Description
In this work, we discuss a method for aberration measurement that is based on an analysis of speckle images acquired in situ. By using a stationary random object, our method eliminates the need for precise manufacturing and alignment of a test target. Moreover, the method provides a full, dense characterization of the optical system under test using relatively few images. The method has been successfully applied to an EUV microscope system, and is shown to be accurate to within λ/180. We also discuss a method for aberration compensation via the characterization and control of an adaptive optical element for x-ray optical systems. Adaptive x-ray optics are a relatively new technology, and our work aims to enable their use within the specifications of synchrotron beamline systems. To this end, we demonstrate the ability to experimentally predict and control the behavior of the glancing-incidence deformable mirror surface to within 2 nm rms, allowing the application of sub-wavelength corrections to an incident wavefront.