Description
In this dissertation, I will discuss the various components of an FHE system and the range of printing techniques that are used to fabricate them. This dissertation will also overview specific works highlighting advancements in developing FHE systems. For passive sensing applications, I will focus on our work on screen-printed thermistor arrays, and their applications in battery health monitoring. For active sensing applications, I will discuss our work using doctor-blade coated arrays of organic light-emitting diodes (OLEDs) and organic photodiodes (OPDs) for reflection mode blood oximetry, which accurately measures pulse rate and oxygenation. In addition to the discussion of the flexible sensor composed of OLEDs and OPDs, I will present our work on various unique geometries of optoelectronics and their significance in improving sensor efficiency. For power sources, I will present our work on screen-printed Zn-Ag2O battery arrays, and the scalability of these devices. Finally, I will discuss other techniques to develop robust conformal electronics, using a class of FHE systems called in-mold electronics.