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Abstract

Improving the Efficiency of Mortality Estimators in Resampling Designs with
Undersmoothed Highly Adaptive Lasso

by

Kirsten Landisedel

Master of Arts in Biostatistics

University of California, Berkeley

Professor Mark van der Laan, Chair

Resampling designs have proven invaluable in resource-limited settings where substantial loss
to follow-up (LTFU) impedes accurate estimation of mortality among patients with HIV.
Mortality rates are often higher among patients who cease reporting to clinic visits, leaving a
large potential for bias on the table. One paper reported a jump in estimated mortality from
2.7% (calculated from passively recorded deaths only) to 7.1% (calculated from passively
recorded deaths combined with deaths discovered through resampling) [1]. While techniques
exist to incorporate resampled data into mortality estimation procedures, insufficient at-
tention has been paid to constructing truly efficient and unbiased estimators for mortality.
We present and compare three different estimators in the context of resampling: (1) an
inverse probability of censoring weighted (IPCW) estimator, (2) an IPCW-HAL estimator
which uses undersmoothed Highly Adaptive Lasso (HAL) estimators to estimate the relevant
propensity scores, and (3) a plug-in estimator which estimates each non-intervention factor
of the likelihood with undersmoothed HAL (though we leave simulations for estimator 3 to
future work). Ultimately, we advocate for the incorporation of undersmoothed HAL when
constructing IPW estimators as our simulation studies demonstrate an approximate 30%
reduction in variance of IPCW estimators when using undersmoothed HAL to estimate the
propensity sores relative to using known probabilities.
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Chapter 1

Introduction

According to the WHO, there were an estimated 38.4 million [33.9–43.8 million] people
living with HIV at the end of 2021, two thirds of whom (25.6 million) are in the WHO
African Region. As global public health experts set their sights on the elimination of HIV,
having a reliable way to assess the efficacy of current standards of care is vital. Currently,
mortality is the most important indicator of success for HIV treatment programs, yet routine
monitoring fails to capture most deaths in resource-limited settings [2]. Studies have shown
that estimating mortality from passively recorded deaths alone may underestimate mortality
by 80% [3]. High loss to follow-up rates are a major impediment to researchers’ ability to
accurately quantify mortality as many patients drop out of these studies before their survival
outcome is known. Mortality rates are often higher among loss to follow-up patients in this
context, leading to underestimation of the true mortality rate without proper adjustment.
Resampling, or extensive tracking to ascertain the vital status of a subset of patients with
unknown outcome, has proven an invaluable tool to decrease bias and improve precision.
One resampling-based study in a similar context reported a jump in estimated mortality of
2.7% to 7.1% after engaging in resampling [2].

Once resampled data has been collected, this new information must be incorporated into
the mortality estimation procedure. While Kaplan-Meier and IPCW are commonly used for
this purpose, these approaches may not be optimal without further augmentation [3] [4].

It has recently been shown that inverse probability weighted estimators (IPW) which
use undersmoothed Highly Adaptive Lasso (HAL) estimators for their propensity scores
are asymptotically linear and can have variance converging to the nonparametric efficiency
bound [5]. This approach, however, has not been implemented or evaluated for this ap-
plication. These estimators do not require derivation of the efficient influence function for
implementation purposes (though insight about efficiency can be gained from doing so) or
specification of a model for the outcome regression. Undersmoothed HAL estimators can
also be used to produce asymptotically efficient plug-in estimators for the target parameter
of interest while preserving HAL’s faster than n− 1

4 rate of convergence [6]. In this paper,
we will present and compare the efficiency of three estimators for mortality in resampling
designs (1) an IPCW estimator, (2) an IPCW-HAL estimator which uses undersmoothed
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highly adaptive lasso estimators for the propensity scores, and (3) a plug-in estimator which
relies on estimating all non-intervention factors of the likelihood using undersmoothed highly
adaptive lasso estimators (simulations for estimator 3 are left to future work). Our goal is
to demonstrate that incorporating HAL estimators into standard estimation procedures can
improve efficiency and outperform existing estimators in resampling designs.

For the remainder of this paper, we use “right censoring” to mean administrative right
censoring by end of study (end of study time varies across individuals). We will use “loss
to follow-up” (LTFU) to refer to people who cease coming into the clinic before their study
endpoint (thus, we do not know the outcome status for these individuals). There is no
observed time as which a participant becomes LTFU for this event is unobserved; missed
visits to not necessarily indicate LTFU as patients may return to the clinic at a later date.
Survival time is independent of right censoring time but not independent of LTFU due to
shared common causes.

The rest of the paper proceeds as follows. Section 1.1 contains a literature review that
evaluates the strengths and weakness of existing approaches to estimation in resampling
designs. Section 1.2 provides background on the Highly Adaptive Lasso, Section 1.3 adds
additional information about undersmoothing, and Section 1.4 provides information about
constructing efficient estimators. Chapter 2 then follows the “roadmap” for statistical learn-
ing in order to define the estimation problem [7]. Subsequently, the three proposed estimators
are presented; their expected behavior and efficiency are discussed. Chapter 3 presents re-
sults for our three estimators on simulated data which mimics data from HIV treatment
efficacy studies as in [2]. Lastly, Chapter 4 discusses the results of our analysis as well as
areas for improvement.

1.1 Literature Review: Resampling Designs

The non-parametric maximum likelihood estimator (NPMLE) of the survival function is
known to be equivalent to the Kaplan-Meier estimator when survival time is noninformatively
right censored, making it one of the most commonly used estimators for failure time in
survival analysis. Kaplan-Meier estimators remain a popular choice for analyzing data from
resampling designs despite several complications that arise in this context [3] [2] [8].

First, it is not immediately clear how to combine data from observed deaths in stage
one with data from resampled deaths in stage two. One paper compares different imple-
mentations of Kaplan-Meier in this context: (1) a KM estimator based on observed deaths
only, (2) a KM estimator based on all deaths (those passively recorded and those discovered
through resampling), and (3) a weighted average of Kaplan-Meier estimators in dropout and
non-dropout groups [3]. Since risk factors for patient dropout coincide with risk factors for
mortality, KM estimator (1) will be biased. Simple pooling of the deaths among dropout
and non-dropout groups as in KM estimator (2) will also lead to bias since mortality rates
are much higher among resampled (once dropout) patients, and resampling does not cover
all dropout patients. KM estimator (3) gets us closest to the truth by adjusting for the
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relative size of dropout and non-dropout groups; however, this method has also been show
to be biased by other sources [9]. In response to this bias, Frangakis and Rubin proposed
using a weighted average of the hazard of death between dropout and non-dropout groups
to estimate survival [9]. The seminal method presented in this paper remains a popular
choice, with somewhat more recent papers continuing to advocate for its use over Kaplan-
Meier [3]. While this approach may address known bias, it is inefficient and puts unrealistic
restrictions on the problem [10]. The first of these restrictions requires resampling to be
completely random. Random resampling is likely a suboptimal strategy, and prior literature
suggests that more efficient designs rely on participants’ covariate history to set resampling
probabilities [11]. The second restriction requires that everyone chosen for resampling is
successfully located, which is highly problematic as previous studies have reported an inabil-
ity to acquire vital status information on 25-30% of patients chosen for resampling [1] [3].
Our work thus aims to provide an avenue for constructing efficient estimators for mortality
within a flexible framework which can handle these complications without needing to impose
further untenable assumptions.

Kaplan-Meier estimators also require a censoring time or an observed outcome time for
each person. In this context we have right censoring times for patients at their end of study
point τ . However, we do not have LTFU censoring times as some patients drop out of the
study without warning befor their end of study; for these dropout patients, we have neither a
LTFU censoring time nor an observed outcome time. It is not known whether these patients
will return to the clinic at a future time point. Attempts have been made to construct
artificial LTFU time for dropout patients based on whether or not they return to the clinic,
but this practice can cause bias by violating the “no informative right censoring” assumption
needed for KM [3].

Due to suspected dependence between censoring and survival, Robins and Finkelstein
present inverse probability of censoring weighted (IPCW) versions of Kaplan-Meier and Cox
partial likelihood estimators [4]. They recommend using Cox proportional hazard models to
estimate the censoring mechanisms. Inclusion of IPCW weights can relax the assumption of
strict independence between censoring and survival. Using Cox proportional hazard models
for the censoring mechanism imposes assumptions about the effect of predictors on the
hazard function; thus, we believe we can improve upon this method by using nonparametric
estimators for the hazard of right censoring (by end of study) when implementing our IPCW
and IPCW-HAL estimators.

Li and Tseng propose an estimator based on the Nelson-Aalen estimator of the cumulative
hazard [8]. Their method is non-parametric and estimates the second stage survival function
while borrowing information from stage one. They claim that their estimator corrects for
bias in the first stage while improving upon the efficiency of the Kaplan-Meier estimator
based on second stage data alone.

More recent work has proposed an inverse probability of censoring weighted targeted max-
imum likelihood estimator (IPCW-TMLE) for two-stage designs [12]. TMLE is a general
procedure for estimating target parameters of data-generating distributions which involves
two steps: obtaining initial estimates of the relevant portions of the data-generating distri-
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bution and then updating the initial estimates with a targeted bias-reduction step targeted
towards the parameter of interest [13]. The authors of this paper define the data structure
for two-stage designs as a missing data structure on the full-data structure X collected in the
second phase. The IPCW-TMLE estimator they present is defined as the full-data TMLE
with the addition of weights inversely proportional to the probability of being included in
the second stage sample (resampled group). In order to use this approach, we would need to
define the full data as a right censored data structure (due to administrative censoring) and
then define a TMLE capable of addressing right censoring in that full data world. Inverse
weighting this TMLE can only recover full efficiency if the full data model is nonparamet-
ric. If we have knowledge about the censoring mechanism (for instance), i.e. that censoring
is independent or only depends on a subset of covariates, then we cannot recover full effi-
ciency. This estimator still has attractive properties, so we are interested in comparing its
performance to that of our proposed estimators.

1.2 Background: Highly Adaptive Lasso

Recall that IPCW estimators which use undersmoothed Highly Adaptive Lasso (HAL) esti-
mators for the weights can improve upon the efficiency of IPCW estimators which use true
weights that are known be design [5]. Undersmoothed HAL estimators can also be used to
construct asymptotically efficient plug-in estimators [6].

Parametric and semi-parametric approaches to estimating complex regression functions
suffer from bias when the specified functional form does not match the truth. Nonparametric
methods, on the other hand, provide a highly flexible fit but historically suffer from the
“curse of dimensionality.” Kernel regression estimators, for instance, are nonparametric but
converge at a rate of O(n−k/(2k+d)) where d is the dimension of the covariates, k is the
degree of the polynomial, and n is sample size. The rate for kernel regression estimators
is heavily influenced by the dimension of the covariates (as d increases, the rate will slow
down considerably) and strong smoothness assumptions must be made in order to maintain
a desirable rate of convergence. This is typical for nonparametric estimators.

In 2016, Benekeser and van der Laan found a way forward when they presented Highly
Adaptive Lasso (HAL). Their goal was to construct a nonparametric regression estimator
which converges quickly regardless of the dimension of the covariates. To do this, they worked
to define a maximum likelihood estimator (MLE) in the class of functions which are right-
hand continuous with left-hand limits (“cadlag”) and have sectional variation norm bounded
by a constant M (a global smoothness constraint). These conditions are considered to be
very mild and likely encompass all functions of interest. But why focus on this specific
class of functions? Bounded variation cadlag functions form a “Donsker class”. Donsker’s
Theorem, a generalization of the central limit theorem to functions, tells us that functions
in a Donsker class converge quickly to the true function as sample size grows. Therefore,
defining a maximum likelihood estimator (MLE) within the class of bounded variation cadlag
functions allows for the construction of a desirable nonparametric regression estimator.
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Benkeser and van der Laan discuss a general minimum loss-based estimator in the class
of cadlag functions with finite sectional variation norm ΨM = {ψ ∈ ΨM : ||ψ||v < M}. The
MLE in this class would be:

ψn,M = argminψ∈ΨM

1

n
{Yi − ψ(Xi)}2

They then present a theorem which shows that this MLE converges to the truth at a rate
of OP (n

−1/4−a(d)/8) where a(d) = 1/(d + 1). If d is extremely large, the second term in the

exponent goes to zero, meaning the worst possible rate of converge for this MLE is n− 1
4

regardless of the dimension of X.
Next, they leverage the fact that cadlag functions of finite variation norm can be repre-

sented as a sum over subsets of an integral with respect to the measure generated on each
subset. The measure on each subset can be approximated using discrete support points
(points where the step function can jump). This means that the function of interest can be
approximately represented as a linear combination of indicator basis functions x ← ϕs,j(x)
with corresponding coefficients dψm,s,j summed over s subsets and j support points.

ψm = ψ(0) +
∑

s⊂{1,...,d}

n∑
i=1

I(us,j ≤ xs)dψm,s,j

This is a helpful property as we are transforming an optimization problem over all bounded
variation cadlag functions into an optimization problem over a finite number of parameters
(coefficients of these basis functions). The sum of the absolute value of these coefficients
gives the variation norm of the function ψM . If we choose the support points to be equal to
the actual n observations, then we can define

ψβ = β0 +
∑

s⊂{1,...,d}

n∑
i=1

βs,iϕs,i

and our optimization problem becomes

βn = argminβ,β0+
∑

s⊂{1,...,d}
∑n

i=1 |βs,i|<MPnL(ψβ).

This optimization problem can be solved using Lasso regression under the constraint that
the L1 norm (sum of the absolute value of the coefficients) is bounded by M . This is exactly
how HAL is implemented in software. First, the indicator basis matrix is generated and then
lasso regression is run on the basis matrix.

HAL is a nonparametric regression estimator and empirical minimizer of the loss function
over all cadlag functions of finite sectional variation norm. By employing empirical loss
minimization within a Donsker class, HAL achieves an unprecedented rate of convergence,
effectively overcoming the “curse of dimensionality” and distinguishing itself from all other
machine learning algorithms.
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1.3 Background: Undersmoothing HAL

Undersmoothing refers to using a larger L1 norm than the one selected by cross validation
L1,CV , which corresponds to using a smaller λ value in HAL’s Lasso problem. A smaller
λ places a less strict penalty on the magnitude of the coefficients in the model. The “un-
dersmoothed” fit, depending on how you undersmooth, will often include more sparsely
supported basis functions than the original fit (meaning basis functions that had coefficients
of zero in the original fit may have nonzero coefficients in the undersmoothed fit). Since
HAL works to approximately solve the score equations formed by the product of its non-zero
basis functions and residuals, including a larger number of basis functions in the fit results
in solving more score equations. The canonical gradient is a score, so increasing the number
of scores solved by HAL increases the likelihood that the linear span of the score equa-
tions solved by HAL can begin to approximate the score equation implied by the canonical
gradient.

It is often desirable to produce an undersmoothed HAL fit that includes a larger number
of nonzero basis functions relative to an initial HAL fit. One simple way to do this is to fit
an initial HAL model with λCV and then refit the model on a series of smaller λs (larger L1

norms). The λ which gives the best performance can then be selected for the final fit. The
difficulty with this approach can be choosing an optimal λ – Lepski’s method can be used
but requires getting an estimate of the variance for each estimator with each different value
of λ.

Another estimation procedure which results in an undersmoothed HAL fit is called “re-
laxed HAL.” This procedure first fits an initial HAL model with L1-norm chosen by cross-
validation. The nonzero basis functions from the initial fit are then refit in a model without
penalization, which produces a fit with a larger L1 norm (this second step is akin to run-
ning glm() in R on the nonzero basis functions from the initial HAL fit). This estimation
procedure works to solve the same score equations as the initial HAL fit but solves them
exactly (by removing the regularization). This method will never solve more score equations
than the original HAL fit, a weakness relative to other approaches. It is also an aggressive
undersmoother and may lead to overfitting in some cases. However, this method is attractive
as it is both easier to implement in practice and less computationally expensive than the
first method described.

Using relaxed HAL can cause too large of an increase in L1 norm relative to L1,CV ,
which may indicate an overfitting problem. If this occurs, one can instead fit an initial
cross-validated HAL model and then iteratively increase the L1 until the score equations are
solved at a rate of σn√

nlog(n)
[14]. Like relaxed HAL, this method does not increase the number

of score equations solved but does produce an undersmoothed fit.
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1.4 Background: RAL Estimators & Efficiency

Theory

The goal of this paper is to identify the most efficient estimator for our target parameter.
This search is constrained to the class of regular and asymptotically linear (RAL) estimators,
the class of “well-behaved” estimators. To provide intuition for this restriction, we will rely
on discussions from [15]. Many of the results concerning efficiency and the behavior of RAL
estimators, however, were established much earlier in [16].

An estimator is asymptotically linear if it has influence curve ϕ where E[ϕ(Z)] = 0 and
satisfies:

√
n
[
(ψ̂n − ψ)− Pnϕ(Z)

]
→p 0

As n gets big, the difference between an asymptotically linear estimator and the truth behaves
like the average of iid random variables. Given the central limit theorem, we can say that the
sampling distribution of an asymptotically linear estimator converges to a normal distribution
with mean 0 as n increases. The asymptotic variance of the estimator is determined by the
variance of the estimator’s influence curve. The influence curve is a mathematical object
which tells us how much each observation influences the resulting estimate and is useful in
quantifying the variance of our estimator.

√
n(ψ̂n − ψ)→d N(0, V [ϕ(Z)])

If we use a RAL estimator, we automatically have at least one way of constructing asymptotic
confidence intervals – through use of the influence curve. However, RAL estimators are
asymptotically linear, so we must be aware of how much finite sample bias comes from the
“second-order” remainder Rn(Pn, P ) = [ψ̂n(Pn)− ψ(P )]− Pnϕ(Z).

Regularity has been described “robustness to distributional shifts” [15]. Regular esti-
mators still converge to the same normal distribution asymptotically if instead of drawing
data from the true distribution P we draw from any sequence of distributions that goes
towards P quickly enough. A previous work provides a great example which demonstrates
the concept of regularity well [15]. If we proposed an estimator for the population mean
defined by ψ̂(Pn) = 5, it would work perfectly if the true population mean were indeed 5
and is even asymptotically linear! However, if the true population mean were anything else,
this estimator would perform terribly. Regularity would rule this estimator out by making
sure that the estimator attains the same limiting distribution under a shifted version of the
true distribution as it does under the true distribution itself.

All RAL estimators have influence curves, and the variance of a RAL estimator is deter-
mined by the variance of its influence curve. Thus, the best RAL estimator will be the one
whose influence curve has the smallest variance. This smallest-variance influence curve is
called the “efficient influence curve.” Influence curves are estimator-specific, but the efficient
influence curve is parameter-specific. This means that we can derive the efficient influence
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curve for our target parameter and statistical model and then work on constructing an
estimator which has influence curve equal to the efficient influence curve.

If our target parameter is pathwise differentiable, there is only one efficient influence
curve, and it lies in the tangent space of our statistical model. We define tangent spaces
in Chapter 3 and discuss how to mathematically derive the efficient influence curve for our
problem – a key step in constructing efficient estimators.
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Chapter 2

Methodology

This section will follow the “roadmap” for statistical learning [7]. The roadmap is a formal
framework created to standardize the approach to answering questions in causal inference.

2.1 Defining the Estimation Problem

Data

Let t=0 be the baseline time that a patient is seen in a clinic for the first time where
t = 0, ..., τ for max follow up time τ , which can vary across patients. Let X1(0) be baseline
covariates, D(t) = I(T ≤ t) be a possibly unobserved indicator of death by time t (with T
denoting the time at which D(t) jumps to 1), V (t) be an indicator of attending a clinic visit
at time t, A2(t) be an indicator of being administratively right censored by time t, Id(t) be
an indicator of death being reported by time t prior to τ , and L(t) be any time-dependent
covariates collected at clinic visits (note L(t) can only be measured at t if V (t) = 1 at that
time. To simplify notation going forward, let X1(t) = (Id(t), V (t), L(t)V (t)).
Full Data
Suppose we are interested in understanding cumulative risk of mortality at a specified time
t0. The “full data” X represents the data we would like to have observed in an ideal world.
We choose to define the full data as having no right censoring by study end before t0 and
outcomes measured on all participants at t0. In notation, the full data can be written
X = (X1(0), X̄(t0), D̄(t0)) ∼ PX . Overbar notation will be used to denote the entire history
of the variable up until the time shown in parenthesis. Note that X includes baseline
covariates, the history of clinic visits until t0, and the true death status up until the time
of interest t0. In the full data, τ ≥ t0 for each person. This indicates that all patients are
followed up at least until the time of interest for mortality estimation in the full data world.
Observed Data (after resampling)
In reality, we do not get to observe the full data due to incomplete death reporting and
right-censoring by study endpoint τ . “Resampling”, or extensive tracking to ascertain the
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vital status of a subset of patients with unknown outcome status, can help recover some
of this unobserved data. Let Tr be an indicator that a person is chosen for resampling or
that their vital status is already known. As researchers, we set the resampling probabilities
P (Tr(t) = 1 | X1(0), X̄(t), D̄(t)Tr(t), T̄ r(t− 1), Ā2(t− 1)) and have control over who is more
likely to be sampled in the second stage. We observe each subject until τ , so our final
observed data is given by:

O = Ō(τ) = (X1(t), A2(t), T r(t), T r(t)D̄(t+ 1) : t ≤ τ)

Note that we have D̄(t+ 1) since death is recorded one additional time, after resampling.
We choose to put a few simplifying constraints on the problem for the time being. Note,

these assumptions will not necessarily hold in practice and future work will address these
gaps.

• Constraint 1: Resampling occurs only once, at the end of each patient’s study period
τ (if a patient is selected).

• Constraint 2: We successfully track everyone that is chosen for resampling (ie a true
vital status is ascertained for everyone chosen for resampling).

We can view the time ordering of the data up to some max time τ as follows where D(τ)
represents an updated vital status post-resampling. Recall τ can vary across individuals.

O = (X1(0), A2(0), Id(1), D(1)Tr(t), V (1), V (1)Lt(1), T r(1), A2(1), ...,

V (t), V (t)Lt(t), T r(t), A(t), I(resampled), T r(τ), D(τ)Tr(τ))

Statistical Model

Now we will define the statistical model, which represents all possible distributions of the
observed data [13]. This model should reflect our real world knowledge of the data generating
distribution.
Factorizing the Likelihood
The likelihood of the observed data can be represented in its factorized form as follows.

p(O) = X1(0)
∏
t≤τ

p(X1(t) | X1(0), X̄(t− 1), Ā2(t− 1))×∏
t≤τ+1

p(D̄(t) | X1(0), X̄(t), Ā2(t− 1), T r(t) = 1)Tr(t) ×∏
t<τ

p(Tr(t) | X1(0), X̄(t), D̄(t)Tr(t), T̄ r(t− 1), Ā2(t− 1))×

p(Tr(τ) | X1(0), X̄(τ), D̄(τ)Tr(τ), T̄ r(τ − 1), Ā2(τ − 1))×
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∏
t≤τ

p(A2(t)|X1(0), X1(t), D̄(t), T r(t))

Note that X1(t) = (Id(t), V (t), V (t)L(t)), so we can factorize this density further; this more
extensive factorization will be presented in the section on Estimator 3. Let
gA2(t) = P (A2(t)|Pa(A2(t))) for t ≤ t0 and let gTr(τ) = P (Tr(τ)|Pa(Tr(τ))); these are
the intervention nodes or “g” factors of our likelihood. We use Pa notation to denote the
“parents” of a variable or all variables that precede said variable in time order and affect its
realized value.
Defining the Statistical Model
Our statistical model MF is defined by knowing the probability of having known status
p(Tr(t) | X̄(t), X1(0), Ā2(t−1)) and the probability of being right censored by study endpoint
P (A2(t)|X1(0), X1(t), D̄(t)Tr(t), T r(t)) by design and leaving all other factors of the density
of P (O) completely unspecified. These restrictions reflect reality as we set the resampling
probabilities ourselves and know the participants’ max follow-up times τ as baseline.
Structural Equations
In order to define structural equations, it is useful to rewrite the data in longitudinal form
as follows:

O = (K(0), A(0), ..., K(τ), A(τ), Y = K(τ + 1))

In this time ordered representation, A(t) is our intervention node. For time points t =
0, ..., τ−1, the intervention node only includes the right censoring indicator which corresponds
to study endpoint A(t) = A2(t). However, at time t = τ , we have two interventions, so the
node represents both right censoring and resampling A(τ) = (A2(τ), T r(τ)). K(0) is our
baseline covariate. K(t) = (X1(t), D(t)Tr(t), T r(t)) represents the variables we track through
time. K(τ +1) = Y is our outcome variable, which is realized after τ and resampling. From
here, consider the nonparametric structural equation model (NPSEM) defined below:

K(t) = fK(t)

(
Ā(t− 1), L̄(t− 1), UK(t)

)
, t = 0, ..., τ + 1

A(t) = fA(t)
(
Ā(t− 1), L̄(t), UA(t)

)
, t = 0, ..., τ

Our interventions of interest are then to set A2(t) = 0, for all t < t0, and Tr(τ) = 1 if vital
status is not already known (this is equivalent to resampling all individuals with unknown
outcome status at their study endpoint). The post intervention distribution replaces the
structural equations in the SCM for A2(t) and Tr(τ) with deterministic functions that set
all of the right censoring (by study end) nodes to uncensored (up until t0) and the resampling
node to 1 for all patients with unknown outcomes.

Target Parameter

A target parameter is a function of the full data X that represents the mathematical quantity
that we are interested in learning. More rigorously, the target parameter can be defined as
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a function Ψ of PX that maps the true probability distribution of our data to the target
feature of interest [13]. Recall, our goal is to estimate a mortality rate among patients
receiving care for HIV. Our target parameter is Ψ(PX) = P (T ≤ t0). In words, we are
interested in knowing the probability of death happening before or at a specified time of
interest, t0, among patients in our population of interest in the full data world where all
participants have observed outcomes and no one is censored.

Identification

The target parameter is next rewritten as a function of the observed data through a pro-
cess known as “identification”. Our target parameter can be viewed as a function of the
observed data by defining it as an expectation of Y (t0) = I(T ≤ t0)I(τ ≥ t0, T r(τ) =
1) under the G-computation density which replaces pA2 with a density that guarantees
A2(t) = 0 (no right censoring by study end) for all t = 0, ..., t0 and replaces p(Tr(τ) |
X1(0), X̄(τ), D̄(τ)Tr(τ), T̄ r(τ − 1), Ā2(τ − 1)) with I(Tr(τ) = 1). By sequential randomiza-
tion of τ and Tr(τ), E[I(T ≤ t0)I(τ ≥ t0, T r(τ) = 1] = P (T ≤ t0). Then, our target
parameter would be identified as an expectation of Y (t0) under the G-computation density.
G-computation Density

P g∗(o) =
∏
t≤τ

p(X1(t) | X1(0), X̄(t− 1), Ā2(t− 1))×∏
t≤τ+1

p(D̄(t) | X1(0), X̄(t), Ā2(t− 1), T r(t) = 1)Tr(t) ×∏
t<τ

p(Tr(t) | X1(0), X̄(t), D̄(t)Tr(t), T̄ r(t− 1), Ā2(t− 1))× I(Tr(τ) = 1)×∏
t≤t0

I(A2(t) = 0)
∏

t0<t≤τ

p(A2(t)|X1(0), X1(t), D̄(t)Tr(t), T r(t))

Assumptions
In order to identify our target parameter as an expectation under the G-computation density,
we need to make a few standard assumptions, as mentioned above. Recall once again that
our intervention node A(t) represents the censoring indicator at all time points but also
represents the resampling node when t = τ .

1. Y (t0) ⊥ A2(t) | K̄(t), Ā(t− 1) for all t = 0, ..., τ

2. Y (t0) ⊥ Tr(τ) | K̄(t), Ā(t− 1) for all t = τ

3. P (A2(t) = 0 | K̄(t), Ā(t− 1) = ā(t− 1)) > 0

4. P (Tr(τ) = 1 | K̄(t), Ā(t− 1) = ā(t− 1)) > 0
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Assumptions (1) and (2) are the sequential randomization assumptions (SRA) which assume
that each intervention node is independent of the counterfactual outcome Y (t0) given the
observed past at all relevant t. These assumptions will be met since our “interventions”
do not affect T directly but rather determine whether or not T is observed. Assumptions
(3) and (4) are the sequential positivity assumptions which assume a positive probability of
right censoring (by study end) throughout the study and a positive probability of resampling
at the end of the study in all relevant covariate strata. Under these two assumptions, our
target parameter can be written as a function of the observed data through the longitudinal
G-computation formula.

Calculating the Efficient Influence Curve

Now the statistical estimation problem has been fully defined, and we can move on to
constructing an ideal estimator, guided by efficiency theory. The next step is to derive the
efficient influence curve for the statistical estimand of interest in our statistical model. One
method for deriving the efficient influence curve involves finding the influence curve of any
RAL estimator of our target parameter and projecting it onto the tangent space of the
statistical model. We describe this process in detail in the following sections.
Tangent Space of the Model
The tangent space of a model is a subspace of L2

0(P ) defined by the linear span of the set
of all scores of submodels through P (note that the tangent space only depends on the
statistical model and the true distribution P , not the estimator or parameter) [13]. Tangent
spaces can be represented as orthogonal sums of multiple sub-tangent spaces if the model
has a variation independent parameterization. The tangent space of our model T (PX) is
equal to Tt,X1 ⊕ Tt,T across time t ≤ τ . Recall, once again, that X1(t) represents a collection
of variables.
Initial Gradient
Inverse probability of censoring weighted (IPCW) estimators are RAL estimators, so their in-
fluence curves can be used as initial gradients in the process of deriving the efficient influence
curve. An IPCW estimator is derived below for this purpose.
IPCW Function
There are two interventions interest. First, resample everyone with unknown outcome status
at study end point by setting Tr(τ) = 1 if Tr(τ) = 0 otherwise. Second, set right censoring
(by study end) A2(t) = 0) at all time points up until t0 (equivalently set τ ≥ t0 where τ is
time of right censoring). In order to observe I(T ≤ t0), we need both of these conditions to
hold. The IPCW function for our problem can be represented as:

I(T ≤ t0)I(τ ≥ t0, T r(τ) = 1)

P (τ ≥ t0, T r(τ) = 1 | X)

Next, we must find an expression that will allow us to estimate the probabilities in the
denominator. This is where our IPCW function deviates slightly from those typically used.
One of our interventions enforces that τ ≥ t0. This intervention is complex in the sense



CHAPTER 2. METHODOLOGY 14

that τ ≥ t0 does not correspond to one particular intervention (i.e. enforcing τ = 3). There
are many possible interventions that satisfy this criteria. For example, if t0 = 3, we could
intervene to set τ = 3 or τ = 4 or τ = 5. Therefore, we must integrate over all possible values
of τ that satisfy this criteria. Since τ only takes discrete values, we can express this quantity
as a sum in the end. The full derivation is presented below (Note: G(ds | X) = Gn(ds))):

P (τ ≥ t0, T r(τ) = 1 | X) =

∫
s≥t0

P (τ ∈ ds, Tr(s) = 1|X)

=

∫
s≥t0

P (Tr(s) = 1 | τ = s,X)P (τ ∈ ds|X)

=

∫
[t0,∞)

P (Tr(s) = 1 | τ = s,X)G(ds | X)

=

∫
[t0,∞)

P (Tr(s) = 1 | τ = s,X)Gn(ds)

=
∑
s≥t0

Pτ (s | X)P (Tr(s) = 1 | τ = s,X)

Here, Pτ (s | X) =
∏

s≤t(1−λ(s | X))λ(t | X) can be defined in terms of the hazard λ(t | X)
of being censored at time t. Our final IPCW function is:

I(T ≤ t0)I(τ ≥ t0, T r(τ) = 1)∑
s≥t0 Pτ (s | X)P (Tr(s) = 1 | τ = s,X)

In expectation, this function equals Ψ(PX). For notational convenience, let Πτ (X) =∑
s≥t0 Pτ (s | X)P (Tr(s) = 1 | τ = s,X). An empirical mean of I(T ≤ t0)I(τ ≥ t0, T r(τ) =

1)/Πτ (PX) is an unbiased linear estimator of Ψ(PX), so its influence curve is an initial gra-
dient of the pathwise derivative of Ψ. For the purpose of finding the canonical gradient, we
can use it as an initial influence curve/gradient:

D =
I(T ≤ t0)I(τ ≥ t0, T r(τ) = 1)

Πτ (X)
−Ψ(PX)

Cannonical Gradient
The cannonical gradient can be found by projecting the initial gradient, D found above, onto
the tangent space T (P ) of the modelM. Since the tangent space can be represented as an
orthogonal sum of tangent spaces Tt,X1 + Tt,T , projecting D onto each orthogonal tangent
space and summing will result in the projection onto the entire tangent space and thus the
efficient influence curve.

The general form of a projection of an initial gradient D onto a factor of the tangent
space corresponding to the variable L is given by:

E(D | L, Pa(L))− E(D | Pa(L))
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Recall that we must compute this projection for each of our factorized tangent spaces. We
then orthogonally sum these projections to obtain the efficient influence curve:

D∗ = Π(D | T (PX))
=

∑
t I(t ≤ τ)E

(
I(T≤t0)I(Ā2(min(t,t0))=0,T r(τ)=1)

Πτ (X)
| X1(t), X̄(t−), Ā2(t)

)
−
∑

t I(t ≤ τ)E
(
I(T≤t0)I(Ā2(min(t,t0))=0,T r(τ)=1)

Πτ (X)
| X̄(t−), Ā2(t)

)
+
∑

t I(t ≤ τ)I(Tr(t) = 1)

E
(
I(T≤t0)I(Ā2(min(t,t0))=0,T r(τ)=1)

Πτ (X)
| D̄(t), X̄(t−), X1(t), Ā2(t), T r(t) = 1

)
−
∑

t I(t ≤ τ)I(Tr(t) = 1)

E
(
I(T≤t0)I(Ā2(min(t,t0))=0,T r(τ)=1)

Πτ (X)
| X̄(t−), X1(t), Ā2(t), T r(t) = 1

)
=

∑
t I(t ≤ τ){P (T ≤ t0 | X1(t), X̄(t−))− P (T ≤ t0 | X̄(t−))}

+
∑

t I(t ≤ τ)I(Tr(t) = 1){P (T ≤ t0 | D̄(t), X1(t), X̄(t−))− P (T ≤ t0 | X1(t), X̄(t−))}

Note that this eIC includes contributions from people for whom τ ≤ t0 on all points up
until they are censored as we are summing over all t. This is a promising sign for efficiency
when building estimators with influence curve equal to the efficient influence curve.

2.2 Estimator 1: IPCW

The first estimator we examine is an inverse probability of censoring weighted (IPCW)
estimator (this estimator was derived in detail for this application previously in the “initial
gradient” section). IPW estimators are regular and asymptotically linear (RAL), and they
are defined as a solution to an estimating equation. These estimators rely on specifying
models for all intervention mechanisms. Estimating these propensity scores helps to identify
subjects who are underrepresented in the data and upweight them to construct a pseudo-
population in which selection biases are eliminated. Our IPCW estimator is:

1

n

n∑
i=1

[
I(T ≤ t0)I(τ ≥ t0, T r(τ) = 1)∑

s≥t0 Pτ (s | X)P (Tr(s) = 1 | τ = s,X)

]
= EI(T ≤ t0) = Ψ(PX)

IPW estimators are asymptotically efficient, but we suspect this estimator may be substan-
tially inefficient in finite samples as it relies on stratification of the data by τ ≥ t0. It
nonetheless serves as a useful baseline metric to compare with the HAL-based estimators
presented in the next sections.

2.3 Estimator 2: IPCW-HAL

It has recently been shown that the efficiency of IPW estimators can be improved when
undersmoothed Highly Adaptive Lasso (HAL) estimators are used to estimate the propensity
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scores [5]. This holds even in our case, where the true treatment probabilities are known by
design.

IPW estimators are relatively straightforward to construct and implement in practice,
making them a popular choice for estimating causal effects. However, they require correct
specification of the models for the weights, and their rate of convergence depends upon the
rate of convergence of the proposed models for those weights [5]. While parametric models for
the propensity scores provide a sufficient rate of convergence, they are difficult to correctly
specify given our limited knowledge of the true data generating distribution and may lead
to inconsistent estimates of the target parameter if misspecified. IPW estimators are also
known to be inefficient in a variety of settings when compared to alternatives.

Use of flexible machine learning algorithms can help to avoid misspecifying the model for
the weights, but these algorithms often suffer from insufficient rates of convergence in high
dimensional data. However, Highly Adaptive Lasso (HAL) estimators provide both flexibility
and a guaranteed fast rate of convergence regardless of the dimension of the covariates,
making them a sensible choice for modeling weights for IPW estimators [17][5].

We present an IPCW-HAL estimator, which is defined as a projection of the IPCW
function D (not the IC of the IPCW estimator as defined previously) onto the tangent
space of our intervention mechanism G. The influence curve of this IPCW-HAL estimator
is defined as D∗(P ) = D − DCAR(P ) where DCAR is the projection of the IPCW function
onto TCAR. Under coarsening at random, let TCAR be the tangent space which corresponds
to our intervention mechanisms A2(t) and Tr(τ). The projection DCAR(P ) = Π{D | TCAR}
can be broken down a sum of the projections of D onto TTr(τ) and TA2(t):

Π{D | TTr(τ)} = I(Tr(τ) = 0) [E(D | Tr(τ), Pa(Tr(τ)))− E(D | Pa(Tr(τ)))]
= I(Tr(τ) = 0) [E(D | Tr(τ) = 1, Pa(Tr(τ)))

− E(D | Tr(τ) = 0, Pa(Tr(τ))])

× (Tr(τ)− P (Tr(τ) = 1 | Pa(Tr(τ))]))

Π{D | TA2(t)} =
∑
t

I(A2(t−) = 0) [E(D | A2(t), Pa(A2(t)))− E(D | Pa(A2(t)))]

=
∑
t

I(A2(t−) = 0) [E(D | A2(t) = 1, Pa(A2(t)))

−E(D | A2(t) = 0, Pa(A2(t)))]

×(A2(t)− P (A2(t) = 1 | Pa(A2(t)))))]

DCAR(P ) = Π{D | TTr(τ)} ⊕ Π{D | TA2(t)}
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D∗(P ) = D −DCAR(P )

If the full data model were nonparametric, the influence curve of this IPCW-HAL estimator
would be equivalent to the eIC, meaning the IPCW-HAL estimator would be fully efficient
[6]. Unfortunately, this will not hold in our application. In causal inference problems, we
typically believe that there are different counterfactual outcomes under different interventions
(that the intervention truly changes the outcome). Here, patients do not have a different
counterfactual outcome depending on whether or not they were censored; the true outcome
is still the same under many possible interventions. This means we have more knowledge
about the structure of our model than in typical causal inference problems. Our full data
model is not completely nonparametric. The influence curve of our IPCW-HAL estimator
will not be equal to the eIC. While we can gain efficiency by using undersmoothed HAL to
estimate weights that are known by design, we will never be fully efficient with this strategy.
This realization provides motivation for the construction of Estimator 3, which provides an
avenue for constructing a fully efficient estimator.

In order to implement the IPCW-HAL estimator, will use undersmoothed HAL estimators
to estimate the propensity scores shown in the denominator of our IPCW function:∑

s≥t0 Pτ (s | X)P (Tr(s) = 1 | τ = s,X)

Pτ (s | X) =
∏

s≤t(1− λ(s | X))λ(t | X)

The hazard of right censoring by study endpoint λ(t | X) will need to be estimated at each
t. Using information from the covariate history up until t can help with efficiency gains.
P (Tr(s) = 1 | τ = s,X) will also need to be estimated for every τ ≥ t0 in the same manner.

The amount of undersmoothing should be chosen such that the basis functions in the
HAL fits of the intervention mechanisms are sufficient to approximate the outcome regres-
sion function within an n−1/4 neighborhood [5]. This may hold without undersmoothing if
G and f have similar complexity. More undersmoothing is likely required when G is less
complex than f (the outcome regression function) because the initial HAL fit for G (without
undersmoothing) will not generate a sufficiently large set of basis functions to explain the
variation in the more complex f [5]. We also want to include a rich enough set of basis
function to ensure that the efficient influence curve equation is solved at a sufficient rate.

2.4 Estimator 3: Plug-in Estimator Based on

Undersmoothed HAL

Plug-in estimators require estimation of the observed data conditional densities in the like-
lihood factorization. These estimates are then used to estimate the target parameter by (1)
integrating with respect to the estimated distribution of the covariates under the specified
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interventions or (2) Monte Carlo simulation. Once counterfactual data has been simulated,
evaluation of the the target parameter of interest in this problem amounts to taking an
empirical mean of the indicator of death at t0.

In 2021, van der Laan, Benkeser, and Cai presented results for the efficient estimation of
pathwise differentiable target parameters using the undersmoothed Highly Adaptive Lasso
estimator [6]. Their paper presents three properties which dictate the efficiency of a plug-in
estimator:

1. Negligibility of the empirical mean of the canonical gradient

2. Control of the second-order remainder

3. Asymptotic equicontinuity

They go on to explain how undersmoothed HAL estimators can help us achieve all three
desired properties and lead to efficient plug-in estimators for pathwise differentiable target
parameters. Briefly, we will discuss each of these three conditions.

Negligibility of the empirical mean of the canonical gradient can be achieved by under-
smoothing the HAL fit enough so that the generated bases are rich enough to ensure that
the efficient score equation is solved up to an appropriate level of approximation. Since
undersmoothing leads to the inclusion of additional basis functions in the resulting fit, it is
a strategy geared towards this goal.

For a plug-in estimator to be efficient, we also need the second order remainder to be
oP (n

−1/2). We need to preserve the n−1/4 rate of convergence that HAL achieves when the
L1 norm bound is selected with cross-validation. Results from van der Laan, Benkeser, and
Cai state that the HAL’s rate of convergence will not be affected by undersmoothing so long
as we monitor the L1 norm bound to ensure that it does not exceed the sectional variation
norm of the function of interest.

Lastly, results from emprical process theory tell us that asymptotic equicontinuity holds
for empirical processes indexed by a Donsker class. Since the class of cadlag functions with
bounded sectional variation norm is an example of a Donsker class and HAL assumes the
function of interest to be of this type, we satisfy the third condition so long as we are not
violating the assumptions inherent to establishing the HAL’s rate in the first place.

With these three key ingredients in hand, we are in a good position to construct an
efficient plug-in estimator. In order to do so, we will have to estimate each non-intervention
factor of our likelihood using undersmoothed HAL estimators. Recall our previous factor-
ization of the likelihood but now with the X1(t) expanded out fully (since it contains several
variables):

p(O) = X1(0)
∏
t≤τ

p(Id(t) | X1(0), X̄(t− 1), Ā2(t− 1))×

p(V (t) | X1(0), X̄(t− 1), Ā2(t− 1))×



CHAPTER 2. METHODOLOGY 19

p(Lt(t) | X1(0), X̄(t− 1), Ā2(t− 1))×∏
t≤τ+1

p(D̄(t) | X1(0), X̄(t), Ā2(t− 1), T r(t) = 1)Tr(t) ×∏
t<τ

p(Tr(t) | X1(0), X̄(t), D̄(t)Tr(t), T̄ r(t− 1), Ā2(t− 1))×

p(Tr(τ) | X1(0), X̄(τ), D̄(τ)Tr(τ), T̄ r(τ − 1), Ā2(τ − 1))×∏
t≤τ

p(A2(t)|X1(0), X1(t), D̄(t)Tr(t), T r(t))
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Chapter 3

Simulations & Results

Simulated data used here mimics summary statistics from previous resampling-based studies
which followed individuals on antiretroviral therapy (ART) over time [1]. However, one
continuous covariate representing a CD4 count was binarized for the purposes of this thesis,
and the mortality and right censoring (by end of study) rates were inflated in the simulated
data to avoid small effective samples sizes (which can be problematic when fitting HAL
models). We leave these added complications to future work. Details of the data generating
code can be found in the supplementary material.

IPCW and IPCW+HAL estimators were implemented on simulated data of size n =
100, 1000, 10000 (Note: we did not apply IPCW+HAL estimators to data of N=100 due to
algorithmic constrains). Section 3.1 presents results from simulation studies done in the case
where resampling is done completely randomly among patients with unknown vital status
at their study endpoint. Section 3.2 presents results from simulation studies done in the
case where resampling probabilities depend on the patients’ covariate history. In simulation
two, patients have a higher probability of being resampled if they miss a larger number of
visits. These “Dependent Resampling” simulations were run mostly as a check to ensure
that our estimators function properly in preparation for future work which sets resampling
probabilities in a data-adaptive manner to optimize efficiency gains.

Whenever HAL models were fit for the IPCW-HAL estimators, zero order splines were
used (this was the only non-default argument specified). Default settings were used for all
other arguments to “fit hal” in the “hal 9001” R package. Most notably, the highest degree
of interaction used to generate the basis functions was set to two given the large number of
predictors. Undersmoothing, when used, was done by refitting the HAL model on a series of
λ < λCV as seen in the results tables below. This method was chosen over “relaxed HAL”
since the initial HAL fits for the right censoring mechanisms (by study endpoint) returned
intercept only models (which made sense given the simple, independent manner in which right
censoring time was generated). Recall that relaxed HAL refits the non-zero coefficient basis
functions from an initial HAL fit (which uses λCV ) but without regularization. Neither HAL
nor lasso regression, as implemented in R, penalize the intercept term to begin with. Thus,
relaxed HAL accomplishes nothing when one begins with an intercept-only model. With
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this in mind and the desirable nature of undersmoothing in a manner that includes sparsely
supported basis functions in the updated hal fit, we choose our method of undersmoothing
over relaxed HAL.

3.1 Simulation Results for IPCW vs IPCW + HAL

Estimators

Simulation 1: Independent Resampling

Simulation study 1 shows a 32% decrease in variance between the IPCW and the “best”
IPCW-HAL estimator on data of size N=1k. Similarly, we see a 38% decrease in variance
for sample size N=10k. Though we have not discussed how to determine the optimal degree
of undersmoothing for IPCW-HAL estimators, for now take this to be the estimator with the
smallest variance among choices of λ (in practice, the resulting change in bias relative to the
change in standard error should be considered as well). Note the finite sample bias seen in
these tables may largely come the Monte Carlo simulation done to compute the “truth” ψ0.
Future work will look into more precise calculations of ψ0 or changing simulation settings
such that this error is less relevant. This applies to all simulations in this thesis.

Table 3.1 displays the performance of the IPCW estimator which uses known probabilities
for the weights across all three sample sizes. The variance of this estimator decreases, as
expected, with increased sample size.

N true ψ0 Mean Est Bias Var MSE SD t0
1 100 0.2162 0.2177 0.0019400 0.0034736 0.0034774 0.0589372 4
2 1000 0.2162 0.2177 0.0014808 0.0003407 0.0003429 0.0184594 4
3 10000 0.2162 0.2177 0.0015599 0.0000349 0.0000373 0.0059077 4

Table 3.1: Simulation results for IPCW estimator which uses known probabilities for weights
(Independent Resampling). These results were based on 10k simulations of independently
drawn data.

Table 3.2 displays results for our IPCW-HAL estimator fit on data of sample size N=1k.
The first row shows the performance for an IPCW-HAL estimator which uses λ = λCV . The
IPCW-HAL estimator corresponding to row one of the table is not undersmoothed. The
subsequent rows show these same results for undersmoothed IPCW-HAL estimators with
the amount of undersmoothing increasing as the row index increases. Row 10 shows the
IPCW-HAL estimator with the most amount of undersmoothing. The estimator in row 10
also has the smallest variance. Note that the bias also decreases as we undersmooth more
until row 9 where the bias starts to increase once again. This is the phenomenon we must
pay attention to when discussing the “optimal” amount of undersmoothing. For now, we
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refer to the IPCW-HAL estimator with λ = 0.1∗λCV as the “best” estimator for this sample
size.

N λ true ψ0 Mean Est Bias Var MSE SD t0
1 1000 λCV 0.2160 0.2165 0.0004210 0.0003106 0.0003108 0.01762 4
2 1000 0.9*λCV 0.2160 0.2164 0.0003890 0.0003062 0.0003064 0.01750 4
3 1000 0.8*λCV 0.2160 0.2164 0.0003661 0.0003017 0.0003018 0.01737 4
4 1000 0.7*λCV 0.2160 0.2164 0.0003536 0.0002967 0.0002968 0.01722 4
5 1000 0.6*λCV 0.2160 0.2164 0.0003288 0.0002913 0.0002915 0.01707 4
6 1000 0.5*λCV 0.2160 0.2163 0.0002811 0.0002858 0.0002859 0.01691 4
7 1000 0.4*λCV 0.2160 0.2162 0.0001866 0.0002802 0.0002802 0.01674 4
8 1000 0.3*λCV 0.2160 0.2161 0.0000083 0.0002742 0.0002742 0.01656 4
9 1000 0.2*λCV 0.2160 0.2158 -0.0002573 0.0002677 0.0002677 0.01636 4
10 1000 0.1*λCV 0.2160 0.2154 -0.0006925 0.0002577 0.0002582 0.01605 4

Table 3.2: Simulation results for IPCW-HAL estimators across different levels of under-
smoothing applies to data sets of size 1k (Independent Resampling). These results were
based on 1k simulations of independently drawn data. The λ column corresponds to the pa-
rameter used in the HAL fit, which controls the amount of undersmoothing (where λCV cor-
responds to no undersmoothing and the smaller values of λ correspond to increased amounts
of undersmoothing).

Table 3.3 shows the identical results as Table 3.2 but for sample size of 10k.
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N λ true ψ0 Mean Est Bias Var MSE SD t0
1 10000 λCV 0.2160 0.2176 0.0015692 0.0000323 0.0000348 0.00569 4
2 10000 0.9*λCV 0.2160 0.2176 0.0015807 0.0000319 0.0000344 0.00565 4
3 10000 0.8*λCV 0.2160 0.2176 0.0015891 0.0000315 0.0000340 0.00561 4
4 10000 0.7*λCV 0.2160 0.2176 0.0015948 0.0000310 0.0000336 0.00557 4
5 10000 0.6*λCV 0.2160 0.2176 0.0015980 0.0000305 0.0000330 0.00552 4
6 10000 0.5*λCV 0.2160 0.2176 0.0016030 0.0000299 0.0000324 0.00546 4
7 10000 0.4*λCV 0.2160 0.2176 0.0016057 0.0000292 0.0000318 0.00541 4
8 10000 0.3*λCV 0.2160 0.2176 0.0015958 0.0000286 0.0000311 0.00535 4
9 10000 0.2*λCV 0.2160 0.2176 0.0015759 0.0000279 0.0000304 0.00529 4
10 10000 0.1*λCV 0.2160 0.2176 0.0015224 0.0000272 0.0000295 0.00522 4

Table 3.3: Simulation results for IPCW-HAL estimators across different levels of under-
smoothing applies to data sets of size 10k (Independent Resampling). These results were
based on 1k simulations of independently drawn data. The λ column corresponds to the pa-
rameter used in the HAL fit, which controls the amount of undersmoothing (where λCV cor-
responds to no undersmoothing and the smaller values of λ correspond to increased amounts
of undersmoothing).

Figure 3.1 shows that the variance of all IPCW+HAL estimators is smaller than the corre-
sponding IPCW estimators, an improvement that becomes more pronounced with increased
amounts of undersmoothing (although this won’t be true in all cases and more attention
should be paid to selecting an optimal L1 norm in practice).
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Figure 3.1: Interval plots for the sampling distribution of point estimates from simulations
on data of sample sizes 1k and 10k to assess performance of the IPCW estimator using
known probabilities for weights versus IPCW+HAL estimators with different degrees of
undersmoothing (Independent Resampling).

Figure 3.2 shows the bias of all IPCW and IPCW-HAL estimators. When N=1k, all
IPCW+HAL estimators reduce bias relative to the IPCW estimator – again, with additional
undersmoothing further reducing this bias. In the 10k sample size, the difference in bias is
less pronounced across estimators.
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Figure 3.2: Bias of Estimators in Simulation 2 (Independent Resampling). From left to right:
IPCW without HAL, IPCW+HAL with no undersmoothing, IPCW+HAL with increasing
amounts of undersmoothing.

Simulation 2: Dependent Resampling

We now present the identical tables and graphs as in Simulation 1, but this time, we look at
the performance of our estimators when stratified random (instead of completely random)
sampling is used. Simulation study 2 shows a 35% decrease in variance between the IPCW
and “best” IPCW-HAL estimator on data if size N=1k. Similarly, we see a 23% decrease in
variance for sample size N=10k.

Table 3.4 displays the results for the IPCW estimator which uses known probabilities for
the weights across all sample sizes. Again, the variance decreases as sample size increases.
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N true ψ0 Mean Est Bias Var MSE SD t0
1 100 0.2163 0.2175 0.0017116 0.0032365 0.0032395 0.0568905 4
2 1000 0.2163 0.2175 0.0011838 0.0003288 0.0003302 0.0181336 4
3 10000 0.2163 0.2177 0.0014230 0.0000331 0.0000351 0.0057490 4

Table 3.4: Simulation results for the IPCW estimator with known probabilities for weights
(Dependent Resampling). These results were based on 10k simulations of independently
drawn data.

Table 3.5 contains results for the IPCW-HAL estimators for sample size N=1k. The
estimator corresponding to row one uses the cross validated choice of λ and is not under-
smoothed at all. As the row index increases, the amount of undersmoothing increases as
well. We refer to the estimator in row 10 as the “best” as it has the smallest variance (though
in reality, this choice is more nuanced and shoulder consider the change in bias).

N λ true ψ0 Mean Est Bias Var MSE SD t0
1 1000 λCV 0.2163 0.2254 0.0091176 0.0002748 0.0003579 0.01658 4
2 1000 0.9*λCV 0.2163 0.2250 0.0087526 0.0002711 0.0003477 0.01647 4
3 1000 0.8*λCV 0.2163 0.2246 0.0083273 0.0002673 0.0003367 0.01635 4
4 1000 0.7*λCV 0.2163 0.2241 0.0078277 0.0002636 0.0003249 0.01624 4
5 1000 0.6*λCV 0.2163 0.2235 0.0072200 0.0002593 0.0003114 0.01610 4
6 1000 0.5*λCV 0.2163 0.2228 0.0064812 0.0002549 0.0002969 0.01597 4
7 1000 0.4*λCV 0.2163 0.2219 0.0055892 0.0002509 0.0002822 0.01584 4
8 1000 0.3*λCV 0.2163 0.2208 0.0045495 0.0002471 0.0002678 0.01572 4
9 1000 0.2*λCV 0.2163 0.2196 0.0033425 0.0002442 0.0002554 0.01563 4
10 1000 0.1*λCV 0.2163 0.2183 0.0019999 0.0002439 0.0002479 0.01562 4

Table 3.5: Simulation results for IPCW-HAL estimators across different levels of under-
smoothing applies to data sets of size 1k (Dependent Resampling). These results were based
on 1k simulations of independently drawn data. The λ column corresponds to the parameter
used in the HAL fit, which controls the amount of undersmoothing (where λCV corresponds
to no undersmoothing and the smaller values of λ correspond to increased amounts of un-
dersmoothing).

Table 3.6 shows the identical results as Table 3.5 but for sample size 10k.
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N λ true ψ0 Mean Est Bias Var MSE SD t0
1 10000 λCV 0.2163 0.2194 0.0031524 0.0000297 0.0000397 0.00545 4
2 10000 0.9*λCV 0.2163 0.2193 0.0030409 0.0000293 0.0000386 0.00542 4
3 10000 0.8*λCV 0.2163 0.2191 0.0028713 0.0000290 0.0000372 0.00538 4
4 10000 0.7*λCV 0.2163 0.2190 0.0027087 0.0000286 0.0000359 0.00535 4
5 10000 0.6*λCV 0.2163 0.2188 0.0025417 0.0000283 0.0000347 0.00532 4
6 10000 0.5*λCV 0.2163 0.2186 0.0023702 0.0000280 0.0000336 0.00529 4
7 10000 0.4*λCV 0.2163 0.2185 0.0021910 0.0000278 0.0000326 0.00527 4
8 10000 0.3*λCV 0.2163 0.2183 0.0020030 0.0000275 0.0000315 0.00524 4
9 10000 0.2*λCV 0.2163 0.2181 0.0018067 0.0000272 0.0000305 0.00522 4
10 10000 0.1*λCV 0.2163 0.2179 0.0016203 0.0000270 0.0000296 0.00519 4

Table 3.6: Simulation results for IPCW-HAL estimators across different levels of under-
smoothing applies to data sets of size 10k (Dependent Resampling). These results were based
on 1k simulations of independently drawn data. The λ column corresponds to the parameter
used in the HAL fit, which controls the amount of undersmoothing (where λCV corresponds
to no undersmoothing and the smaller values of λ correspond to increased amounts of un-
dersmoothing).

Figure 3.3 shows that the bias in some IPCW+HAL estimators is larger than what we
saw for the independent resampling case. The undersmoothing plays a larger role in bias
reduction than in Simulation 1. The variance of all IPCW+HAL estimators is smaller than
the IPCW estimators, an improvement that once again becomes more pronounced with
increased amounts of undersmoothing.
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Figure 3.3: Interval plots for the sampling distribution of point estimates from simulations on
data of sample sizes 1k and 10k to assess performance of IPCW estimator using known prob-
abilities for weights versus IPCW+HAL estimators with different degrees of undersmoothing
(Dependent Resampling).

Figure 3.4 highlights the slightly larger bias of IPCW-HAL estimators in Simulation 2
relative to Simulation 1, specifically among the smaller sample size. This bias is not cause
for concern as it remains less than 1/max(log(n), 10). This is a rough metric which helps to
ensure both good coverage and control over MSE.
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Figure 3.4: Bias of Estimators in Simulation 2 (Dependent Resampling). From left to right:
IPCW without HAL, IPCW+HAL with no undersmoothing, IPCW+HAL with increasing
amounts of undersmoothing.
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Chapter 4

Discussion

The IPCW estimator derived in this work deviates slightly from the typical form of these
estimators. One of the interventions we impose sets τ ≥ t0 and prevents right censoring by
study end until the time of interest for mortality estimation. The IPCW function contains a
sum (or in the continuous case, an integral) over all possible values of τ which satisfy τ ≥ t0.
To our knowledge, this deviation has not been discussed in the context of resampling designs
(perhaps due to differences in how the “full data” is defined across different works). However,
this important deviation should be noted if one wishes to implement IPW estimators in
resampling designs and define the full data as having no right censoring by study end.

Our simulations demonstrate that IPCW estimators which make use of undersmoothed
HAL estimators for their propensity scores can have approximately 30% smaller variance
than IPCW estimators which use known probabilities for their weights; although, with very
large sample sizes this difference may be less pronounced. Since IPCW estimators require
correct specification of the model for the propensity scores, using a nonparametric estimator
like HAL is a safer option than relying on a possibly misspecified parametric model should
the true weights not be known by design. IPCW estimators may have been avoided in the
analysis of resampling designs due to their potentially high variance, but our application
of IPCW-HAL estimators proves that these estimators should not be overlooked but rather
augmented with HAL to decrease their variance.

While we have worked to create a flexible framework which allows for the addition of
real world complexities, our current implementation of these methods is still limited. One
important covariate, a CD4 count tracked over time, was binarized in order to avoid estima-
tion of conditional densities in our plug-in estimator (simulation results left to future work)
and to decrease computational burdens. The development and implementation of a HAL
estimator for conditional densities in larger data sets is ongoing, and this estimator will be
incorporated when software becomes available – at which point we could reintroduce the
continuous version of our CD4 count variable [18].

Our approach warrants further development to encompass a broader range of scenarios.
Future endeavors involve the identification of an optimal resampling scheme that capitalizes
on existing covariate information to further improve efficiency, as exemplified in other studies
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on resampling designs [11]. We wish to provide extensions to cover cases where resampling
occurs more than once or where resampling is incomplete and not all chosen patients are
successfully located. Lastly, augmenting any existing estimation approach with HAL is
computationally burdensome as HAL “blows up” the data from n ∗ p to n ∗ n(2p − 1) at a
maximum before running lasso regression. This burden can be especially limiting in data
with a larger number of covariates, especially if they are continuous.

While the simulations demonstrate the benefit of undersmoothing, we have yet to im-
plement criterion for selecting an optimal amount of undersmoothing. Literature exists on
many potential approaches to be explored [14] [5] [6].

This work demonstrates the potential for undersmoothed HAL to improve the efficiency
and bias of some of the most commonly used estimators in causal inference while avoiding
parametric assumptions and providing an unparalleled rate of convergence among machine
learning methods even in high dimensional data. While our estimators may be somewhat
limited by computational time, we believe them to be a worthwhile investment given the
demonstrated efficiency gains and robustness to complex underlying data structures.
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Appendix

Data generation process:

L0 ∼ I([N(µ = 290, σ = 60), 10 < L0 <∞] < 200)

τ ∼M(π), π = (0.1, 0.1, 0.1, 0.1, 0.1, 0.6)

A(0) = I(τ ≤ 0)

Dunobs(1) = Bern(expit(−1.5L0− 2.5(1− L0)))
Id(1) = Bern(.9)I(Dunobs(1) = 1)

Dobs(1) = I(Dunobs(1) = 1)I(Id(1) = 1)

V (1) = Bern(expit(−2.5))I(Dunobs(1) = 0)I(A(0) = 0)

Lt(1) = I(V (1) = 1)Bern(expit(0.75L0− 3(1− L0)))
A(1) = I(τ ≤ 1)

Dunobs(2) = Bern(expit(−.8L0− 1.6(1− L0))− Lt(1)− 1.1(1− Lt(1))))
Id(2) = Bern(.3)I(Dunobs(2) = 1)I(Dunobs(t−) = 0)

Dobs(2) = I(Dunobs(2) = 1)I(Id(2) = 1)

V (2) = Bern(expit(2.5V (1)− 2(1− V (1))))I(Dunobs(2−) = 0)I(A(1) = 0)

Lt(2) = I(V (2) = 1)Bern(expit(0.6L0− .5(1− L0) + 2Lt(1)− 2(1− Lt(1)))
A(2) = I(τ ≤ 2)

Dunobs(3) = Bern(expit(0.05L0− .5(1− L0) + .3Lt(1)− .7(1− Lt(1))− 1.8Lt(2)−
2.5(1− Lt(2))))

Id(3) = Bern(.3)I(Dunobs(3) = 1)I(Dunobs(t−) = 0)

Dobs(3) = I(Dunobs(3) = 1)I(Id(3) = 1)

V (3) = Bern(expit(0.2V (1)− 0.2(1− V (1)) + 2.3V (2) + 0.6(1− V (2))))

I(Dunobs(3−) = 0)I(A(2−) = 0)

Lt(3) = I(V (3) = 1)Bern(expit(0.5L0− 0.5(1− L0) + 0.7Lt(1)− 0.5(1− Lt(1)) +
2Lt(2) + (1− Lt(2)))
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Dunobs(4) = Bern(expit(0.05L0− 0.2(1− L0) + 0.05Lt(1)− 0.2(1− Lt(1))− 0.1Lt(2)−
0.7(1− Lt(2))− Lt(3)− 2.5(1 = Lt(3))))

Id(4) = Bern(.3)I(Dunobs(4) = 1)I(Dunobs(t−) = 0)

Dobs(4) = I(Dunobs(4) = 1)I(Id(4) = 1)

V (4) = Bern(expit(0.2V (1)− 0.2(1− V (2)) + 2.3V (3) + 0.6(1− V (3))))

I(Dunobs(4−) = 0)I(A(3−) = 0)

Lt(4) = I(V (4) = 1)Bern(expit(0.5L0− 0.7(1− L0) + 0.6Lt(1)− 0.5(1− Lt(1)) +
0.8Lt(2) + 0.5(1− Lt(2)) + 2.5Lt(3)− (1− Lt(3)))

Dunobs(5) = Bern(expit(0.02L0− 0.2(1− L0) + 0.05Lt(1)− 0.1(1− Lt(1))− 0.5Lt(2)−
0.1(1− Lt(2)) + 0.1Lt(3)− 0.3(1 = Lt(3))− Lt(4)− 2(1− Lt(4))))

Id(5) = Bern(.3)I(Dunobs(5) = 1)I(Dunobs(t−) = 0)

Dobs(5) = I(Dunobs(5) = 1)I(Id(5) = 1)

V (5) = Bern(expit(0.1V (1) + 0.2V (2)− 0.05(1− V (2)) + 0.2V (3)− 0.2(1− V (3)) +

2.3V (4) + 0.6(1− V (4))))

Lt(5) = I(V (5) = 1)Bern(expit(0.1Lt(1)− 0.5(1− Lt(1)) + 0.1Lt(2)− 0.5(1− Lt(2)) +
0.2Lt(3)− 0.5(1− Lt(3)) + 2.5Lt(4)− 2.5(1− Lt(4)))
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