Description
First, we study approximate sampling from discrete distributions. The framework for sampling obtained from high-dimensional expansion provides both a natural set of random walks to use in MCMC algorithms, as well as a set of tools for their analysis. We show that the geometric properties (e.g. log-concavity) of a polynomial derived from the distribution allows us to speed up the implementations of these random walks.
Next, we study a random graph model called the "random geometric graph," with an eventual goal of understanding its modeling capabilities as well as its high-dimensional expansion properties. Along the way, we prove new results about distinguishing the random geometric graph model from the Erdos-Renyi model, and develop a new geometric toolkit for analyzing these graphs.