}}=\int_{0} e^{-y} y d y, y=\frac{s_{\alpha}}{s-s_{0}} \\
& \int_{2} e^{-y} y d y=\int_{y_{2}}^{y_{1}} y d e^{-y}=\left.(1+y) e^{-y}\right|_{y_{2}} ^{y_{1}} \\
& y_{1}
\end{aligned}
$$

$$
\begin{aligned}
& 499 \times 2-252 \\
& 1598: 9-\frac{178}{044} \\
& 178
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\frac{44}{1545} \beta^{2}}{1+\frac{4}{45} \beta^{2}}=1+\left(\frac{44}{1545}-\frac{4}{45}\right) \beta^{2}=1-\frac{4 \times 35-44}{35 \times 45} \beta^{2}+-\frac{32}{354} \% \beta_{5}^{2}=1-\frac{32}{525} \beta^{2} \\
& \frac{44 \times 45-4 \times 1545}{45 \times 1545} \quad \underset{\substack{1555: 45 \\
\frac{135}{255} \\
2 \pi 5}}{\substack{155}} \frac{350}{325} \\
& \frac{8}{105} 0.273^{2}=0.0745 \div \frac{8}{105}=0.57 \% \\
& \frac{5}{16} \pi+4 \frac{1}{2}\left(3 \cos ^{2} \eta-1\right)=\frac{5}{16} \pi+\frac{4}{3} \frac{3}{2}\left(\cos ^{2} \eta-\frac{1}{3}\right) \\
& \begin{array}{r}
\beta=\frac{15}{32} \frac{\pi+4}{\pi+3}=\frac{15}{32} \frac{1+\frac{4}{\pi}}{1+\frac{3}{\pi}}=0.469 \times \frac{2.273}{1.955}=0.469 \times 1.161=0.545 \\
0.243
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) } \pi r^{2}+4 t^{2} \pi 4 r^{2} \\
& \frac{5}{16} \frac{4.14}{6.14}= \\
& \frac{\operatorname{lo}_{\pi+\alpha}^{2}+\cos \theta}{\square} \\
& \eta=0 \quad \text { con } 0: 1(\sin 0)=\frac{\pi}{2} \quad A \cdot 2 \pi r^{2}+4 r^{2} \frac{\pi}{2}=4 \pi t^{2}-4 \pi+2.566 \\
& \left.\eta=\frac{\pi}{2} \quad \text { cos } \eta=a \quad E\left(\sin \frac{\pi}{2}\right): 1 \quad A=r \cdot\right)^{2}+4 \cdot x^{2}=(r+4) x^{2} \quad \pi+4=\overline{4.14 .16}=1.49_{3} \\
& \alpha\left\{1+\beta\left(\cos ^{2} \eta-\frac{1}{3}\right)\right\}, \beta=0.243, \frac{1+\frac{2}{3}, .247}{1-\frac{1}{3} 0.243}=\frac{1,182}{0.909}=1.301
\end{aligned}
$$

$\frac{1}{3} n c \lambda \frac{d g}{d x}$ जrisc: $g=m u \frac{1}{3} n c \lambda m \frac{d u}{d z}=\frac{\pi}{3} g c \lambda \frac{d u}{d \frac{1}{x}}$
heat cond: $\varphi=m c_{q} T \quad \frac{1}{3} \rho c i c_{v} \frac{d T}{d t}$

$$
\begin{aligned}
& \omega=\frac{H \mu}{P} \quad \mu=\frac{1}{2} \frac{e}{m c} \frac{h}{2 x} \quad h v=H \mu=P_{2 \pi v}=P \omega \\
& \omega=\frac{H \mu}{P}, h v=H \mu, \frac{h}{2 \pi} \omega=P \omega=H \mu
\end{aligned}
$$

(4) $\frac{2 \pi r \sin v t d v}{2 \pi r^{2}}=\sin \theta d t=d \cos \theta$

$$
\int \cos ^{2} \theta d \cos \theta=\left.\frac{1}{2} x^{3}\right|^{1}=\frac{1}{3}
$$

$k \times \frac{d T}{\frac{d T}{x} \times a}$
$a=0.0021 \times \frac{1}{3 \times 10^{2}} \times a=0.04 \times a \frac{\mathrm{cal}}{\mathrm{sec}}$
$0^{-1 \times 10-1}$ b. $2 \cdot 10^{-1} \cdot 0.002 \cdot \frac{d}{d x}$

$$
x \times\left(\frac{d T}{d x}\right) \times b=x\left(\frac{d T}{d x}\right) \times a,\left(\frac{d T}{d x}\right)=\frac{a}{b}\left(\frac{d T}{d x}\right) \sim 10 \times 33=330
$$

$$
b=2 r+d \quad a=2 \pi+l
$$

4×10^{-4}

$$
\begin{aligned}
& \frac{v_{s}^{2}}{\tau_{1}}=4 r^{2} \gamma^{2} \gamma^{2} \quad 4 \pi \nu v_{s} \quad \frac{4 \pi^{2} \gamma^{2} \gamma}{4 \pi \nu v_{1}}=\frac{\pi \nu x}{v_{s}}=\frac{1}{2} \frac{v_{t}}{v_{s}} \\
& \mu \frac{\partial O}{\partial f}=m g, g=\frac{\mu}{m \partial \theta} \frac{\partial 0}{M} \frac{M H}{\partial t} \\
& s_{\alpha^{2}}=g \frac{l^{2}}{a^{2}}=\frac{M}{H} \frac{\partial H}{\partial t} \frac{l^{2}}{\alpha^{2}}=\frac{M}{2 R T} \frac{\partial H l}{\partial T} l^{2}=\frac{3}{16,6 \times \theta^{2} \times 6 \theta^{2}} \times 10^{5} \times 10^{3} \mathrm{~cm}=\frac{3}{\frac{5}{3} \times 1 \theta^{8} \times 60} 1 \theta^{8} \mathrm{~cm}=\frac{3}{100} \mathrm{~cm}=0,3 \mathrm{sm} \\
& \frac{1}{2} M \alpha^{2}=\frac{3}{2} R T \quad \alpha=\sqrt{3 R \frac{T}{T}}=\sqrt{3 R} \sqrt{\frac{T}{M}}=1,58 \times 10^{4} \sqrt{\frac{T}{H}} \frac{c m}{10 a}=158 \sqrt{\frac{T}{H} \frac{m}{5 R e}}=158 / \sqrt{\frac{60}{2}}=158=5.48=86 \frac{5 \pi}{\pi E}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{4}{5}=\frac{1}{6} \frac{1}{10} e^{-1}=\frac{0.368}{60} \cdot 6.1 \times 10^{-3}
\end{aligned}
$$

st $\frac{2 \mu_{0} d s}{x} \frac{a}{x} \quad \frac{x d \alpha}{d s}=\frac{a}{s} \frac{a d s}{x}=s d \alpha \quad 2 \mu_{0} \frac{s d \alpha}{x}=2 \mu_{0} \sin \alpha d \alpha$

$$
\begin{aligned}
& s_{x}=5 \quad a=5
\end{aligned}
$$

$$
\begin{aligned}
& \frac{50,4}{\frac{10}{3}}-4.1 \frac{3}{4} \quad \frac{2.14}{\frac{60}{40}}=0.28 \frac{4}{4}
\end{aligned}
$$

$$
\begin{aligned}
& p=n \frac{R T}{V_{a}}, \frac{d p}{d t}=\frac{R T}{V_{a}} \frac{d n}{d t}=-\frac{R T}{v_{a}} \frac{\mu v_{p}}{R T}=-\mu \frac{v_{p}}{v_{a}} \\
& \frac{d x}{d t}=\frac{n v_{n}}{R} \quad \frac{d m p}{d t}=\frac{v_{n}}{v_{a}}, \quad \operatorname{m} p=v_{n} t+\text { kent } \\
& \ln \frac{\mu_{1}}{\mu_{2}}=\frac{v_{2}}{v_{a}}\left(t_{2}-t_{1}\right), \frac{p_{1}}{\mu_{2}}=e^{\frac{v_{2}}{v_{a}}\left(t_{2}-t_{1}\right)}, \frac{\mu_{2}}{\mu_{1}}=e^{-\frac{v_{2}}{\frac{v_{2}}{2}}\left(t_{2}-t_{1}\right)} \\
& \frac{n_{2}}{p_{2}}=0.65=e^{-0.43}, 0.43=\frac{v_{4}, 604}{1000}=v_{1}+0.60, v_{p}=0.43=0.4 l
\end{aligned}
$$

$x \quad y$
$0 \quad 4$
13
22
31
4 e

$$
\begin{aligned}
& \frac{d^{2} s}{d t^{2}}=\frac{d i}{d t}=g(t), s_{L_{2}}=\int^{t_{2}} g(d) d t+i_{t_{1}}=s_{c_{1}}+\frac{1}{1_{1}} \int_{1}^{l_{1}} g(\omega) d l_{c_{k}} \\
& \frac{d t^{2}}{d t}=s(t) \quad s=s_{l}+\frac{1}{g_{1}} \int_{l_{1}} s(l) d l=s_{l_{1}}+\frac{1}{v^{2}} i_{l_{1}}\left(l_{2}-l_{1}\right)+\frac{1}{v^{2}} \int_{l_{1}} d l \int_{l_{1}}^{l} g(l) d l \\
& g(l)=g_{0} \dot{s}_{i}=\dot{s}_{0}+\frac{1}{v} g_{0} l_{0}, s_{c}=0+\frac{1}{v} \dot{s}_{0} l_{0}+\frac{1}{v^{2}} g_{0} \frac{l_{0}^{2}}{2}=0, \dot{s}_{0}=-\frac{1}{2} g_{0} l_{0} \\
& \dot{s}_{0}=\frac{1}{2} \frac{g_{0} l_{0}}{v_{0}} \\
& s_{l}=s_{0}+\frac{l}{q} g_{0} \frac{\Delta I}{I_{0}}-\frac{3}{2} \frac{g_{0}}{\frac{q}{0}_{2}^{2}}\left(1+\frac{\Delta I}{I_{0}}\right) \frac{l_{0}}{v^{2}}\left[\left(a_{0}^{2} \frac{l_{0}}{l_{0}}+a_{0}\left(\frac{l}{l_{0}}\right)^{2} \varepsilon+\frac{1}{3}\left(\frac{l}{l_{0}}\right)^{3} \varepsilon^{2}\right]\right. \\
& s_{l_{0}}=0+i_{0} \frac{l_{0}}{v}+\frac{1}{2} \frac{l_{0}^{2}}{v^{2}} g_{0} \frac{\Delta I}{I_{0}}-\frac{3}{2} \frac{a_{0}}{\frac{1}{0}_{2}^{2}}\left(1+\frac{\Delta I}{I_{0}}\right) \frac{l_{0}^{2}}{v^{2}}\left[a_{0}^{2} \frac{1}{2}+a_{0} \varepsilon \frac{1}{3}+\frac{1}{3} \varepsilon^{2} \frac{1}{4}\right]=\theta \\
& S_{0}^{1}=-\frac{1}{2} g_{0} \frac{l_{0}}{\theta_{0}} \frac{\Delta I}{I_{0}}+\frac{3}{2} g_{0} \frac{l_{0}}{\theta^{2}}\left(1+\frac{\Delta I}{I_{0}}\right) \frac{\frac{1}{2} a_{0}^{2}+\frac{1}{3} \varepsilon a_{0}+\frac{1}{12} \varepsilon^{2}}{\eta_{0}^{2}} \quad \varepsilon=a_{0}-a_{0} \\
& i_{l_{0}}=i_{0}+g_{0} \frac{l_{0}}{v} \frac{\Lambda I}{I_{0}}-\frac{3}{2} g_{0} \frac{l_{0}}{v}\left(1+\frac{\Delta I}{I_{0}}\right) \frac{a_{0}^{2}+\varepsilon a_{0}+\frac{1}{3} \varepsilon^{2}}{\alpha_{0}^{2}} \\
& \dot{b}_{0}=\frac{1}{2} g_{0} \frac{\ell_{0}}{v^{2}} \frac{\Delta I}{I_{0}}-\frac{3}{2} g \cdot \frac{l_{0}}{v}\left(1+\frac{\Delta I}{I_{0}}\right) \frac{\frac{1}{2} a_{0}^{2}+\frac{2}{3} a \varepsilon+\frac{1}{4} \varepsilon^{2}}{\gamma_{0}^{2}} \\
& l . \quad l_{0}<l<2 l_{0} \\
& s_{l}=i_{l_{0}}+\frac{1}{v_{l}} \int_{l_{0}}^{l} g\left(l d l=i_{0}+\frac{q_{0}}{q_{0}} \frac{\Delta I}{I_{0}}\left(l-l_{0}\right)-\frac{3}{2} \frac{q_{0}}{t_{0}^{2}}\left(1+\frac{\Delta I}{I_{0}} \frac{l_{0}}{v}\left[a_{0}^{2} \frac{l-l_{0}}{l_{0}}+a_{0} \varepsilon \frac{l^{2}-l_{0}^{2}}{l_{0}^{2}}+\frac{1}{3} \frac{l^{3}-l_{0}^{3}}{l_{0}} \varepsilon_{0}\right]\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} g_{0} \frac{l^{2}}{v^{2}} \frac{\Delta I}{I_{0}}-\frac{3}{2} g_{0} \frac{l_{0}^{2}}{v^{2}}\left(1+\frac{\Delta I}{I_{0}}\right) \frac{\frac{1}{2} a_{0}^{2}+\frac{2}{3} a_{0} \varepsilon+\frac{1}{4} \varepsilon^{2}}{x_{0}^{2}}+\frac{1}{2} g_{0} \frac{l^{2}}{v^{2}} \frac{\Delta I}{I_{0}}-\frac{3}{2} g_{0} \rho_{0}^{2}\left(1+\frac{\Delta I}{I_{0}^{2}} \frac{\frac{1}{2} a_{0}^{2}+\frac{4}{3} a \varepsilon+\frac{H}{} \varepsilon^{2}}{\psi_{0}^{2}}\right. \\
& S_{2 l_{0}}=g \cdot \frac{l_{0}^{2}}{v^{2}} \frac{\Lambda I}{I_{0}}-\frac{3}{2} g_{0} \cdot \frac{l_{0}^{2}}{v^{2}}\left(1+\frac{1 I}{I_{0}}\right) \frac{a_{0}^{2}+2 a_{0} \varepsilon+\frac{7}{6} \varepsilon^{2}}{\tau_{0}^{2}} \\
& \varepsilon=a_{2}-a_{0}, a_{c_{0}}=a_{2}+\varepsilon_{1} a_{b_{0}}^{2}=a_{1}^{2}+2 a_{2}+\varepsilon^{2} \quad \frac{a_{1}^{2}+\frac{1}{c}\left(a_{0}-a_{0}\right)^{2}}{x_{0}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& a=a_{0}+\frac{l}{l_{0}}\left(a_{0}-a_{0}\right), \quad l=0, a=a_{0}, l=l_{0}, a=a_{0}+a_{l}-a_{0}=a_{l_{0}} \\
& l=2 l_{0}, l=a_{0}+2\left(a_{0}-a_{0}\right)=a_{0}+2 a_{0}-2 a_{0}=2 a_{l}-a_{0} \\
& a_{l_{0}}-a_{0}=\varepsilon, a_{l_{0}}=a_{0}+\varepsilon, a_{l_{0}}^{2}=a_{0}^{2}+2 a_{0} \varepsilon+\varepsilon^{2}
\end{aligned}
$$

$$
\begin{aligned}
& b=4.5 \quad s_{x}=1.8 \quad \sigma=2 \\
& 0.562 \\
& \frac{7}{7 \%}=\frac{1}{16}\left[0.444 * e^{-\frac{1.8}{2}}-\frac{9-1.8}{4.5}-\frac{1}{2} \frac{1.8^{2}}{4.5^{2}}\left\{\left[\frac{1}{1+\frac{4}{9}}+\frac{1}{2+\frac{4}{9}}-\frac{1}{3+\frac{4}{9}}\right]-\frac{1.8}{3.4 .5}\left[\frac{1}{\left(1+\frac{5}{2}\right)^{2}}+\frac{1}{\left(2+\frac{4}{9}\right)^{2}}-\left(\frac{1}{\left.3+\frac{4}{4}\right)^{2}}\right]_{2}\right\}\right]\right. \\
& \frac{1}{1+\frac{4}{9}}=\frac{1}{\frac{13}{9}}=\frac{9}{13}=0.6920 \quad 0.4789 \\
& \begin{array}{ll}
\frac{1}{2+\frac{4}{9}}=\frac{1}{\frac{22}{9}}=\frac{9}{22}=\frac{0.4090}{1.010} & \frac{0.1673}{0.6462} \\
\frac{-0.0843}{0.562} & =\frac{1}{31}=\frac{9}{0.562}=0.2903
\end{array} \\
& \frac{1}{3+\frac{4}{9}}=\frac{1}{\frac{31}{9}}=\frac{9}{31}=\frac{0,2993}{0.8104}
\end{aligned}
$$

$$
\begin{array}{r}
\text { I } y_{1}=\frac{s_{a}}{s+b}
\end{array} \begin{array}{rllllll}
\frac{s_{x}}{s b} & \frac{18}{29+4.5} & \frac{18}{29-r_{5}} & -\frac{0.8983}{0.832 \theta} & \frac{18}{49+4.5} & \frac{18}{49-45} & 0.954 b \\
0.63 & 0.9343 \\
0.534 & 0.735 & & 0.3362 & 0.4042 & 1.73
\end{array}
$$

$$
\begin{aligned}
& d \frac{b}{s_{\alpha}}=f\left(\frac{s}{s_{\alpha}}\right)-f\left(\frac{s}{\Delta}-\frac{b}{h_{\alpha}}\right)-f\left(\frac{s}{s}-2 \frac{b}{s_{\alpha}}\right)+f\left(\frac{s}{s_{\alpha}}-3 \frac{b}{s_{\alpha}}\right) \\
& b=4.5 \quad s_{x}=18, \quad \frac{t}{s}=\frac{4.5}{18}=\frac{1}{4}=0.25 \quad \frac{s}{s_{2}}=0.05 \quad s=18 \times 0.05=0.9
\end{aligned}
$$

$$
\begin{aligned}
& g=g_{0}-\frac{\mu}{m} \frac{2 I}{x^{2}}=-g_{0}+\frac{\mu}{m} \frac{a T}{\tau_{0}}\left(1-\frac{3}{2} \frac{a^{2}}{1_{0}^{2}}\right)=-g_{0}+g_{0}\left(1+\frac{\Delta I}{I_{0}}\right)\left(1-\frac{3}{2} \frac{a^{2}}{z_{0}^{2}}\right) \\
& \frac{\mu}{m} \frac{2 I}{x_{0}^{2}}=\frac{\mu}{m} \frac{2\left(I_{0}+\Delta I\right)}{x_{0}^{\prime 2}}=\frac{\mu}{m} \frac{2 I_{0}}{x_{0}^{2}}+\frac{\mu}{m} \frac{2 I_{0}}{x_{0}^{2}} \frac{\Delta I}{I_{0}}=g_{0}+g_{0} \frac{\Delta I}{I_{0}} \\
& g=-g_{0}+g_{0}+g_{0} \frac{\Delta I}{I_{0}}-\frac{3}{2} \frac{a^{2}}{7_{0}^{2}} g_{0}\left(1+\frac{\Delta I}{I_{0}}\right) \\
& a=a_{0}+\frac{l}{l_{0}}\left(a_{0}-a_{0}\right) \quad l=0 \quad a=a_{0} \quad l=l_{0} \quad a=a_{0}+a_{l_{0}}-a_{0}=a_{l_{0}} \\
& a_{1}-a_{0}=0, a=a_{0} \quad g=g_{0} \frac{\Delta I}{I_{0}}-\frac{3}{2} \frac{a_{0}^{2}}{\eta_{0}^{2}} g_{0}\left(1+\frac{\Delta I}{I_{0}}\right)=0, \frac{\Delta I}{I_{0}}=-\frac{3}{2} \frac{d_{0}^{2}}{\tau_{0}^{2}}+\frac{3}{2} \frac{a_{0}^{2}}{\tau_{0}^{2}} \frac{\Delta I}{I_{0}} \\
& \frac{A I}{L_{0}}=\frac{\frac{3}{2} \frac{a_{0}^{2}}{T_{2}^{2}}}{1-\frac{3}{2} \frac{a_{0}^{2}}{T_{0}^{2}}} \quad \frac{a_{0}}{\tau_{0}}=10^{-1} \frac{\Delta I}{I_{0}}=\frac{\frac{3}{2} 10^{-2}}{1-\frac{3}{2} 10^{-2}} \cong \frac{3}{2} 10^{-2} \\
& a=a_{0}+\frac{l}{l_{0}} \varepsilon \quad a^{2}=a_{0}^{2}+2 a_{0} \frac{l}{l_{0}} \varepsilon+\frac{l^{2}}{l_{0}^{2}} \varepsilon^{2}, \varepsilon=a_{l}-a_{0} \\
& g=g_{0} \frac{\Lambda I}{I_{0}}-\frac{3}{2} \frac{g_{0}}{q_{0}^{2}}\left(1+\frac{\Delta T}{I_{0}}\right)\left(a_{0}^{2}+2 a_{0} \frac{l}{l_{0}} \varepsilon+\frac{l^{2}}{l_{0}^{2}} \varepsilon^{2}\right) \\
& \left.a_{0}^{2}+2=a_{0} a_{6}-a_{0}\right)+a_{20}^{2}-2 a_{0} a_{0}+a_{2}^{2} \\
& a_{0}+2 a_{0}+2 a_{0} a_{0}-a_{0}+a_{c_{0}}-2 a_{0} a_{0}+a_{0}^{2}+a_{t_{0}^{2}}-2 a_{0} a_{0}+a_{0}^{2} \\
& a_{2}^{2}+4 a_{0} a_{0}=2 l_{0}-4 a_{0}^{2}+4 a_{0}^{2}-8 a_{0} a_{0}+4 a_{0}^{2} \\
& a_{0}^{2}-4 a_{t_{0}} a_{0}+4 a_{6}^{2}=\left(2 a_{t 0}-a_{0}\right)^{2} \\
& s=0, i=i_{0} \\
& \text { to } l=l_{0} \quad t=\frac{l}{v} \\
& s=0, i=s_{0}+\int_{0}^{l_{0}} g d t=s_{0}+\frac{1}{2} l_{0}^{l_{0}} g d l \quad g=g_{0} \quad s_{b_{0}}=i_{0}+\frac{l_{0}}{v e} g_{0}, s_{1}=s_{0} \frac{l_{0}}{v^{v}}+\frac{1}{2} g_{0}^{l_{0}}=0 \\
& i_{10}=\frac{1}{2} \frac{l_{0}}{v} g_{0} i_{c}=-\frac{1}{2} g_{0} \frac{l_{0}}{v} \\
& j_{0}=i_{0}+\frac{l_{0}}{v} g_{0} \frac{\Delta I}{I_{0}}-\frac{3}{2} \frac{g_{0}}{\eta_{0}}\left(1+\frac{\Delta I}{I_{0}}\right)\left(a_{0}^{2} \frac{l_{0}}{v}+2 a_{0} \frac{\frac{1}{0} l_{0}^{2} l_{0}^{2} v g_{0}}{\left.v+\frac{\frac{1}{3} l_{0}^{3}}{v_{0}^{2}} \varepsilon_{0}^{2}\right)}\right. \\
& j_{l_{0}}=\dot{s}_{0}+\frac{l_{0}}{v} g_{0} \frac{\Delta I}{I_{0}}-\frac{l_{0}}{v} \frac{3}{2} \frac{g_{0}}{I_{0}^{2}}\left(1+\frac{\Lambda I}{I_{0}}\right)\left(a_{0}^{2}+a_{0} \varepsilon+\frac{1}{3} \varepsilon^{2}\right) \\
& s_{l}=s_{0}+\frac{l}{v} g_{0} \frac{\Delta I}{I_{0}}-\frac{3}{2} \frac{q_{0}}{\tau_{0}^{2}}\left(1+\frac{\Delta I}{I_{0}}\right)\left(a_{0}^{2} \frac{l}{v}+2 a_{0} \frac{\frac{1}{2} l^{2}}{v l_{0}}+\frac{\frac{1}{3} l^{3}}{v l_{0}^{2}} \varepsilon^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& g=g_{0} \frac{\Delta I}{I_{0}}-\frac{3}{2} \frac{a^{2}}{\chi_{0}^{2}} g_{0}\left(1+\frac{\Delta I}{I_{0}}\right) \\
& a=a_{0}-\frac{l}{b_{0}}\left(a_{0}-a_{0}\right) a_{0}\left\{\quad b=0, a=a_{0}, t=b_{0}, a_{0}=a_{0}-a_{0}+a_{0}=a_{0}, b=2 b_{0}, a=a_{0}-2 a_{0}+2 a_{0}\right. \\
& l_{0}=1, a_{0}-a_{L_{0}}=\varepsilon, a=a_{0}-l \varepsilon \\
& g=g_{0} \frac{\Delta I}{I_{0}}-\frac{3}{2} \frac{g_{0}}{x_{0}^{2}}\left(1+\frac{\Delta I}{I_{0}}\right)\left(a_{0}^{2}-2 a_{0} l \varepsilon+\varepsilon^{2} l\right)=\alpha-\beta\left(a_{0}^{2}+2 a_{0} \varepsilon l\right. \\
& \dot{s}=g \quad s=\dot{s}_{1_{1}}+\frac{l_{2}}{l_{1}} g d l, l_{1}=1, s_{1}=\dot{s}_{l_{1}}+\int_{l_{1}}^{l_{2}} g d l, s_{2}=s_{l_{1}}+\int_{l_{1}}^{l_{2}} d l=s_{l_{1}}+\dot{s}_{l_{1}}\left(l_{2}-l_{1}\right)+\int_{l_{1}} d l \int g d l \\
& l=1 \\
& s_{1}=\theta+s_{0}+1+\int_{0}^{1} d l \int_{0}^{l} g d l=s_{0}+
\end{aligned}
$$

$$
\begin{aligned}
& a \varphi+b \psi \quad x y+y \psi \\
& a x+a y \alpha+b x \alpha+y b=\lambda x+\lambda y \\
& \left(a P_{y}+b P_{y}\right) f=\lambda f, \quad f=x g+y \psi \\
& a P_{y}(x y+y y)+b P_{y}(x y+y \psi)=\lambda x y+\lambda y y \\
& a x y+a y \cdot \int \varphi^{*} y d x \times y+b x \int y^{*} \varphi d x \times y+b y \psi=2 x y+l y \psi \\
& P_{y}(g)=\varphi \quad P_{y}(\psi)=\varphi_{\cdot} \int \frac{g^{*} y d x}{(y \psi)} \quad P_{\psi}(\varphi)=\psi \int \psi^{x} y d x \quad P_{y}(\psi)=\psi \\
& (a-l) x+a(\overline{\varrho \gamma}) y=0 ; b(\varphi y) x+(b-\lambda) y \cdot 0 \\
& \left|\begin{array}{ll}
a-\lambda & a(\overline{\varphi \psi}) \\
b(\varphi \psi) & b-\lambda
\end{array}\right|=0 \\
& y=c_{1} u_{1}+c_{2} u_{2} \quad \int \varphi^{x} \psi d x=c_{2}^{x} c_{3} \\
& \psi=\quad c_{3} u_{2} \quad \int \psi^{x} \varphi d x=C_{3}^{x} C_{2} \\
& \frac{7}{f_{0}}=\frac{b}{s_{\alpha}}=\left(\frac{b}{\sigma+b}-\frac{\sigma}{s_{\alpha}}\right) e^{-\frac{\Delta_{\alpha}}{\sigma+b}}+\frac{\sigma}{s_{\alpha}} e^{-\frac{\lambda_{\alpha}}{\sigma}}
\end{aligned}
$$

$$
\begin{aligned}
& M g=M \frac{\partial M}{\partial s}, \frac{\partial M}{\partial s}=\frac{M}{M} g \\
& \text { - } \frac{133}{10^{3}} \frac{133}{6} \quad 25 \text { Gausi } 2 I-260=25
\end{aligned}
$$

$$
\begin{aligned}
& l=10 \mathrm{~cm} \quad v=10^{5} \quad t=10^{-4} \mathrm{sec} t^{2}=10^{8} \\
& s=10^{-2} g=10^{6}=10^{3} g_{g} \\
& g=\frac{v^{2}}{x^{2}}=2 x x^{2} x^{2} \leqslant 40+x^{2}
\end{aligned}
$$

$\mathrm{lu}: T_{s}=1356, \sigma=41 \times 63.6=2610 \mathrm{ial} \frac{\sigma}{T_{1}}=1.93$
${ }^{7} \mathrm{n}: ~ T_{s}=692, \sigma=230 \times 654=1500 \mathrm{col} \frac{\sigma}{T_{0}}=2.14$
$N_{i}: T_{s}=1723,6=65=58,7=3820 \mathrm{cal} \frac{5}{T_{s}}=2,22$

$$
h A \& \frac{h}{2} g=\frac{1}{l} g_{0} l q v^{2}
$$

$$
\frac{A}{l_{0} h^{2} g}=v^{2}, v=h \sqrt{\frac{A}{y_{0}} l}=10^{-1} \sqrt{\frac{x}{12 s} s+10^{-4}} \frac{10^{3}}{16}=\frac{10^{3}}{4} \times 10^{-1}=25 \frac{\mathrm{~mm}}{10 \mathrm{c}}
$$

$$
0.1 \times 1.25 \times 10^{-1} \times 0.15 \times \frac{0.1}{2} \times 10^{3}
$$

$2 \mathrm{~cm} \quad 25 \mathrm{~cm}^{2}, \quad \begin{aligned} \frac{1.378}{0,2389}=54 \%, & \sigma\end{aligned}=5.44 \times 10^{-12}\left(T_{-}^{4}-T_{2}^{4}\right)$ $=5.44 \times 10^{-12} \times 10^{8}\left(\frac{54}{54}-3^{4}\right)=0.314$ Hintlec +2241

$$
\pm 5 \times 10^{-3} \times 2=10^{-2} \mathrm{~cm}^{2}
$$

$$
d \cos \alpha_{0}-d \cos \alpha=l
$$

$\cos \alpha=1-\frac{\alpha^{2}}{2} \quad 1-\frac{\alpha_{0}^{2}}{2}-1+\frac{\alpha^{2}}{2}=\frac{\lambda}{d} \quad \alpha^{2}-\alpha_{0}^{2}=2 \frac{\lambda}{d} \quad \lambda=10^{-8}$ on $\quad d 210^{-3} \mathrm{~m} \cdot 2 \frac{2}{d}=2 \frac{1 \sigma^{-8}}{2+10^{-3}}=10^{-3}$

$$
\alpha^{2}-\alpha_{0}^{2}=10^{-5} \quad \alpha_{0}=10^{-2} \quad \alpha^{2}=10^{-4}+10^{-5}=10^{-4} \times 1.1
$$

$\alpha_{0} \ll 1 \quad \alpha \ll \quad \alpha \quad\left(\alpha+\alpha_{0}\right)\left(\alpha-\alpha_{0}\right)=2 \frac{\lambda}{d} \quad \alpha=\alpha_{0}+\varepsilon, \alpha-\alpha_{0}=\varepsilon, \alpha+\alpha_{0}=2 \alpha_{0}+\varepsilon$

$$
\begin{aligned}
& \left(2 \alpha_{0}+\varepsilon\right) \varepsilon-2 \frac{\lambda}{d}, \varepsilon=\frac{q}{2 \alpha_{0}\left(1+\frac{\varepsilon}{2}\right)} \frac{\lambda}{d}=\frac{1}{\alpha_{0}} \frac{\lambda}{d} \frac{1}{1+\frac{\varepsilon}{2 d_{0}}}, \frac{\lambda}{d}=\frac{10^{-8}}{10^{-3}}=10^{-5} \\
& \alpha_{0}=5 \times 10^{-3} \frac{\lambda}{d}=10^{-5} \quad \varepsilon=2 \times 10^{2} \times 10^{-5}=2 \times 10^{-3} \quad \frac{\varepsilon}{2 \alpha_{0}}=\frac{2 \times 10^{-3}}{10^{-2}}=0.2 \quad \varepsilon=2.899 \\
& \varepsilon=\frac{2}{1.2} \times 10^{-3}=1.664 \times 10^{-3} \quad \frac{\varepsilon}{226}=\frac{5}{3} \times 10^{-3}=\frac{5}{10^{-2}}=\frac{11990}{30} \quad 5000+140
\end{aligned}
$$

$$
\begin{aligned}
& \alpha^{2}=\alpha_{0}^{2}+2 \frac{\lambda}{d} \quad \alpha_{0}=5 \times 10^{-3}, \frac{\lambda}{d}=10^{-5}, \alpha^{2}=95 \times 10^{-6}+2=10^{-5}=45.10^{-6}, \alpha=6.408 \times 10^{-3} \\
& \varepsilon-\alpha-\alpha_{0}=\frac{1.408+10^{-3}}{} \\
& x-a_{0}=\varepsilon=\frac{1}{\alpha_{0}} \frac{2}{d} \frac{1}{1+\frac{\varepsilon}{2 \alpha_{0}}} \\
& \varepsilon=\frac{1}{5 \times 10^{-3}} 10^{-5}=2 \times 10^{-3} \frac{1}{1+\frac{5}{206}}=\frac{1}{1+\frac{2 \times 10^{-3}}{10 \times 10^{3}}}=\frac{1}{1+\frac{1}{5}}=\frac{5}{6} \\
& +14.1 \%) \\
& \varepsilon=2 \times 10^{-3} \times \frac{5}{6}=\frac{5}{3} \times 10^{-3}=1.664 \quad \frac{19 \times 10^{-3}}{1+\frac{1}{18}} \frac{1}{1+\frac{1}{6}}=\frac{6}{47} \quad-2.4 \% \\
& \varepsilon=2 \times 1 e^{-3} \times \frac{6}{4}=\frac{12}{4} \times 10^{-3}=1.414 \quad \frac{1}{1+\frac{12}{30}} \cdot \frac{1}{1+\frac{1}{25}}=\frac{35}{41} \quad+0.35 \% \\
& \varepsilon=2 \times 10^{-3} \times \frac{35}{41}=\frac{40}{41}+10^{-3}, 40 \%
\end{aligned}
$$

$$
\left(\int_{-} h \operatorname{Ag} g \frac{h}{2}, \frac{1}{2} A \rho g\left(h_{0}^{2}-h^{2}\right)=\frac{1}{2} A \mathscr{L} \xi h^{2}, \quad h=h_{0} \cos \frac{2 \pi}{T} t .1 . \begin{array}{ll}
h_{0}^{2}=-\frac{g}{2}\left(h_{0}^{2}-h^{2}\right), T=2 \pi \sqrt{\frac{g}{g}} &
\end{array}\right.
$$

$$
\begin{aligned}
& \frac{1}{2} A \rho g\left(h_{0}^{2}-h^{2}\right)=\frac{1}{2} g_{0} l \rho v^{2}=\frac{1}{4} g_{a} l g \frac{A^{2}}{g_{0}^{2}} h^{2}\left(1+\frac{g_{0} \frac{q}{A} l}{l}\right) \\
& \frac{v}{h}=\frac{A}{g_{0}}, v=\frac{A}{g_{0}} h \quad h^{2}=\frac{g g_{0}}{\frac{A}{A}}\left(h_{0}^{2}-h^{2}\right), T-2 \pi \sqrt{\frac{A l}{g_{0} g}} \\
& v=\frac{1}{\eta} \frac{\pi \gamma^{4}}{8} \frac{R}{l} \quad R=\frac{v o \alpha}{\eta}<1000 \quad v=\frac{v}{g_{0}}
\end{aligned}
$$

$$
v=\mathscr{C}^{\prime} \mu^{n}, v=\mathscr{C} \mu^{n}, \ln v=n \ln p+\ln \mathscr{b}, \frac{d \ln v}{d \ln \mu}=n=\frac{1}{2} \text { laminer turturest }
$$

 $s=0,15$
2 -paint $2,186^{\circ} \mathrm{K}$

$$
\begin{aligned}
& \frac{7}{7_{0}}=\frac{1}{2}\left[e^{-y}(y+1)\right]_{\frac{s \alpha}{1-a}}^{\frac{\alpha}{1+a}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.a \gg s-a^{2} s-a-\sigma \quad s_{<} \ll s-a\right)^{a} \\
& \left.\frac{7}{y_{0}}=\frac{1}{2}\left[1-\left(1+\frac{s \alpha}{\sigma}\right) e^{-\frac{s}{\sigma}}\right] \frac{\dot{b}_{\alpha}}{\sigma} \ll 1 \cdot e^{-\frac{\alpha}{\sigma}}=1-\frac{s}{\sigma}+\frac{1 \alpha}{2} \frac{\alpha}{\sigma}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{7}{4}=\frac{1}{4}\left(\frac{\sigma_{\alpha_{0}}}{\sigma}\right)^{2}\left(\frac{\Delta I}{I_{0}}\right)^{2}, \frac{S_{\alpha_{0}}}{0}=4, \frac{7}{y}=4 \frac{\Delta I}{I_{0}}\right)^{2}, \frac{\delta_{\alpha_{0}}}{\sigma}=10 \frac{7}{y}=25\left(\frac{\Delta I}{I}\right)^{2}
\end{aligned}
$$

 1 ycar $=32 \times 10^{4} \mathrm{sec}$

$$
\begin{aligned}
& \frac{3 \alpha^{2}}{8 \pi g}=\rho_{0}=\frac{3 v^{2}}{8 \pi R_{0}^{2}}=9 \frac{R^{3}}{R_{0}^{3}} \\
& =\alpha_{0}^{2}=\frac{8 \pi G}{3} g_{0}=8 \times 6.7 \times 10^{-8} \times 0 .
\end{aligned}
$$

$$
\begin{gathered}
R_{2} \alpha\left(R_{2}-R_{1}\right)=v=v_{0} \\
\alpha R=v_{0}, R=\frac{v_{0}}{\alpha} \\
R=v_{0} t \quad \alpha=\frac{l_{0}}{t} \propto R=v_{0} \\
\frac{a}{a_{0}}=\frac{l_{0}^{3}}{l^{3}}
\end{gathered}
$$

$$
\pi \frac{\frac{4 \pi}{3} R^{3} \rho}{R} g=\frac{1}{2} m v^{2}, \frac{G g\left(\frac{4 \pi}{3} R^{3}\right)}{R}>\frac{v^{2}}{2}>\frac{\alpha^{2} R^{2}}{2}, \rho>\frac{3 \alpha^{2}}{8 r g}=\rho_{0}
$$

- $R_{0} \quad \rho_{0}=\frac{\mathscr{C}}{R_{0}^{3}} \quad v=\alpha R, \alpha=\frac{v}{R}, \alpha_{0}=\frac{v}{R_{0}} \quad \rho=\frac{\mathscr{C}}{R^{3}}, \theta=\rho R, \rho_{0}=\rho \frac{R^{3}}{R_{0}^{3}}$

$$
\omega_{0} 8 \quad \frac{3 v^{2}}{8 \pi g h_{0}^{2}}=\frac{R^{3}}{R_{0}^{3}}=\frac{3 \alpha^{2} R^{2}}{8 x g R_{0}}=\frac{G R^{k}}{R_{0}} \cdot \frac{\rho_{0}}{\rho_{0}}=\frac{R}{R_{0}}
$$

$$
\frac{8 \pi g}{3} 90^{10}=8 \times 6.7 \times 10^{-8} \times 10^{-30}=\sqrt{53.5 \times 10^{-38}}=7.3 \times 10^{-19}
$$

$$
\left.e_{0}+\beta \frac{R^{3}}{h_{0}^{3}} \quad \alpha \cdot \frac{\partial}{R_{1}} \alpha_{p}=\frac{\nu 2}{R_{0}} \alpha=\alpha_{0} \frac{h_{0}}{R^{2}}\right) \frac{3 \alpha^{2}}{8 \pi g}=\beta \cdot \frac{3 \alpha R_{0}^{2}}{\operatorname{sig} R^{2}}
$$

$$
\begin{aligned}
& \alpha=\frac{d(\log }{d t} \frac{\left.\frac{1}{2} g t\right)}{d t}\left(e^{\left.\frac{1}{2} g^{(t)}\right)}= \pm\left(\frac{8 \pi \varphi}{3} \cdot e^{a t}-\frac{c^{2}}{\Omega^{2}}\right)^{\frac{1}{2}}\right. \\
& R_{2}=\infty \frac{d}{d t}\left(e^{\frac{1}{2} g(t)}=\left(\frac{80 r g Q}{3}\right)^{\frac{1}{2}} e^{\frac{1}{2} g t}, \frac{d \ln e^{\frac{1}{2} g(t)}}{d t}=\alpha=\frac{8 \pi g Q}{3}\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{r^{2} d_{r}+r^{2} d}{\cos \alpha=\frac{d x}{d x}} \cdot i \frac{d x^{\prime}}{r^{2}}=i \frac{d x}{d^{2}+x^{2}} \cos \alpha \\
& \therefore \cos \alpha=\frac{d}{x} \quad \frac{d}{x}=\frac{\cos \alpha}{d} \quad \text { i } \quad \operatorname{tg} \alpha=\frac{x}{d} \quad d x=d \quad d \operatorname{tg} \alpha=d \frac{d \alpha}{\cos ^{2} d} \text {. } \\
& \frac{d^{\prime} x}{x^{2}}=\frac{\cos ^{2} \alpha}{d^{2}} d \frac{d \alpha}{\cos ^{2} \alpha}=\frac{d \alpha}{d} \\
& H=i \int_{-\infty}^{+\infty} \frac{d x}{r^{2}} \cos \alpha=i \int_{-\frac{r}{2}}^{+\frac{\pi}{2}} \frac{d \cos ^{2} \alpha}{\cos ^{2} \alpha d^{2}} \cos \alpha d \alpha-\frac{i}{d} \int_{-\frac{\pi}{2}}^{+\frac{r}{2}} d(\sin \alpha)=\frac{2 i}{d} \\
& \therefore \frac{\Delta x}{y^{2}} \cos \alpha, \cos \alpha=\frac{\Delta l}{\Delta x}, i \frac{\Delta h}{y^{2}} \\
& \int d(\sin \alpha) \int_{d \sqrt{5}}^{d} d d \quad \sin \alpha=\frac{1}{\sqrt{2}}, \frac{2}{\sqrt{2}}=\sqrt{2}=1.414 \\
& \frac{d \sqrt{5} a d d}{2 d} \sin \alpha=\frac{2}{\sqrt{5}} \frac{4}{\sqrt{5}}=\frac{4^{\circ}}{2,236}=1,489 \\
& \frac{d \sqrt{10}}{3 d} d \sin \alpha \div \frac{3}{\sqrt{10}} \frac{6}{2169}=1.897 \\
& 2 \\
& \frac{d \sqrt{82}}{9 d} d \sin \alpha=\frac{9}{9,055} \cdot \frac{18}{9.055}=1.988 \\
& \int_{\frac{\pi}{2}-\varepsilon}^{\frac{\pi}{2}} d \sin (\alpha)=1-\sin \left(\frac{\pi}{2}-\varepsilon\right)=1-\left(1+\frac{1}{2} \varepsilon^{2}\right)=-\frac{1}{2} \varepsilon^{2} \\
& \frac{\pi}{2}-\varepsilon \sin \left(\frac{\pi}{2}-\varepsilon\right)=0.994, \frac{\pi}{2}-\varepsilon=88^{\circ}, \varepsilon=2^{\circ}=\frac{\pi}{180} 2=\frac{2 x}{180}=\frac{6.283}{180}=3.483 \times 10^{-2} \\
& \varepsilon^{2}=1.21 \times 10^{-3}=0.0012
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\frac{\alpha}{1-\alpha}}{-4}=\frac{\alpha}{\beta}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{8} e^{-\frac{y}{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\alpha}{6}=\left(1+\frac{k}{x}\right) e^{-\frac{s a}{d}}-\left(1+\frac{\alpha}{\alpha-k}\right) e^{-\frac{\alpha}{d-\alpha}}, s-\alpha=\beta, s=\beta+\beta, \frac{\alpha}{\beta} \ll 1
\end{aligned}
$$

考 $=$

$$
\begin{aligned}
& =\left(1+\frac{1}{5}\right) e^{-\frac{4}{x}}+\frac{12}{8} e^{-\frac{1}{x}}(t+58)-\frac{4 x}{8} e^{-\frac{1}{5}}
\end{aligned}
$$

$b=s_{x}$

$$
b=2 s_{\alpha}
$$

$$
\frac{s_{\alpha}}{\beta_{m}}=2 \ln 2 \frac{\alpha_{\alpha}}{\beta_{m}}+\ln \left(\frac{s_{\alpha}}{\beta_{m}}-1\right)-\ln \left(1+\frac{\beta_{m}}{2 \alpha_{a}}\right)+\ln 2+\frac{1}{2}
$$

$$
x=2.3\left[2 \log 2 x+\log (x-1)-\log \left(1+\frac{1}{2 x}\right)\right]+2.3 \log 2+0.5
$$

$$
x=8 \quad 2,3[2 \times 1.2041+0.8451-0.0263]+\frac{1.164}{8.28}
$$

$$
8+x=8.28+x+0.34, x=0.66=0.28 \quad x=\frac{0.28}{0.66}=\frac{14}{33} \cong 0.42 \quad \beta \sim \frac{1}{8.42} 4 \text { anis } \quad b=28 x
$$

$$
\begin{aligned}
& \frac{s}{\beta} 1=2 \ln \frac{\alpha}{\beta}+\ln \left(\frac{\beta_{\alpha}}{\beta}-1\right)-\ln \left(1+\frac{\beta}{\beta_{\alpha}}\right)+1 \\
& x=2 \ln x+\ln \frac{x-1}{1+\frac{1}{x}}+1=4.6 \log x+2.3 \log \frac{x-1}{1+\frac{1}{x}}+1 \\
& X=10=4.6+2.3 \log \frac{9}{1.1}+1 \frac{0.9542}{\frac{-0.942}{0.928}} \frac{5.6}{\frac{2.15}{4.7}}
\end{aligned}
$$

$$
\begin{aligned}
& =1-\left(1+\frac{s_{0}}{6}\right)\left(1-\frac{s_{0}}{b+b_{0}}+\frac{1}{2} \frac{s_{2}^{2}}{\left(b+s_{0}\right)}\right)+\frac{s_{0}}{6}\left(1-\frac{s}{s_{0}}+\frac{1}{2} \frac{b_{0}^{2}}{\delta_{6}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{F}{y_{0}}=1-\left(1+\frac{s}{b}\right) e^{-\frac{s_{0}}{b+s_{0}}}+\frac{s_{0}}{b} e^{-\frac{s_{0}}{s_{0}}} \delta s_{1}<s_{0} \frac{F}{y}=1+s^{2}
\end{aligned}
$$

$$
\begin{aligned}
& b \ll s \quad \frac{s \alpha}{s+b}=\frac{b \alpha}{s\left(1+\frac{1}{s}\right)}=\frac{S_{\alpha}}{s}\left(1-\frac{b}{s}\right)=\frac{s \alpha}{s}-\frac{b s \alpha}{s^{2}}, e^{-\frac{d x}{d+s}}=e^{-\frac{d}{s}}\left(1+\frac{b s_{\alpha}}{s^{2}}\right) \\
& \frac{Y}{y_{0}^{0}}=\left[\left[\left(1+\frac{s}{b}\right)\left(1+\frac{s x}{s}-\frac{b s x}{s^{2}}\right)-\frac{s}{b}\right]\left(1+\frac{b s}{s^{2}}\right)-\left[\left(1+\frac{s}{b}\right)\left(1+\frac{s}{s}\right)-\frac{1}{b}\right]+\left(1+\frac{s}{s}\right) e^{-\frac{s}{s}}\right] \\
& \left(1+\frac{s \alpha}{s}-\frac{b s}{s^{2}}+\frac{s}{b}+\frac{s \alpha}{b}-\frac{s \alpha}{s}-\frac{s k}{b}\right)\left(1+\frac{b s x}{s^{2}}\right)-\left(1+\frac{s}{b}+\frac{s \alpha}{s}+\frac{s k}{b}-\frac{s \alpha}{b}\right) \\
& 1-\frac{b s \alpha}{s^{2}}+\frac{s}{b}+\frac{b s x}{s^{2}}-\frac{b^{2} s^{2}}{s^{4}}+\frac{s x}{s}-1-\frac{s}{b}-\frac{s}{s} \\
& \frac{y}{y_{0}^{0}}=\left(1+\frac{s-s \alpha}{b}+\frac{s \alpha}{s+6}+\frac{s e s}{b(s+s)}\right) e^{-\frac{s x}{s+s}}-\frac{s}{b} e^{-\frac{s}{s}} \\
& \frac{s_{\alpha}}{s+b}=\frac{s_{\alpha}}{s} \frac{1}{1+\frac{b}{s}}=\frac{s_{\alpha}}{s}\left(1-\frac{b}{s}+\frac{b^{2}}{s^{2}}-\frac{b_{s}^{3}}{s^{3}}\right)=\frac{s_{\alpha}}{s}-\frac{s_{\alpha}}{s} \frac{b}{s}\left(1-\frac{b}{s}+\frac{b^{2}}{s^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{7}{7_{0}}=e^{-\frac{s}{s}}\left[\left[\frac{s}{s}+\frac{s}{b}-\frac{x}{b}+\frac{s x}{s+a}+\frac{s s}{b(s+6)}\right]\left[1+\frac{s}{s}-\frac{s x}{d a}+\frac{1}{2} \frac{s^{2}}{s^{2}}-\frac{s^{2}}{s(s+b)}+\frac{1}{2} \frac{s^{2}}{(1+b)^{2}}\right] \frac{s}{6}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =e^{-\frac{s}{d}}\left\{\left[1+\frac{s}{b}+\frac{s_{x}}{s}\left(1-\frac{b}{s}\right)-\frac{s_{\alpha} b}{b}\right]\left[1+\frac{s_{\alpha}}{s} \frac{b^{2}}{s}\right]-\frac{s}{b}\right\} \\
& =e^{-\frac{s}{s}}\left\{1+\frac{s}{b}+\frac{s}{s}-\frac{s+b}{s^{2}}-\frac{s \alpha}{s}-\frac{s}{b}+\frac{s a b}{s^{2}}+\frac{s \alpha}{s}+\frac{s^{2}}{s^{2}} \frac{b}{s}-\frac{s_{2}^{2}}{s^{2}} \frac{b}{s}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{y}{y_{0}=}=\left[\left(1+\frac{s}{b}\right)\left(1+\frac{s}{s+b}\right)-\frac{s \alpha}{b}\right] e^{-\frac{s \alpha}{s+b}}-\frac{s}{b} e^{-\frac{s \alpha}{d}} \\
& \frac{\bar{y}}{\frac{y_{0}}{d}}=\frac{1}{2 a} \int\left[\left(\frac{1}{2 a}+\frac{s}{b}\right)\left(1+\frac{s x}{d+b}\right)-\frac{d x}{b}\right] e^{-\frac{s}{d+b}}-\frac{s}{b} e^{\left.-\frac{s x}{d}\right)} d s
\end{aligned}
$$

$\frac{v^{2}}{x}=\frac{(2 r r+\omega)^{2}}{x}=4 r^{2} r \omega^{2}=40 x \omega^{2}$
\square

$$
\begin{aligned}
& 2 a=\frac{b}{2}, \frac{a}{4 a}=1, \frac{b}{2}+a=3 a, \frac{b}{2}-a=a, \frac{\overline{4}}{y}=\frac{3}{2} e^{-\frac{d}{3 a}}-\frac{1}{2} e^{-\frac{4}{a}} \\
& \frac{s_{\alpha}}{a}<1, \frac{\overline{7}}{y_{0}}=\frac{3}{2}\left(1-\frac{s_{\alpha}}{3 a}\right)-\frac{1}{2}\left(1-\frac{1}{a}\right)=\frac{3}{2}-\frac{s_{\alpha}}{2 a}-\frac{1}{2}+\frac{s_{\alpha}}{2 a}=1 \\
& \frac{s_{\alpha}}{a}=3, \frac{\bar{y}}{7_{0}}=\frac{3}{2} e^{-1}-\frac{1}{2} e^{-3}=\frac{3}{2} 0,368-\frac{1}{2} 0,0498-0,552-0,025 \\
& e^{-\frac{8 x}{T}}=e^{-\frac{x_{x}}{4 a}}=e^{-\frac{3}{4}} \sim 0,5
\end{aligned}
$$

$$
s_{1}=\frac{1}{2} \frac{\pi}{m} \frac{\partial F}{\partial z} \frac{l^{2}}{v^{2}}, s_{x}=\frac{c^{2} \pi}{4 k T} \frac{\partial F}{\partial z}=\frac{10^{4} \cdot 10^{-2}}{16 \cdot 1 \sigma^{14}} \frac{\partial F}{\partial z}=\frac{1}{16} 10^{-3} \frac{\partial F}{\partial z} a_{m}
$$

$\frac{\partial f}{\partial z}=10^{3}=3 \cdot 10^{5} \frac{\psi}{m} \quad s_{0}=\frac{\mu^{2} l^{2}}{(4 \cdot k T)^{2}}=\frac{\partial f}{\partial x}=1,34 \cdot 10^{-6}\left(f \frac{\partial f}{\partial 7}\right) \mathrm{cm}$
$\frac{\mu l}{4 R T}=\frac{187 \cdot 10^{-18} \cdot 10^{2}}{16 \cdot 10^{-14}}=1,17 \cdot 10^{-3}$
(0) $F \frac{\partial F}{\partial t}=10^{4} \operatorname{cgs}$

$$
\begin{aligned}
& \text { (0) } y_{=}=\ln t+\text { kat } g_{1}-g_{2}=\varphi h_{1} t, \varphi_{1}=g_{1}-g_{2} \sim g_{1}-g_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{10^{2}}{r^{3}}=10^{4}, x^{3}=10^{-2}=\frac{10}{10^{3}}+\sqrt{2}+\sqrt{10} x-2,13 \text { nom }
\end{aligned}
$$

$x^{2}=a^{2}+y^{2} \quad \frac{\partial x}{4 y}=-2 I \frac{2 a y^{2}}{y^{4}}=-2 I \quad \frac{4 \cdot 13}{2,69}=-2 I \cdot 1,935=0,387 i=236$
$x=1$ an $y=1,3 a \quad x^{2}=a^{2}+1,69 a^{2}=3,69 a^{2} \quad a=\frac{1}{6}=\frac{1}{54}=0,61 \quad y=1,3 a=0,793$

$$
\begin{aligned}
& s_{\alpha}^{b}=s_{\alpha}\left(1-\frac{i}{c_{0}}\right), s_{\alpha}^{1}=s_{\alpha_{0}}\left(1-\frac{3}{4} \frac{i}{c_{0}}\right), s_{\alpha}^{2}-s_{\alpha_{0}}\left(1-\frac{2 i}{4 c}\right), s_{\alpha}^{3}=s_{\alpha_{0}}\left(1-\frac{3 i}{4}\right), s_{\alpha}^{4}=s_{\alpha_{0}} \\
& \frac{d \frac{q}{v}}{d \frac{i}{\iota_{0}}}=\frac{d e^{-\frac{b x}{b}}}{d \frac{i}{\iota_{0}}}=-e^{-\frac{s x}{b}} \frac{d \frac{s}{c}}{d \frac{i}{\epsilon_{0}}}=+e^{-\frac{s \alpha}{b} \frac{s_{0}}{b} \text { 有 }}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
+\frac{1}{2} 0,1353 \\
+40,0,498 \\
\frac{0.0124}{1,5560}
\end{array} \\
& +\frac{1}{4} 0,04981,5960
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{b \alpha_{0}}{b}\left(1+\frac{3}{4} e^{-\frac{1}{4} \frac{d_{2}}{4}}+\frac{1}{2} e^{-\frac{1}{2} \frac{d x}{b}}+\frac{1}{4} e^{\left.-\frac{3}{4} \frac{d x}{a}\right)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& s_{\alpha}=-\frac{1}{2} g \frac{l^{2}}{\alpha^{2}}+\frac{1}{2} \frac{M}{\mu} \frac{2 I}{\gamma^{2}} \frac{l^{2}}{\alpha^{2}} \frac{1}{2} g \frac{l^{2}}{\alpha^{2}}=\frac{1}{2} \frac{M}{M} \frac{2 I_{0}}{\gamma^{2}}=s_{\alpha_{0}} \\
& s_{\alpha}=-s_{\alpha_{0}}+s_{\alpha_{0}} \frac{I}{I_{0}}=s_{\alpha_{0}}\left(1+\frac{I}{I_{0}}\right)=s_{\alpha_{0}} \frac{\Delta I}{I_{0}} \\
& \frac{\frac{7}{7}}{F_{0}}=\left(1+\frac{s_{\alpha}}{s}\right) e^{-\frac{s_{\alpha}}{s}} \frac{s_{\alpha}}{s}=
\end{aligned}
$$

$n=n_{0} 2 e^{-\frac{x^{2}}{\alpha^{2}}} \frac{\frac{c}{3}^{3}}{\alpha^{3}} \frac{\dot{e}}{\alpha}=n_{0} e^{-x} x d x \quad n_{0} \int e^{-x} x d x n_{0} \int_{\infty}^{0} x d e^{-x}=n_{0}\left(x e^{-x}+e^{-x}\right)_{|c| c}^{0}=n_{0}$

$$
F_{0}=k_{\text {onst }} y=\frac{y_{0} \int x e^{\frac{s}{s}}}{\frac{s}{s-s_{2}}} x d x=7_{0}(1+x) e^{-x} \int_{s-s_{2}}^{\frac{s}{s-s_{2}}}
$$

$\frac{s_{1}}{\sqrt{0}} ; 7=\left.z_{0}(1+x) e^{-x}\right|_{\infty} ^{\frac{s_{s}^{s}}{s}}=f_{0}\left(1+\frac{s_{x}}{s}\right) e^{-\frac{s_{x}}{s}}$

$$
\begin{aligned}
& d 7=7_{0} \times e^{-x} d x, x=\frac{c^{2}}{d^{2}}=\frac{\delta_{\alpha}}{s^{2}} \quad s^{\prime}=s+\sigma, 7_{0}=F_{0}^{0}\left(1-\frac{\sigma}{6}\right) \\
& x=\frac{s_{\alpha}}{s+b}, s+\sigma=\frac{s_{2}}{x}, \sigma=\frac{s_{\alpha}}{x}-s, 7_{0}=7_{0}^{0}\left(1+\frac{s}{b}-\frac{s_{x}}{x b}\right)=f_{0}^{2}\left(1+\frac{s}{b}\right)-7_{0}^{0} \frac{s_{\alpha}}{b} \frac{1}{x} .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{A}{7}=\left[(1 + \frac { d } { b } (1 + \frac { d x } { d + 6 }) - \frac { d } { b }] e ^ { - \frac { d x } { d + b } } \left[\left[\left(1+\frac{s}{b}\right)\left(1+\frac{d}{s}\right)-\frac{d}{b}\right] e^{-\frac{d}{s}}+\left(1+\frac{B}{s}\right) e^{-\frac{d}{s}}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& d x=7 d s, d x_{0}=7_{0} d s_{0}, s^{\prime}=s-s_{0}, d s^{\prime}=d s=-d s_{0} \\
& s=\frac{b}{c^{2}} \frac{s^{\prime}}{s_{x}}=\frac{x^{2}}{c^{2}}=\frac{1}{x}, d s^{\prime}=-\frac{d_{x}}{x^{2}} d x \left\lvert\, \frac{1}{d s}=\frac{x^{2}}{x_{e}} \frac{d}{d x}\right. \\
& y=\frac{d x}{d s}=d m_{0} e^{-x} x d x \cdot \frac{1}{d s} d m_{0_{x}} e^{-x} x^{3} \\
& d x_{0}=y_{0} d s_{0}=-7_{0} d s=-7_{0} d s=y_{0} \frac{s_{x}}{x^{2}} d x \\
& 17=4_{0} \frac{1}{x^{2}} d x e^{-x_{1}} x^{3}=y_{0} x e^{-x} d x, x \frac{b}{s}=\frac{s}{s-s_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& t=\frac{l}{c}=\frac{s}{v}, s=\frac{v}{c} l, d s=-\frac{v}{c^{2}} l d c,\left|\frac{d c}{c}\right|=\frac{d s}{l} \frac{c}{v}=\frac{b}{l} \frac{c}{v} \\
& \Delta t=\frac{b}{v} \quad t=\frac{b}{c} \quad \frac{\Delta t}{t}=\frac{b}{l} \frac{c}{v} \quad \text { I }=1 \mathrm{con} \quad 2 \pi v=6.3 \mathrm{~cm} \quad v=6.3 \times 10^{4} \frac{\mathrm{~cm}}{10 \mathrm{cc}} \quad \% .10^{4} \\
& \text { Id } \frac{5}{x} b e^{-\frac{c^{2}}{\alpha^{2}}} \frac{c^{3}}{a^{3}} d \frac{c}{\alpha}, \frac{c}{\alpha}=x, \frac{d 7}{d x}=3 x^{2} e^{-x^{2}}-2 x^{4} e^{-x^{2}}, x_{m}^{2}=\frac{3}{2} \\
& \frac{7}{m}=e^{-\frac{3}{2}} \frac{3}{2} \sqrt{\frac{3}{2}} \sim 0.2231 \times 1.5 \cdot 1.224=\sim 0.410 \quad \frac{c}{\frac{0.612,2}{1.6364 \%}} \quad \frac{c}{\frac{7}{7_{m}}} \\
& \frac{c}{a}=1 \quad . \quad 7=e^{-1} 1^{3}=0.3679 \cdot \frac{4}{y}=0.90 \\
& \frac{c}{a}=\frac{1}{2} 7=e^{-\frac{1}{4}} \frac{1}{8}=0.4488: 8=0.0943+\frac{7}{7} \sim 0 \\
& \frac{1}{2}=0.5 \quad 24 \% \\
& \frac{c}{\alpha} \ll 1 \quad 7=\left(1-\frac{c}{\alpha}\right)\left(\frac{c}{2}\right)^{3} \frac{c}{\alpha}=\frac{1}{4}-7 \sim \frac{1}{64}\left(1-\frac{1}{16}\right) \sim 0.01560 .958 \sim 0.0146 \frac{4}{4 / 2}=\frac{1}{3} \frac{1}{4}=0.25 \quad 3.5 \%
\end{aligned}
$$

$$
\left|\begin{array}{ccc}
+-+- \\
-+-+ \\
+-+- \\
-+-+
\end{array}\right| \begin{array}{cc}
-1,8 & 1,6 \\
-0,6 \\
14 \theta \\
1,72 \times 10^{-2} \\
1,445 \times 10 \div ? & \ldots
\end{array}|||\mid
$$

$$
\begin{aligned}
& \text { (2) } m v t=\frac{h}{2 \pi}, \quad r t^{2} v e=\mu, 2 r v^{2} v=v, v=\frac{\theta}{2 \pi}, \mu=\frac{1}{2} x v e=\frac{e}{2} x v \\
& v x=\frac{1}{m} \frac{h}{2 \pi}, \mu=\frac{1}{2} \frac{e}{m} \frac{h}{2 \pi}=\frac{1}{2} \frac{e}{m} \neq 7=m v x
\end{aligned}
$$

$$
\begin{aligned}
& m=9 \times 10^{-28} \mathrm{~g} \frac{\mathrm{e}}{\mathrm{~m}}=\frac{1.6}{9} \times \frac{10^{-20}}{10^{-28}}=1.46 \times 10^{7} \text { el.m.c.g. . } \mu=0.88 \times 10^{17}=1.032 \times 10^{-24}+0.91 \times 10^{-20} \\
& \mu_{n}=\frac{0.9 \times 10^{-20}}{1800}=0.5 \times 10^{-23} \quad \mu_{n} N=3 \text { cg's } \quad M_{0}=\mu N=546 \times 10^{3}=5,460 \text { c.g.s. } \\
& \mu H=h \dot{v}_{c}, v_{c}=\frac{1}{2} \frac{e}{m} \frac{h}{2 \pi} \frac{H}{H}=\frac{H}{4 \pi} \frac{e}{m}=\frac{1.76 \times 10^{7}}{12.566} \mathrm{H}=1.4 \times 10^{6} \mathrm{H} \\
& \begin{array}{l}
14.6: 12.566=1.4 \\
\frac{12.566}{5.037} \\
5026
\end{array} \\
& \nu_{L}=\frac{\mu}{h} H \quad 7=\frac{h}{2 \pi}, h=2 r 7, v_{L}=\frac{1}{2 \pi} \frac{\mu}{7} H \\
& \quad F=e(H+d H)-e H=e d H, d X=l \frac{d H}{d s}, F=e l \frac{d H}{d t s}=u \frac{d H}{d s}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{3}{2}-\frac{s}{a}\right)(1+x)+\frac{s_{\alpha}}{a} \frac{1}{1+x} \\
& \left(\frac{3}{2}-\frac{s}{a}\right)+\frac{1}{1+x} \frac{s_{\alpha}}{a}=\frac{3}{2}-\frac{s}{a}+\frac{s_{\alpha}}{a} \frac{s+b}{s_{\alpha}+s+b} \\
& \left(\frac{3}{2}-\frac{s}{a}+\frac{s_{\alpha}}{a} \frac{s-\frac{1}{2} a}{s_{\alpha}+s-\frac{1}{2} a}\right) \mathcal{F}\left(\frac{s \dot{x}}{s-\frac{1}{2} a}\right) \\
& -\left(\frac{3}{2}-\frac{s}{a}+\frac{1}{a} \frac{s-\frac{3}{2} a}{s_{\alpha}+s-\frac{3}{2} a}\right) \mathcal{S}\left(\frac{s}{s-\frac{3}{2} a}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
14.5: 13=1.1154 \quad \frac{14.5}{3.5} ; 11=1.3182 \\
13
\end{array} \\
& \begin{array}{ll}
\frac{13}{1.50} \\
\frac{30}{20} & \frac{14.5: 9}{\frac{55}{10}} \\
\frac{13}{10} & \frac{3.5}{20} \\
\frac{65}{90} & \frac{14.5 \cdot 7}{\frac{50}{50}}
\end{array} \\
& 9: 23.5=0,38298 \\
& \frac{705}{1950} \quad M: 21.5=0,32558 \\
& \frac{1880}{700} \quad \frac{645}{550} \quad 130: 275=0.44242 \\
& \begin{array}{llll}
\frac{490}{2300} & \frac{430}{20} & \frac{1100}{2000} & 110: 255 \\
2115 & \frac{1075}{1250} & 1925 & 1020
\end{array} \\
& \begin{array}{ccc}
1250 & 758 & 800 \\
1075 & 450 & \frac{558}{2006} \\
1765 \\
1728 & \frac{1925}{450} & \frac{255}{95}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& y_{0}=\frac{a^{2} x_{0}^{2}}{2}=\frac{m\left(2 \pi \left(x^{2} x_{0}^{2}\right.\right.}{2}, u_{0}=\frac{M 1}{2} 4 r^{2} \nu^{2} x_{0}^{2 \cdot} \text { erg } \\
& \lambda_{0}=250 \times 40 \times 10^{24} \times 4 \times 10^{-16} \times 2.9 \times 10^{-8} \mathrm{cal}=4 \times 10^{28} \times 2.4 \times 10^{-24} \sim 10^{5} \mathrm{cal}
\end{aligned}
$$

$1046 \quad 0.041866 \quad 11511,046358 \quad 139150.099025$

$$
-\frac{84}{188} \quad \frac{348}{\text { aल4010 }} \quad \frac{258}{1089248}
$$

0.08928	411	41	411	0.11333	461
$-\frac{0.06464}{0.02161: 5}$	423	42	423	433	43
0.0898	434	2405	441		
0.00432	442	44	444	481	491
	451				
	450	$\frac{45}{215}$	$\frac{453}{152}$		$\frac{501}{4405}$
	2159	2162			

0.13956	510	509	1819	112722	1.53846	2318	208
0.11333	519	517	54	358			
$2623: 5$	528	525	113329		0.139565		
525	534	533	546				
	2648	511					

2382	0.90007	871	1.21306	906
212	$-\frac{0.85642}{4365: 5}$	842	843	-1.16767
$\frac{143}{069}$	843	874	$4539: 5$	908
		$\frac{845}{4365}$	908	909
				$\frac{909}{4539}$

$$
\begin{array}{rrrr}
2546 & 620 & 0.94402 & 874 \\
\frac{599}{21} & \frac{0.90004}{4395: 5} & 8789 \\
849 & 880 \\
& & 881 \\
& & 4395
\end{array}
$$

$$
\begin{array}{rr}
3071 \quad 141 \\
07609 & 893 \\
04750 & 894 \\
03276 & 895 \\
4444: 5 & 896 \\
895 & 4474
\end{array}
$$

$$
3252 \begin{array}{rr}
123505 \\
\frac{1028}{12248 x} & 898 \\
07450 & 999 \\
\hline 4498: 5 & 900 \\
890 & \frac{901}{4498}
\end{array}
$$

3449

$$
\frac{164050}{16467}-902
$$

$$
\begin{aligned}
& 2717 \quad 989422 \quad 883 \quad 0.719424 \quad 1618 \\
& \begin{array}{rrr}
1162 & 884 & 888 \\
\begin{array}{c}
988260
\end{array} & 885 & 647662 \\
\frac{-94402}{4424} ; 5 & \frac{886}{4424} & 686 \\
885 & 646976
\end{array}
\end{aligned}
$$

A New Method for the Measurement of the Bohr Magneton

Otto Stern
Research Laboratory of Molecular Physics, Carnegie Institute of Technology, Pittsburgh, Pennsylvania

(Received March 8, 1937)
A molecular ray method for the measurement of forces acting on molecules is discussed in which these forces are compensated by the force of gravity (molecular balance).

IN the following paper a method is discussed in which, by employing a molecular ray, the acceleration given to a molecule by an external field (magnetic, electric) is compared directly with the acceleration produced by gravity. The experiments now under way in this laboratory attempt to employ this method for an exact determination of the Bohr magneton. ${ }^{1}$ However, the method should be useful also for many other problems.

The Measurement of the Free Fall of Molecules

The free fall of molecules in the gravitational field of the earth could be easily observed by the following experiment with molecular rays.

A molecular ray, Cs in our case, is produced by the ovenslit A (Fig. 1) and the collimating slit B. The detector C is a heated tungsten wire. Both slits and the detecting wire are horizontal. The Cs atoms striking the surface of the wire are ionized. The ion current between the wire and a negatively charged cylinder gives directly the number of impinging atoms per second (Lang-muir-Taylor method ${ }^{2}$). The dotted lines in Fig. 1 give the paths of some Cs atoms with different velocities. We shall find a deflected beam with an intensity distribution corresponding to Maxwell's law.

[^0]
Numerical Example

We assume the distance $A B=B C=l$. Then in our arrangement the distance of free fall s_{α} for the atoms with the most probable velocity α is
$s_{\alpha}=g l^{2} / \alpha^{2}=g l^{2} M / 2 R T \quad\left(\right.$ since $\left.\frac{1}{2} M \alpha^{2}=R T\right)$.
With $l=100 \mathrm{~cm}$ we have

$$
\begin{equation*}
s_{\alpha}=\frac{3}{5} \times(M / T) \mathrm{mm} . \tag{1a}
\end{equation*}
$$

For Cs $\left(M=132.9 ; T=450^{\circ} \mathrm{K}\right): s_{\alpha}=0.177 \mathrm{~mm}$. Fig. 3 gives the distribution of the intensity in the vertical direction for a beam of 0.04 mm width (beam without half-shadow, detecting wire very thin). s is the distance from the center of the beam, i / i_{0} the ratio of the current i at the position s to i_{0} for the undeflected beam, that is, the straight beam of atoms not influenced by any force.

The available intensity J_{0} is in a very rough approximation given by

$$
J_{0}=\frac{2 \times 10^{-5}}{(M T)^{\frac{1}{2}}} \frac{h}{r^{2}} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{sec} .}{ }^{3}
$$

where $r=2 l$ is the length of the beam and h the height of the ovenslit (in this case h is horizontal). ${ }^{4}$ With $M=132.9 ; T=450^{\circ} \mathrm{K} ; 2 l=r=2 \times 10^{2} \mathrm{~cm}$, $h=0.2 \mathrm{~cm}$:

$$
J_{0}=4 \times 10^{-13}\left(\mathrm{~mol} / \mathrm{cm}^{2} \mathrm{sec} .\right) .
$$

If the diameter of the detecting wire is 4×10^{-3} cm and the effective length $2 \times 10^{-1} \mathrm{~cm}, J_{0}$ corresponds to an ion current $i_{0}=3 \times 10^{-11} \mathrm{amp}$.

[^1]the moment $\mu_{0} .{ }^{7}$ But this component is the only one we are concerned with because only for this one the deflection has an upward direction as long as $I-I_{0}$ does not become too large (till about $\left.I-I_{0}<\frac{1}{3} I_{0}\right)$.
Another method to determine I_{0} would be to place the detecting wire directly in the path of
the straight beam (Fig. 1, $C^{\prime \prime}$) and measure i as a function of I. Then i should have a maximum for $I=I$ because if I is larger or smaller than for $I=I_{0}$ because if I is larger or smaller than I_{0} we deflect atoms diminish the intensity. ${ }^{8}$ The other components do not disturb us in this case either because they give no maximum of $i=\mathcal{I}_{0}$ but only a monotonic increase of i with I. Of course, also
here i can be easily calculated as a function of I.
here i can be easily calculated as a function of I.
It seems that I_{0} could be determined very
It seems that I_{0} could be determined very accurately by either one of these methods. This
should make possible a very exact measurement of $N \mu_{0}$. Eq. (2) gives :
$$
\mu_{0}=m g d^{2} / 2 I_{0} \quad \text { or } \quad N \mu_{0}=\mathrm{M}_{0}=M g d^{2} / 2 I_{0}
$$
(N Avogadro's number, M molecular weight).
Since M and g are well known the accuracy of the result will probably depend mainly on the accuracy of d, that is of the alignment of the arrangement.
To calculate numerical values we write (2) in the form
$|d H / d r|=\left(\mathrm{M} / \mathrm{M}_{0}\right) g=2 I_{0} / d^{2}$.
For Cs we have
$|d H / d r|=(132.9 / 5550) \times 980=23.5 \quad$ gauss $/ \mathrm{cm}$ and for $d=1 \mathrm{~cm}$
$$
I_{0}=\frac{1}{2} \times 23.5 \text { e.m.u. }=117.5 \mathrm{amp} .
$$

Corrections for the finite height h of the beam and the magnetic field of the earth are small (quadratic terms) and can easily be taken into account. Furthermore, the beam must be placed ${ }^{7}$ Exactly,,$\mu_{0} \pm$ magnetic moment of the nucleus. Since
this moment is of the order of magnitude $10^{-3} \mu_{0}$ it has to be this moment onl very roughly. On the other hand it may be
knowsible in the future to determine
possiclear moment possible in the future to determine nuclear moments in this
way. 8 This is analogous to the method used by Rabi and his
fellow-workers (see for instance, Phys. Rev. 50, 472 (1930)) felow-workers see for instance, Phys. Rev.
compensating deffections by sending the beam through a
weak and afterwards a strong field. They also were the weak and afterwards a strong field. They also were the
first ones to employ wire fields in actual experiments. On first ones to employ wire fields in actual experiments. On
the other hand the whole method has a certain analogy with Millikan's experiments for the determination of e.
in the north-south direction. In this case the Coriolis force produced by the rotation of the earth has no vertical component. Otherwise this force amounts to some tenths of one percent of the force of gravity even for the atoms with the velocity α.

Nuclear Moments

It is quite interesting to consider the numerical values for a similar experiment with H_{2} molecules. For the deflection by gravity Eq. (1a) gives

$$
s_{\alpha}=\frac{3}{5} \times \frac{M}{T}=\frac{3}{5} \times \frac{2}{60}=\frac{1}{50} \mathrm{~mm}
$$

if we take $T=60^{\circ} \mathrm{K}$. For the compensating inhomogeneity we get from Eq. (2a) taking $N \mu$ equal to 5 nuclear magnetons per mole

$$
\left|\frac{d H}{d r}\right|=\frac{M}{N_{\mu}} g=\frac{2}{15} \times 980=131 \frac{\text { gauss }}{\mathrm{cm}},
$$

still quite a convenient value for a wire field.
But in this case it will be necessary to take into account the diffraction of the de Broglie waves for the interpretation of the measurements. The wave-length λ_{α} of a molecule with the velocity α is

$$
\lambda_{\alpha}=\frac{h}{m \alpha}=\frac{N h}{(2 R T M)^{\frac{1}{2}}}=\frac{30.7}{(T M)^{\frac{1}{2}}} 10^{-8} \mathrm{~cm} .
$$

For this wave-length the distance s_{d} of the first diffraction maximum from the beam at the place of the detector is

$$
s_{d}=l \frac{\lambda_{\alpha}}{b}=\frac{l}{b} \times \frac{30.7}{(M T)^{\frac{1}{2}}} \times 10^{-8} \mathrm{~cm},
$$

where b is the width of the collimating slit and l the distance between the collimating slit and the detector. For H_{2} at $60^{\circ} \mathrm{K}$ we get:
$\lambda_{\alpha}=28 \times 10^{-8} \mathrm{~cm}$ and with $b=1 / 100 \mathrm{~mm}$,
$s_{d}=2.8 \times 10^{-3} \mathrm{~cm}$
compared with $s_{\alpha}=2 \times 10^{-3} \mathrm{~cm}$. For Cs, however, we have
$\lambda_{\alpha}=0.125 \times 10^{-8} \mathrm{~cm}$ and with $b=2 \times 10^{-3} \mathrm{~cm}$, $s_{d}=0.62 \times 10^{-4} \mathrm{~cm}$. Consequently the diffraction will require at most a small correction.
It is self-evident that, employing the same method, we can use also other forces to compensate the force of gravity

$m g=\mu_{0}|d H / d r|=\mu_{0}\left(2 I_{0} / d^{2}\right)$
To find I_{0} we can employ different methods. The -
following one: We place the detecting wire a short distance above the straight beam (Fig. 1, $\left.C^{\prime}\right)$ and let I increase. As long as $I<I_{0}$ all atoms
are deflected downward, no atom strikes the wire and we have no ion current. The instant I becomes larger than I_{0}, half of the atoms regardless of their velocity are deflected upwards and some atoms strike the wire. Since the amount of the deflection depends on the velocity, the slowest atoms strike the wire first, then with increasing
$I-I_{0}$ the faster ones. No matter how far above the beam we set the detecting wire, we shall get an ion current as soon as I becomes larger than I_{0}. The intensity of this ion current, however, depends of course on the distance between the beam and the detector. It can be easily calculated as a function of $I-I_{0}$ by using Maxwell's law of the velocity distribution
At this point we can see at once why the for Cs , by a weak field does not matter. The fomponent with the largest value of μ has always

A New Method for the Measurement of the Bohr Magneton

Otto Stern
Research Laboratory of Molecular Physics, Carnegie Institute of Technology, Pittsburgh, Pennsylvania

(Received March 8, 1937)
A molecular ray method for the measurement of forces acting on molecules is discussed in which these forces are compensated by the force of gravity (molecular balance).

IN the following paper a method is discussed in which, by employing a molecular ray, the acceleration given to a molecule by an external field (magnetic, electric) is compared directly with the acceleration produced by gravity. The experiments now under way in this laboratory attempt to employ this method for an exact determination of the Bohr magneton. ${ }^{1}$ However, the method should be useful also for many other problems.

The Measurement of the Free Fall of Molecules

The free fall of molecules in the gravitational field of the earth could be easily observed by the following experiment with molecular rays.

A molecular ray, Cs in our case, is produced by the ovenslit A (Fig. 1) and the collimating slit B. The detector C is a heated tungsten wire. Both slits and the detecting wire are horizontal. The Cs atoms striking the surface of the wire are ionized. The ion current between the wire and a negatively charged cylinder gives directly the number of impinging atoms per second (Lang-muir-Taylor method ${ }^{2}$). The dotted lines in Fig. 1 give the paths of some Cs atoms with different velocities. We shall find a deflected beam with an intensity distribution corresponding to Maxwell's law.

[^2]
Numerical Example

We assume the distance $A B=B C=l$. Then in our arrangement the distance of free fall s_{α} for the atoms with the most probable velocity α is
$s_{\alpha}=g l^{2} / \alpha^{2}=g l^{2} M / 2 R T \quad\left(\right.$ since $\left.\frac{1}{2} M \alpha^{2}=R T\right)$.
With $l=100 \mathrm{~cm}$ we have

$$
\begin{equation*}
s_{\alpha}=\frac{3}{5} \times(M / T) \mathrm{mm} . \tag{1a}
\end{equation*}
$$

For $\mathrm{Cs}\left(M=132.9 ; T=450^{\circ} \mathrm{K}\right): s_{\alpha}=0.177 \mathrm{~mm}$. Fig. 3 gives the distribution of the intensity in the vertical direction for a beam of 0.04 mm width (beam without half-shadow, detecting wire very thin). s is the distance from the center of the beam, i / i_{0} the ratio of the ion current i at the position s to i_{0} for the undeflected beam, that is, the straight beam of atoms not influenced by any force.

The available intensity J_{0} is in a very rough approximation given by

$$
J_{0}=\frac{2 \times 10^{-5}}{(M T)^{\frac{1}{2}}} \frac{h}{r^{2}} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{sec} .}{ }^{3}
$$

where $r=2 l$ is the length of the beam and h the height of the ovenslit (in this case h is horizontal). ${ }^{4}$ With $M=132.9 ; T=450^{\circ} \mathrm{K} ; 2 l=r=2 \times 10^{2} \mathrm{~cm}$, $h=0.2 \mathrm{~cm}$:

$$
J_{0}=4 \times 10^{-13}\left(\mathrm{~mol} / \mathrm{cm}^{2} \mathrm{sec} .\right) .
$$

If the diameter of the detecting wire is 4×10^{-3} cm and the effective length $2 \times 10^{-1} \mathrm{~cm}, J_{0}$ corresponds to an ion current $i_{0}=3 \times 10^{-11} \mathrm{amp}$.

[^3]

Fig. 1.
Compensation of the Force of Gravity by a Magnetic Field
The magnetic field may be produced by a current I flowing through a wire underneath and parallel to the beam. Led d be the distance between the center of the beam and the center of the wire. Then at the place of the beam the field strength H is $2 I / d$ and the inhomogeneity $d H / d r=-2 I / d^{2} . H$ is horizontally, $d H / d r$ verically directed (Fig. 2). The magnetic force $F_{m}=\mu(d H / d r)$ exerted on a magnetic dipole has also the vertical direction. Thereby μ is the component of the magnetic moment of the dipole in the direction of H (horizontal in our case). ${ }^{5}$ For alkali atoms in a strong field μ has only the two values $+\mu_{0}$ and $-\mu_{0}\left(\mu_{0}\right.$ Bohr magneton). In our case we have to deal with a very weak field where we have many more components. But this does not make any difference in the essential point as we shall see later. So let us assume for the moment that we have only the two components $+\mu_{0}$ and $-\mu_{0} .{ }^{6}$ Then for one-half of the atoms the magnetic force has the same direction as the force of gravity, for the other half of the atoms the opposite direction. For these atoms it will be possible to choose $|d H / d r|=2 I_{0} / d^{2}$ so that the magnetic force just cancels the force of gravity These atoms will get no acceleration at all and move strictly in straight lines. I_{0} is determined by the equation

$$
m g=\mu_{0}|d H / d r|=\mu_{0}\left(2 I_{0} / d^{2}\right)
$$

To find I_{0} we can employ different methods. Th most straightforward procedure seems to be the ${ }^{6}$ In the usual arrangement H and $d H / d r$ are parallel.
The validity of $F F_{m} \mu \mu(d H / d r)$ for the present case follows
directly from the consideration of the energy or from
considering the forces and taking into accunt curl $H=0$.
'This case could be realized experimentally by supermposing a strong homogeneous field

Fig. 2.
following one: We place the detecting wire a short distance above the straight beam (Fig. 1, C^{\prime}) and let I increase. As long as $I<I_{0}$ all atoms are deflected downward, no atom strikes the wire and we have no ion current. The instant becomes larger than I_{0}, half of the atoms regard less of their velocity are deflected upwards and ome atoms strike the wire. Since the amount the deflection depends on the velocity, the slowe atoms strike the wire first, then with increasin $-I_{0}$ the faster ones. No matter how far abo the beam we set the detecting wire, we shall get an ion current as soon as I becomes larger than I depends of course on the distance between the depar or 1 can be easily cal
 as a furction the velocity distribution.
At this point we can see at once why the plitting of the bear ing many components, 16 component with the largest value of μ has alway

the moment $\mu_{0} .{ }^{7}$ But this component is the only in the north-south direction. In this case the one we are concerned with because only for this one the deflection has an upward direction as long as $I-I_{0}$ does not become too large (till about $I-I_{0}<\frac{1}{3} I_{0}$).
Another method to determine I_{0} would be to place the detecting wire directly in the path of the straight beam (Fig. 1, $C^{\prime \prime}$) and measure i as a function of I. Then i should have a maximum for $I=I_{0}$ because if I is larger or smaller than I_{0} we deflect atoms upward or downward and diminish the intensity. ${ }^{8}$ The other components do not disturb us in this case either because they give no maximum of i for $I=I_{0}$ but only a monotonic increase of i with I. Of course, also
here i can be easily calculated as a function of I.
It seems that I_{0} could be determined very accurately by either one of these methods. This should make possible a very exact measurement of $N \mu_{0}$. Eq. (2) gives :
$\mu_{0}=m g d^{2} / 2 I_{0}$ or $N \mu_{0}=\mathrm{M}_{0}=M g d^{2} / 2 I_{0}$
(N Avogadro's number, M molecular weight).
Since M and g are well known the accuracy of the result will probably depend mainly on the accuracy of d, that is of the alignment of the arrangement.
To calculate numerical values we write (2) in the form
$|d H / d r|=\left(\mathrm{M} / \mathrm{M}_{0}\right) g=2 I_{0} / d^{2}$.
For Cs we have
$|d H / d r|=(132.9 / 5550) \times 980=23.5 \quad$ gauss $/ \mathrm{cm}$ and for $d=1 \mathrm{~cm}$
$I_{0}=\frac{1}{2} \times 23.5$ e.m.u. $=117.5 \mathrm{amp}$.
Corrections for the finite height h of the beam and the magnetic field of the earth are small (quadratic terms) and can easily be taken into account. Furthermore, the beam must be placed ${ }^{7}$ Exactly,$\mu_{0} \pm$ magnetic moment of the nucleus. Since this moment is of the order of mant of the nucleus. Since
known only very roughty. On the other hand tit one may be known only very roughly. On the other hand it may be be
possible in the future to determine nuclear moments in this ${ }^{\text {way }}$ This
8 This is analogous to the method used by Rabi and his
fellow-workers (see for instance, Phys. Rev. 50, 472 (1930) compensating deflections by sending the beam through a
weak and afterwards a strong feld weak and afterwards a strong field. They also were the
first ones to employ wire fields in actual experiments. On the other hand the whole method has a certain analog
with Millikan's experiments for the determination of

Coriolis force produced by the rotation of the earth has no vertical component. Otherwise this force amounts to some tenths of one percent of the force of gravity even for the atoms with the velocity α.

Nuclear Moments

It is quite interesting to consider the numerical values for a similar experiment with H_{2} molecules For the deflection by gravity Eq. (1a) give

$$
s_{\alpha}=\frac{3}{5} \times \frac{M}{T}=\frac{3}{5} \times \frac{2}{60}=\frac{1}{50} \mathrm{~mm}
$$

if we take $T=60^{\circ} \mathrm{K}$. For the compensating inhomogeneity we get from Eq. (2a) taking $N \mu$ 5 near magnetons per mole

$$
\left|\frac{d H}{d r}\right|=\frac{M}{N_{\mu}} g=\frac{2}{15} \times 980=131 \frac{\text { gauss }}{\mathrm{cm}},
$$

still quite a convenient value for a wire field.
But in this case it will be necessary to take into account the diffraction of the de Broglie waves for the interpretation of the measurements. The wave-length λ_{α} of a molecule with the velocity α is

$$
\lambda_{\alpha}=\frac{h}{m \alpha}=\frac{N h}{(2 R T M)^{\frac{1}{2}}}=\frac{30.7}{(T M)^{\frac{1}{2}}} 10^{-8} \mathrm{~cm} .
$$

For this wave-length the distance s_{d} of the first diffraction maximum from the beam at the place of the detector is

$$
s_{d}=l \frac{\lambda_{\alpha}}{b}=\frac{l}{b} \times \frac{30.7}{(M T)^{2}} \times 10^{-8} \mathrm{~cm},
$$

where b is the width of the collimating slit and l the distance between the collimating slit and the detector. For H_{2} at $60^{\circ} \mathrm{K}$ we get:
$\lambda_{\alpha}=28 \times 10^{-8} \mathrm{~cm}$ and with $b=1 / 100 \mathrm{~mm}$
$s_{d}=2.8 \times 10^{-3} \mathrm{~cm}$
compared with $s_{\alpha}=2 \times 10^{-3} \mathrm{~cm}$. For Cs , however we have
$\lambda_{\alpha}=0.125 \times 10^{-8} \mathrm{~cm}$ and with $b=2 \times 10^{-3} \mathrm{~cm}$
$s_{d}=0.62 \times 10^{-4} \mathrm{~cm}$. Consequently the diffraction will require at most a small correction.
It is self-evident that, employing the same method, we can use also other forces to compensate the force of gravity.

$0.45864+7.5$
$\frac{0.45384}{0.08480}+\frac{12.4}{4.9}$
$0.46279+2.1$
$0.74310+24.5 \quad 1.28$
$0.75384+12.4$
$-0.46380 \quad 2.9$
$\frac{0.74742}{0.08642}+\frac{20.1}{4.7}$

0.74442	20.2
0.74429	25.9
0.00315	$\frac{2.7}{5.7}$

$\frac{46146}{0.00284} \frac{289}{26.0} \quad 1,28$
$0.45230 \quad 14.9$
$\frac{0.45408}{0.00478} \quad \frac{8.5}{6.4}$
$0.7540 .8 \quad 8.4$
$\frac{0.45341}{0.00364} \quad \frac{12.2}{3.3} \quad 1.03 \quad 945^{54}$
$\begin{array}{lllllllll}0.75341 & 122 & 2.08 & 465 & 485 & 186 & 186 & 172 & 164 \\ \frac{41}{512} & \frac{197}{383} & \frac{195}{381} & \frac{195}{367} & \frac{194}{361}\end{array}$ $\begin{array}{lr}0.75221 & 14.8 \\ \frac{174437}{0.08484} & \frac{29.0}{5.2}\end{array}$
$0,7473 \%$
$\frac{73581}{1156}$
$\begin{array}{r}8,3 \\ 24.5 \\ \hline 32.8\end{array}$

$$
\begin{aligned}
& 3.32 \% \\
& 4.07 \%
\end{aligned}
$$

$\begin{array}{cccccc}13,6 & 16.6 & 14.2 & 16.3 & 13.3 & 9.9 \\ \frac{24.5}{38.1} & 24.5 & \frac{25.5}{411} & \frac{24.5}{408} & \frac{24.5}{348} & \frac{24.5}{339} \\ & & 16.9 & 14.9 & & \end{array}$

$$
\begin{aligned}
& 2 \frac{2}{d}=\frac{x}{200} \\
& d=\frac{400 \lambda}{\text { gran light }}=\frac{400 \times 5.2 \times 10^{-4}}{x}=\frac{20.8}{x} 10^{-2} \mathrm{~mm} \quad \frac{400 \times 5.89 \times 10^{-4}}{x}=\frac{23.56}{x} 10^{2} \mathrm{mme}
\end{aligned}
$$

green
loroet call. sht: $x=\frac{19 \frac{1}{2}}{4}=4,88 \quad d=4,26 \times 10^{-2} \mathrm{ma}$

$$
\begin{aligned}
& \text { uppet i, i } X=\frac{18 \frac{1}{2}}{4}=4.625 \quad d=4.50 \times 10^{-2} \ldots \quad 471465465 \quad \text { (20\%/4) } \\
& \text { Wa u. } \quad \begin{array}{lll}
22 \frac{3}{8} & x=5.60 \quad & d=4.20 \times 10^{-2} \\
20 \frac{1}{8} & x=5.03 & d=4.69 \times 10^{-2}
\end{array} \\
& \text { u.f.s. } \quad 22 \frac{1}{2} \quad x=5.62 \pi \quad d=4.19 \times 10^{-2} \\
& l . f s \quad 22 \frac{1}{4} \quad x=5,56 \quad d=4,23 \times 10^{-2}
\end{aligned}
$$

[^0]: ${ }^{1}$ Specially interesting with regard to the present inconsistencies in the numerical values of the fundamental constants. By measuring the Bohr magneton per mole we get essentially a numerical value for $h / m . h / m$ combined with the Rydberg constant gives directly (after a remark of Niels Bohr) the fine structure constant α and a check on Eddington's hypothesis $\alpha=1 / 137$.
 ${ }^{2}$ John B. Taylor, Zeits. f. Physik 57, 242 (1929); U.z.M. 14 (U.z.M., Untersuchungen zur Molekularstrahlmethode, refers to a series of papers concerning the molecular ray method.)

[^1]: ${ }^{3}$ O. Stern, Zeits. f. Physik 39, 755 (1926); U.z.M. 1.
 ${ }^{4} J_{0}$ depends also on the product of the width b of the ovenslit and the pressure p in the oven. But because of the condition that the mean free path λ in the oven should not be smaller than b, this product is constant. In the above equation it is assumed that for all substances in the first approximation $\lambda=1 / 10 \mathrm{~mm}$ for $p=1 / 10 \mathrm{~mm}$.

[^2]: ${ }^{1}$ Specially interesting with regard to the present inconsistencies in the numerical values of the fundamental constants. By measuring the Bohr magneton per mole we get essentially a numerical value for $h / m . h / m$ combined with the Rydberg constant gives directly (after a remark of Niels Bohr) the fine structure constant α and a check on Eddington's hypothesis $\alpha=1 / 137$.
 ${ }^{2}$ John B. Taylor, Zeits. f. Physik 57, 242 (1929); U.z.M: 14 (U.z.M., Untersuchungen zur Molekularstrahlmethode, refers to a series of papers concerning the molecular ray method.)

[^3]: ${ }^{3}$ O. Stern, Zeits. f. Physik 39, 755 (1926); U.z.M. 1.
 ${ }^{4} J_{0}$ depends also on the product of the width b of the ovenslit and the pressure p in the oven. But because of the condition that the mean free path λ in the oven should not be smaller than b, this product is constant. In the above equation it is assumed that for all substances in the first approximation $\lambda=1 / 10 \mathrm{~mm}$ for $p=1 / 10 \mathrm{~mm}$.

