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Abstract
Methods for Pacific OCS Wind Characterization for Offshore Wind Development
by
Macy Frost Chang
Master of Science in Engineering - Civil & Environmental Engineering
University of California, Berkeley

Professor Fotini Katopodes Chow, Chair

The rapid development of the U.S. offshore wind industry has necessitated accurate assess-
ment and prediction of offshore wind profiles to forecast generated power. Two areas on the
Pacific Outer Continental Shelf (OCS), the Humboldt and Morro Bay Wind Energy Areas
(WEAs), are currently under review for potential floating wind turbine farms. Scientific
buoys sponsored by the Department of Energy and deployed by the Pacific Northwest Na-
tional Laboratory in these two WEAs have made observational hub-height wind time series
available for the first time, opening novel opportunities for model validation and intercom-
parison. Predictive models are a necessary tool for Pacific offshore wind development, as
collection of sufficient observational data is rendered prohibitive by the high capital costs
and maintenance requirements of the scientific buoys. Predictions of wind speeds 100 meters
above mean sea level are compared between a conventional physical law approach, known
as the stability-corrected logarithmic law (S-C Log Law), and three machine learning (ML)
approaches, specifically the methods of random forest (RF), Gaussian process regression
(GPR), and Long Short-Term Memory neural network (LSTM). To simulate realistic indus-
try applications, predictor variables for the ML approaches are constrained to surface-level
measurements, and the ML algorithms are trained and tested at different locations. The S-C
Log Law and LSTM produce the most accurate predictions, with RMSE of 1.33 m/s and
1.38 m/s respectively, even with LSTM’s large train-test extrapolation distance between the
two sites (631 km). Error metrics for all three ML methods generally improve when a longer
training time is implemented and when the algorithms are trained and tested in the same
location, with LSTM surpassing S-C Log Law and achieving RMSE as low as 0.68 m/s. It
is concluded that ML techniques, notably LSTM and GPR, can present equivalent or im-
proved offshore wind speed prediction capabilities over the S-C Log Law, a widely-accepted
physical law extrapolation method. These ML techniques are advantageous for wind energy
purposes, as they can be used for predicting other wind parameters and generating short-
term forecasts. Increased future availability of Pacific OCS turbine-height wind data would
be vital for determining ML performance degradation over varying extrapolation distances.
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Chapter 1

Introduction

1.1 U.S. Wind Energy

Wind energy is a clean energy technology that is continuing to rapidly expand and evolve
across the globe. It is considered one of the most sustainable sources of energy due to
its domestic availability, low operational carbon emissions, and near-zero usage of water
resources [1]. These advantages, along with large annual industry investments [2] and its
cost-competitiveness with conventional fossil fuel energy generation [3], have allowed wind
energy capacity to grow 15% annually over the past 10 years, making it the current largest
source of renewable energy in the United States [4]. With record installations of wind turbines
worldwide in 2020, global wind power capacity now stands at 743 GW, supplying over 6%
of global electricity demand [5].

Technological advances and stakeholder interest are allowing new areas to become feasible
for wind farm construction. Bottom-mounted and floating wind turbine structures allow for
construction and operation of wind farms in offshore locations, where wind speeds tend
to be higher and more consistent than over land [6]. The United States Department of
Energy (DOE) is currently in the process of expanding potential wind energy areas into the
offshore arena. Two offshore wind sites on the Atlantic coast are already in operation and
demonstrate the economic and energetic feasibility of offshore wind energy siting [7], [8].

1.2 Pacific OCS Offshore Wind: Opportunities and
Challenges

The Pacific Outer Continental Shelf (OCS), the area of ocean extending to about 200 nau-
tical miles from the U.S. West Coast, is an area that has recently come into consideration
for offshore wind development. In May of 2021, the Biden administration and California
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governor Gavin Newsom announced plans to develop floating offshore wind farms in two
Pacific OCS locations off the coast of Morro Bay and Humboldt County, which together
have the potential to provide up to 4.6 GW of electricity, equivalent to powering 1.6 million
homes [9]. The Bureau of Ocean Energy Management (BOEM) has recently titled these
two locations as “Wind Energy Areas” (WEAs) after collaborating with federal agencies,
the state of California, local tribes and communities, and the public to consider potential
impacts on the environment as well as ocean resources and commerce.

Humboldt 3 Moito Bay
Wind Energy | ¢ Wind Energy
Area Area
T r— T P——
[T hembok® Wind Energy Aves. [ #orro By wiA
§
LA 0
‘ o w L s w
i -
R— FE—
BOEM | BOEM
Virsgemest T e

Figure 1.1: The geographic areas of the Humboldt and Morro Bay Wind Energy Areas
(WEAs). These areas are currently undergoing Environmental Assessment by the U.S. Bu-
reau of Ocean Energy Management. (Images from BOEM.gov [10])

The development of offshore wind farms requires extensive research of environmental
factors that affect wind farm layout, predicted power output, and fatigue load estimations.
Until recently, only a few surface-monitoring buoys scattered along the Pacific OCS have
provided direct observational data of offshore meteorological and oceanic characteristics.
These buoys measure only surface variables and do not provide vertical profiles of winds and
turbulence in the surface atmospheric boundary layer (ABL), which is critical information
for wind energy developers.

As of September 2020, a research campaign funded by the DOE has made direct, con-
sistent observations of above-surface wind characteristics in the Pacific OCS available for
the first time. The Pacific campaign consists of two specialized research buoys stationed
in the Humboldt and Morro Bay WEAs. These buoys measure wind speed and direction
up to 250 meters above mean sea level (AMSL) as well as a large set of surface variables.
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The specifics of the DOE campaign and buoy instrumentation are detailed further in the
Background section.

1.3 Motivation

Data from the DOE buoy campaign provide many novel opportunities for offshore wind
research on the U.S. West Coast. This data can be used to assess the wind resource at
potential turbine heights at these Pacific OCS sites. The data also introduce new possibilities
for validating wind prediction models in the Pacific OCS region. More specifically, the
observational dataset is vital for identifying model biases and optimizing the performance of
statistical, physical, and intelligent learning wind prediction methods [11].

New strategies for wind speed extrapolation from surface measurements could prove to
be more adaptable and site-specific than complex and computationally-expensive numerical
weather prediction (NWP) models. Additionally, improved wind modeling accuracy and new
intelligent modeling approaches may help to enhance confidence in turbine and wind plant
power production estimates, which would have significant impacts on downstream analyses,
including grid integration and expansion [12]-[14] as well as life-cycle cost analyses of floating
offshore wind energy production [15]. Considering the recency of the Pacific OCS wind data
and the current Environmental Assessment status of the WEAs in the region, an imminent
research need is to test out different wind prediction models and assess which techniques
provide the best estimates for energy developers.

A large suite of wind prediction techniques are in widespread use by the wind industry
and could potentially be tested in these offshore areas. One category of techniques is physical
modeling, wherein meteorological variables are input into physical law equations to calculate
other weather characteristics. Another contemporary group of techniques are intelligent
learning methods, which most often use machine learning (ML) architecture to draw complex
statistical relationships between input and output data and subsequently make predictions.
In this study, prediction methods from both of these categories are tested by comparing their
accuracy and adaptability across the Humboldt and Morro Bay WEAs. Model performance
is analyzed to provide novel insights into which technique(s) produce the most accurate wind
predictions and offer the most adaptivity for other Pacific OCS wind prediction applications.

1.4 Research Objective

The first aim of the research is to analyze relevant hub-height (100 meters above mean
sea level) wind characteristics in the Humboldt and Morro Bay WEAs, then to elucidate
relationships between these hub-height winds and surface variables. These relationships will
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be drawn from analyzing correlations of 100-meter winds to surface wind speed, air and sea
temperature, atmospheric pressure, and temporal characteristics.

The second aim of the research is to compare vertical wind extrapolation performance of
a widely-used physical law approach, the stability-corrected logarithmic law (denoted as S-C
Log Law), versus the machine learning (ML) methods of random forest, Gaussian process
regression, and Long Short-Term Memory neural network (denoted respectively as RF, GPR,
and LSTM). Input variable importance will be assessed by the weighted effect of each input
feature on the prediction. ML model testing will occur in a “round-robin” fashion (training
on one buoy’s data and testing on the other) to minimize training location bias and assess
the adaptability of each ML algorithm to other Pacific OCS offshore locations. This style
of testing will help gauge the greater applicability of these ML methods to other Pacific
offshore areas where only surface-level data is available.
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Background

2.1 Environmental Logistics

Offshore wind demonstrates many advantages over onshore wind energy, particularly with
respect to wind power potential and reliability. One of the most notable differences is spatial
availability, as offshore locations offer vast, open areas to develop large-scale wind farms.
Additionally, wind speeds in offshore locations are generally higher than those in neighboring
coastal locations due to lower surface roughness and the absence of topographic obstructions
[16], [17]. The topographic uniformity of offshore locations also contributes to typically
lower turbulence and wind shear, which are important considerations for wind turbine energy
efficiency and fatigue load [18]. In some areas, the greater wind power availability over the
ocean allows for more than triple the energy generation potential of typical land-based wind
power [19]. Offshore winds in general are known to be especially strong in evening hours,
when solar power production sharply decreases, which helps to balance renewable energy
contributions to the grid [20].

The offshore arena also presents novel challenges that are not present in land-based energy
operations. Offshore wind turbines are more expensive to build, install, and maintain than
their onshore counterparts due to the remote location siting and the deteriorative effects of
waves and seaspray [21], [22]. Transmission lines are also more difficult to install and must
traverse long distances across the oceanic benthic zone [23]. These factors cause offshore wind
projects to be much more capital-intensive in both construction and maintenance, which has
proven prohibitive to U.S. offshore wind development prior to the last few years. As of 2021,
less than 5% of global wind power capacity is supplied from offshore wind turbines [5].
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2.2 U.S. Offshore Wind Development Status

Interest driven by private industry and efforts of the U.S. Bureau of Ocean Energy Man-
agement (BOEM) are helping to meet the high capital costs associated with offshore wind
development. These offshore wind planning operations are thus gaining traction; the cur-
rent Biden-Harris administration released plans to install 30 GW of offshore wind energy by
2030 [24] and BOEM is reviewing ten Construction and Operations Plans for offshore wind
projects in U.S. waters, with at least five more reviews currently being considered [25]. The
Department of the Interior (DOI) is currently holding lease sales for more sites along the
East Coast and planning to hold future lease sales for Pacific and Gulf Coast sites [26].

Offshore wind development is primarily taking place off of the Atlantic coast because
of the relatively shallow and accessible seabed of the Atlantic OCS. In the areas that are
less than 25 meters in depth, bottom-mounted turbine substructures can be installed, which
comprise most of the offshore wind structures installed to date worldwide [27]. Large portions
of the Atlantic OCS maintain depths above 60 meters, where it is still possible to install
monopiles and four-legged jackets to house bottom-mounted turbines [28]. In contrast, the
Pacific continental shelf declines steeply, exceeding depths of 600 meters in the potential wind
energy sites [29]. The depths of the Pacific OCS render conventional bottom-mounted turbine
installation impossible in most places and have hindered any offshore wind development on
the U.S. West Coast to date.

New developments in offshore wind turbine technology are opening the doors to Pacific
OCS wind farms. The massive wind resource potential in this area can be accessed by
installing floating offshore wind turbines [30], in which a turbine is mounted on a floating
substructure connected to the seabed with mooring cables. Many design iterations of these
floating structures exist and have been deployed by private industries in other countries,
adventing in 2017 with the Hywind Scotland commercial floating wind farm [31]. Fueling
this industry advancement farther out to sea is the enormous space and energy potential
presented by deeper maritime waters, which have the potential to more than double the
gross U.S. offshore wind resource [32]. These floating turbine designs can access oceanic
areas of up to 1000 meters deep [33], where winds are typically stronger and more consistent
than adjacent near-shore locations [34].

2.3 Humboldt & Morro Bay Wind Energy Areas

The Humboldt Wind Energy Area (WEA) is located 20-30 miles offshore of Humboldt
County and covers an area of 207 square miles, with depths ranging from 600-1000 me-
ters. Farther south, the Morro Bay WEA, 22 miles offshore between Monterey Bay and
Morro Bay, spans nearly 400 square miles and sports depths of 800-1000 meters [20], [35].
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Both locations have average wind speeds of 8-10 meters per second at turbine hub height
elevations, which are projected to be around 90-120 meters above mean sea level, and rel-
atively steady seasonal and diurnal wind patterns. These are highly favorable conditions
for maximizing wind energy efficiency and turbine longevity [36]-[38]. These areas were
selected not only based on their wind energy potential, but also a multitude of logistical
considerations, including compatibility with Department of Defense training and testing op-
erations, compliance with federal, state, and local environmental permitting agencies, and
local electrical load and transmission capabilities [12], [37], [39].
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Figure 2.1: Estimates of average 100-meter wind speeds across the Pacific OCS. Data is
sourced from the CA20 dataset, generated from the Weather Research & Forecasting (WRF')
numerical weather prediction model. (Figure from Optis et al., 2020 [40])
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2.4 DOE LiDAR Buoy Program

Vertical profiles of offshore wind are able to be measured through the use of Light Detection
and Ranging (LiDAR) instruments, which can interpret wind speed and direction at multiple
heights by emitting and receiving laser light pulses. In 2014, the U.S. Department of En-
ergy’s Wind Energy Technologies Office launched their LIDAR Buoy Program, consisting of
two AXYS WindSentinel buoys (Buoys #120 and #130) capable of measuring large, compre-
hensive sets of meteorological and oceanographic data at their anchored location [41]. The
data is made publicly available on a daily basis to support offshore wind energy development
in the United States. The two buoys were deployed in U.S. East Coast WEAs from 2014
to 2017 and have undergone various instrument upgrades and LiDAR validation campaigns

[42).

In September 2020, the two DOE LiDAR buoys were deployed in the approximate cen-
troids of the Humboldt and Morro Bay WEAs under management of the Pacific Northwest
National Laboratory (PNNL). The LiDAR buoys provide 10-minute average and select 1-
second meteorological and oceanographic data, including longitudinal wind speed and direc-
tion from 40 to 250 meters AMSL at 20 meter vertical spatial resolution [43]. The Morro Bay
deployment ended in October 2021, while the Humboldt deployment is currently continuing
until May 2022 [42].

The LiDAR-scanning instrument on the DOE buoys is the Leosphere WindCube 866
v2, a state-of-the-art pulsed-wave Doppler-LiDAR, technology capable of withstanding harsh
oceanic conditions and retrieving robust, high-resolution wind field data from its buoy-
mounted location. It operates by emitting an infrared laser beam at an inclination angle of
28° in the four principal directions and one beam in the vertical direction, then deriving a
three-dimensional wind vector from these measurements [44]. Each five-beam sample is com-
pleted in approximately 5 seconds [1]. Previous to deployment off of California, both buoys
were independently validated against a stationary, industry-standard LiDAR at Martha’s
Vineyard Coastal Observatory, achieving commercial acceptance through Carbon Trust’s
Offshore Wind Accelerator (OWA) program [45]. The data gathered by these LiDAR buoys
provide the first high-temporal resolution observational time series data of wind across rotor-
swept heights in the Pacific OCS.
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Literature Review

3.1 Fidelity of LIDAR Wind Measurements

Light Detection and Ranging (LiDAR) works based on the “coherent detection principle”
of the Doppler-shifted frequency of backscattered radiation from a laser light beam. In
other words, a LiDAR instrument sends out a laser light pulse, from which the amount of
backscattered light returns information about atmospheric components such as cloud density
and aerosol concentrations [46]. Detection of wind speed requires a precise measurement of
the small difference in transmitted and backscattered light frequency, measured along the
laser line-of-sight beam direction [47]. Doppler LiDAR systems are becoming increasingly
popular due to improved compactness, reliability, and accessibility of LiDAR instruments
[48]. This remote sensing technique is now widely deployed in commercial and wind research
applications to acquire meteorological data from the near-surface atmospheric boundary
layer (ABL), such as wind speed and direction, shear and low-level jets, and turbulence
characteristics [38], [49]-[51].

LiDAR for meteorological applications began in the early 1960s and has since been in
continuous use for aviation weather forecasting [52], [53], aerosol detection [54], and global
atmospheric dynamics characterization for numerical weather prediction (NWP) model ini-
tialization [55]. For wind energy applications, coherent Doppler LiDAR is particularly useful
because of its powerful, high-resolution scanning capabilities over large areas of the surface
ABL. The favorable spatial resolution and depth is complemented by the short intervals
between scans, meaning that velocity fields can be obtained at a temporal resolution as fine
as 1 Hz [56]. The size and ease-of-use of commercial LIiDAR instruments also make this
technology a more adaptable, cost-effective, and sometimes necessary substitute for mete-
orological masts [47]. This is especially true in the offshore environment, considering the
unique challenges of installing meteorological masts in these locations.

The fidelity of wind LiDAR measurements has been examined by comparison with anemome-
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ters on nearby meteorological masts in land-based sites [57], [58] and in offshore areas.
Kindler et al. (2007) compared 8 months of Doppler-LiDAR measurements up to 100
meters against an adjacent meteorological mast at the FINO-1 offshore platform in the
North Sea [59]. They reported a correlation coefficient of 0.99 and average regression slope
of 0.97 for the 10-minute wind speeds. Similarly, Shu et al. (2016) compared measure-
ments from a platform-mounted Doppler-LiDAR in an offshore site in Hong Kong against
an offshore-mounted meteorological mast with measurements taken up to 40.7 meters [18].
The researchers found, between the LiDAR and mast measurements, that wind direction
measurements were in good agreement, 10-minute average wind speed measurements were
near-identical, and correlation coefficients were greater than 0.99. Pena et al. (2009) per-
formed a similar analysis with the continuous-wave ZephlR wind LiDAR at the Horns Rev
offshore wind farm in Denmark, finding excellent agreement between 10-minute wind speeds
up to 161 meters [60]. These studies lend confidence to the offshore wind-profiling capabilities
of fixed-platform LiDAR.

3.2 Offshore Wind Observation Methods

3.2.1 Fixed-Platform Measurements

The lack of available observational data is an ongoing research dilemma faced in the Pacific
OCS offshore environment. Traditionally, wind measurements in a wind energy research con-
text are measured by anemometers attached to meteorological masts, which are free-standing
towers equipped with meteorological instruments to measure wind speed, air temperature,
and other environmental parameters. In recent years, LIDAR technology has increasingly
come into use often as a substitute or cross-reference for a meteorological mast.

Most of the studies that have conducted analyses of above-surface offshore wind char-
acteristics have been limited to areas with a preexisting oceanic platform for mounting a
meteorological mast or LIDAR. Ortiz-Suslow et al. (2019) used ultrasonic anemometer data
from the Floating Instrument Platform off of Southern California to take measurements of
atmospheric turbulence [61]. The researchers evaluated turbulence dynamics against Kol-
mogorov’s inertial subrange power law and found variance from the theoretical values based
on mean environmental state and air-sea dynamical regime. Bodini et al. (2019) used
fixed-platform LiDAR data from the Woods Hole Oceanographic Institution’s Air-Sea Inter-
action Tower to derive offshore atmospheric turbulence dissipation rates up to 200 meters
[1]. Smaller turbulence dissipation rates than typical onshore values were found, which are
conducive to more persistent turbine wakes. Shu et al. (2016) used meteorological mast
and LiDAR data from an offshore platform in Hong Kong to determine offshore wind speed,
shear, and turbulence intensity profiles [18]. They found that due to thermal instability,
turbulence intensity decreased with increasing wind speed below a certain value, which are
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helpful metrics for evaluating offshore turbine efficiency and fatigue load. Additional studies
with similar methods to the above can be found in [62]-[64].

The data sourcing methods from the above studies are unlikely to be applicable to Pacific
OCS wind energy domains. The rough oceanic conditions and depth of the Pacific OCS
render the cost of oceanic platform or bottom-mounted meteorological mast installment
prohibitively high [65]. Tt is also important to consider the specific needs of wind energy
research. Observational data needs to be accurate and have high spatial resolution up to
the uppermost turbine heights to characterize the wind across the entire rotor-swept area.
Offshore turbines are expected to be larger than onshore ones; rotor diameters are expected
to reach heights up to 175 meters for 8 MW designs and 240 meters for 15 MW designs [66]
compared to a typical height of 90 meters for 3 MW onshore turbines [2]. Meteorological
masts are typically shorter than these rotor-swept heights and only measure wind at a few
discrete points of the vertical profile, which is not useful for gathering detailed measurements
of the atmospheric wind field surrounding a large turbine [47]. Floating LiDAR buoys provide
a solution to the practical shortcomings of meteorological masts and the infrastructural
challenges presented by the extensive depths of the Pacific OCS seabed.

3.2.2 Floating LiDAR Instruments

Studies on floating LiDAR technology have primarily focused on its correctional capabilities
for the translational and rotational motions of the buoy. Bischoff et al. (2015) analyzed
the effects of buoy motion between a buoy-mounted ZephlR 300 LiDAR instrument and a
stationary reference [67]. They found that continuous wave LiDAR systems can accurately
correct pitch and roll motions to obtain precise 10-minute average horizontal wind speed mea-
surements. Wolken-Mohlmann et al. (2010) studied the influence of motion on both pulsed
and continuous-wave LiDAR [68]. The influence of tilting was found to introduce the most
error into wind speed readings, but all errors were able to be successfully corrected, especially
by accounting for the change of beam direction. Désert et al. (2021) investigated the mecha-
nisms responsible for turbulence intensity measurement error of a buoy-mounted WindCube
v2 and successfully applied a correction using a model-based method [69]. Tiana-Alsina et
al. (2015) employed the use of a cardanic (motion-compensating) frame for a continuous-
wave LIDAR buoy [70]. They found that 10-minute average wind speed measurements had
excellent correlation to fixed-platform LiDAR data both with and without the frame, except
in cases with large angular amplitudes and short periods. Similarly to Bischoff et al. (2015),
they noted the degradation of 1-second data without motion compensation, but found sig-
nificant improvement in this data with use of the cardanic frame.

The literature reviewed supports the fidelity of floating LiDAR data for near-surface ABL
offshore wind characterization. Both continuous-wave and pulsed-wave LiDAR instruments,
including the Leosphere WindCube v2, are in current compliance with standardized require-
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ments given for floating LiDAR systems, as delineated in the Carbon Trust OWA Roadmap
[45], [67]. An important finding from the literature reviewed is the reduced quality of unpro-
cessed 1-second buoy-mounted LiDAR data, primarily due to buoy motions of tilting and
heaving. The literature indicates that these errors induced by buoy motion are correctable
and do not impact the accuracy of 10-minute average data.

Buoy-mounted LiDAR data has only recently come into use for offshore wind charac-
terization and comparison with NWP offshore wind model estimates. Shaw et al. (2020)
provided a climatological analysis of surface and hub-height winds as well as an analysis
of oceanographic observations based on the data from the DOE buoy deployments in New
Jersey and Virginia [71]. Debnath et al. (2021) used the DOE floating LiDAR data from
the BOEM lease areas off of New Jersey to characterize occurrences of high wind shear and
low-level jet events [38]. They found over 100 of these events throughout the year, exhibiting
strong seasonal variability and correlating to stable atmospheric stratification and a posi-
tive air-sea temperature difference. Sheridan et al. (2021) used data from near-shore New
Jersey and Virginia deployments of the DOE LiDAR buoys to compare the performances
of four commonly-used reanalysis models [72]. All four datasets underestimated the wind
speed at 90 meters above mean sea level and demonstrated increased error in conditions of
stable stratification, high wind shear, and tropical and winter storms. Optis et al. (2020)
conducted a large validation study of 16 Weather Research and Forecasting (WRF') model
setups to the New Jersey LiDAR buoy data in order to choose the best model inputs, pa-
rameterizations, grid specifications, and physics schemes for the CA20 offshore wind dataset
[40]. After choosing the appropriate model scheme, they found that WRF-modeled winds
at 100-meter heights in the Pacific offshore WEAs were significantly higher than predicted
by the Wind Integration National Dataset (WIND) Toolkit, implicating new model-based
economic and energy production scenarios for the Pacific OCS wind resource.

As offshore wind analyses which utilize floating LiDAR data are limited to only the
past few years, it is clear that there is much more research potential to be achieved using
buoy-mounted LiDAR technology. The majority of offshore wind studies reviewed derive
observational data of hub-height offshore wind characteristics from an oceanic platform-
mounted LiDAR or mast, or extrapolate this data from surface buoys or scatterometers.
In the former case, spatial availability is extremely limited, and new platform structures
are extremely challenging to construct in U.S. West Coast offshore locations. In the latter
case, conflicts in the research arise as to whether extrapolated surface data is meaningful
enough to serve as reliable data without other sources of validation. Many vertical extrap-
olation methods have nontrivial underlying assumptions that are not well-tested in offshore
locations, which can subsequently produce inaccurate wind estimates [66]. Based on these
considerations, floating LIDARs appear to be the most promising and robust data source for
validating hub-height wind speeds in remote, offshore locations.
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Figure 3.1: One of the two AXYS WindSentinel LiDAR buoys operated by the Pacific
Northwest National Laboratory (PNNL) for DOE. The LiDAR instrument is the small white
cube atop the platform on the large mast. (Image from BOEM.gov)

3.3 Wind Prediction Methods: Physical Law
Approaches

Direct in-situ measurements by anemometers or LiDAR instruments are best for precise
wind measurements, but these limited measurements are often insufficient for wind energy
purposes. The reasoning behind this is simple: for energy developers, wind data must often
be extrapolated in space, such as to a neighboring wind farm or development site, or in
time, such as a day-ahead forecast. Scalable wind power assessment therefore relies on the
accurate estimation of wind speed at rotor-swept heights from predictive models. This and
the following section will discuss the key considerations involving two categories of wind
prediction approaches: physical law calculations and intelligent learning models.

3.3.1 Numerical Weather Prediction

Currently, most of the information used to characterize the wind resource on the Pacific OCS
is derived from NWP model estimates. NWP uses mathematical models of the atmosphere
and ocean to simulate weather conditions based on past and present physical weather in-
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puts [73]. In the offshore Pacific region, data is most commonly sourced from WRF NWP
datasets such as the WIND Toolkit and more recent CA20 dataset [40]. Information on
offshore wind is also often obtained from reanalysis products such as European Centre for
Medium-Range Weather Forecasts Reanalysis vb (ERA5) [74] and Rapid Refresh (RAP)
from the National Oceanic and Atmospheric Administration (NOAA) National Centers for
Environmental Prediction [75].

A prerequisite for accurate, high-resolution modeling of the Pacific OCS wind resource is
validation of the model with direct observations. One major issue with using NWP datasets
for the Humboldt and Morro Bay WEAs is the lack of validation with observed vertical wind
profiles from these Pacific OCS areas of interest. The WIND Toolkit, despite serving as the
basis for many past wind resource assessments in this area [76], has been minimally validated
in offshore locations [66]. These sparse data used for WIND Toolkit model validation in U.S.
offshore locations are almost entirely sourced from surface-level buoy-based measurements
from the NOAA National Data Buoy Center (NDBC) [77]. The more recently released
CA20 dataset, despite increased data comparison with buoys and coastal radars, still lacks
validation against high-quality Pacific OCS wind observations at the expected rotor-swept
heights of offshore wind turbines [40].

Even with the available observational data, validation of NWP models against sea surface-
level and land-based observations is not guaranteed to be representative of offshore hub-
height wind modeling accuracy. In other words, model validation at buoy heights (generally
10 meters or below) is not necessarily appropriate for offshore wind energy applications of
the model, nor is model validation at coastal or other onshore wind observation sites. Re-
searchers at the National Renewable Energy Laboratory (NREL) compared WREF simulation
data against coastal, sea surface-elevation, and offshore hub-height level observations in two
Atlantic offshore WEAs [66]. The study found that diurnal wind speed cycles at offshore
hub-heights are substantially different from sea surface-level measurements below, but the
WRF simulations do not capture the magnitude of these differences. Likewise, despite how
land-based weather stations generally have measurement heights above those of buoys, the
combination of large land-sea wind speed gradients and interpolation of WRF wind speeds
to observation stations presents too much uncertainty to provide meaningful estimates of
rotor-height offshore wind speeds.

NWP models, such as WRF, are the most complex of the physical approaches, as they
calculate numerous weather factors across many spatiotemporal intervals based on historical
data and intricate physical relationships. They are extremely useful for assessing weather
and climate data at mesoscale resolutions and larger. However, in the interest of fine-scale
wind estimates, running these models is relatively computationally expensive and prone to
inaccuracies based on certain meteorological and oceanic conditions as well as interpolation
errors [72], [78]. Simplified physical law approaches that extrapolate wind data in one vertical
column are therefore more practical for validation against stationary LiDAR observations.
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3.3.2 Logarithmic Profile

The most common, simplified forms of a physical model to perform vertical wind speed
extrapolation are the power law [79] and the neutral logarithmic law, based on the Monin-
Obukhov similarity theory (MOST) [80]. The most basic forms of both methods calculate a
vertical wind profile based on single-point surface wind measurements, providing a quick and
simple estimate of turbine-height wind speeds and justifying popularity in the wind energy
sector.

The power law and neutral logarithmic profile are commonly used to assess hub-height
offshore wind conditions from surface buoys or scatterometer measurements. Onea & Rusu
(2014) used the neutral logarithmic law to transform in-situ measurements and reanalysis
data from the northwest Black Sea to 80-meter wind speeds [81]. They analyzed the seasonal
and spatial distribution of wind energy density and found that the area presents energy
potential similar to nearby offshore wind farms and development sites. Jang et al. (2009)
used the power law to extrapolate 10-meter winds from the QuikSCAT satellite to hub-
heights, concluding from wind speed and wind energy density estimations that the western
and southern Korean Peninsula are suitable for offshore wind power production [82]. Bethel
(2021) extrapolated wind speeds to 100-meter height from four NDBC buoys using the
simplified logarithmic law to estimate wind energy generation in the Caribbean Sea [83].
Bethel found that electricity production would be greatest in the central basin compared to
the eastern or western borders due to Caribbean Low Level Jet activity.

Despite their historical usage in wind research, more recent research suggests that these
conventional physical law extrapolations of wind speed demonstrate limited applicability
to the complicated maritime wind climate [66], [84]. Both the simplified logarithmic profile
and power law were developed under assumptions of neutral atmospheric stratification in the
surface ABL as well as homogenous terrain. These conditions are not trivial in the surface
ABL, where atmospheric stability conditions are known to modulate wind conditions across
all potential rotor-swept heights [85], [86]. As on land, non-neutral conditions are common
in offshore areas; unstable conditions occur when thermal convection generates increased
turbulence, and stable conditions occur when turbulence is suppressed by a positive vertical
temperature profile. Thus, more realistic profiles of offshore wind speed can be obtained
using modified wind profiling models that include atmospheric stability corrections.

One of these modified profiling techniques is the stability-corrected logarithmic law, dis-
cussed in detail in the Methods section. Sathe et al. (2011) included surface layer stability-
correction terms in the logarithmic law and found agreement with meteorological mast mea-
surements at two sites in the North Sea, though only in unstable and near-neutral conditions
[87]. The authors emphasized the importance of making diabatic (heat transfer) corrections
to conventional methods for obtaining a valid extended wind profile. Van Wijk et al. (1990)
had previously conducted a study in the North Sea evaluating the effect of stability correc-
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tions on the wind speed profile, finding that the stability correction improved agreement with
observations relative to the conventional logarithmic profile [88]. Domagalski et al. (2019)
compared physical wind extrapolation methods at a coastal site in Norway [89]. The re-
searchers demonstrated that under unstable atmospheric conditions, the stability-corrected
logarithmic law significantly improved estimates of 100-meter wind speeds compared to the
conventional logarithmic law, though little improvement was attained under stable condi-
tions. Overall, it was found that the stability-corrected logarithmic law is a more sophisti-
cated approach to offshore wind speed extrapolation and demonstrates significant improve-
ments over the neutral logarithmic law in all but stable atmospheric conditions.

3.4 Wind Prediction Methods: Intelligent Learning
Approaches

The physical laws used for vertical speed wind extrapolation exhibit two immediate short-
comings for wind energy purposes: there are known decreases in prediction accuracy under
certain atmospheric conditions, and there is no built-in architecture for temporal forecasting.
In response to these limitations, extensive research has focused on intelligent learning models,
namely machine learning (ML) methods, for projecting hub-height wind speeds from surface
data and providing short-term forecasts. These models can be trained on meteorological
data to predict wind characteristics at other spatial or temporal instances. Additionally,
while some methods are relatively simple and assume the output to be a linear combination
of predictor variables, such as autoregressive integrated moving average (ARIMA), many
other ML methods are designed to capture nonlinear or chaotic patterns in the data [11]. A
handful of MLL methods used in wind prediction research includes Support Vector Regres-
sion, multivariate linear regression, artificial neural network, random forest, decision tree
regression, radial basis function, and Gaussian process regression [11], [90].

Though all of the aforementioned ML methods have shown significant promise in the
field of wind prediction, a select few are of interest in this study based on past research
or particular algorithm characteristics. Random forest (RF) is a relatively simple machine
learning method that uses regression trees to train on subsets of the training data, which are
then averaged to generate a prediction [91]. RF serves as an appropriate baseline reference
ML method, given its minimal manual selection of model parameters and its performance
against standard extrapolation approaches [92]. Gaussian process regression (GPR) is a
probabilistic, non-parametric process that infers a probability distribution over all possible
values by assuming that all variables follow one joint Gaussian distribution [93]. GPR is
extremely applicable to wind prediction as it works well on small datasets, handles missing
data better than parametric models, and provides uncertainty estimates with its predic-
tions. Finally, the Long Short-Term Memory (LSTM) neural network, an improved type of
recurrent neural network (RNN), is a state-of-the-art deep learning method that works off
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the concept of cellular memory states, which allow for long-term patterns to be preserved
for dynamic prediction modeling [94]. LSTM has only recently gained popularity in wind
prediction research, but offers great promise in terms of handling diurnal and seasonal pat-
terns and nonlinear changes in wind behavior. The details of these three models are further
discussed in the Methods section.

3.4.1 Random Forest (RF)

Random forest (RF) is a powerful ML method that commonly appears in many wind speed
and power assessment studies. Bodini & Optis (2020) compared the performance of random
forest against the standard power and logarithmic laws at four sites in the central United
States and found mean absolute error improvements of 28% and 23% over these respective
physical extrapolation approaches [92]. They noted substantial improvement of ML perfor-
mance when multiple input features, including near-surface winds and the time of day, were
included as training parameters. Vassallo et al. (2020) found RF to produce high-accuracy
forecasts of one to six-hours ahead wind speed at both the FINO1 offshore platform in the
North Sea and the SGP C1 observatory in Oklahoma [95]. Optis et al. (2021) tested RF
against a single-column WRF model and both conventional and long-term stability-corrected
logarithmic laws [65]. They found that RF produced the most accurate near-surface Atlantic
offshore wind speed predictions, and its performance did not degrade when tested on a lo-
cation 83 kilometers away from the training site, suggesting strong spatial extrapolation
capabilities of this technique for the U.S. Atlantic coast. The researchers noted air-sea tem-
perature difference to be an important ML training variable, attributed to its correspondence
to atmospheric stability.

3.4.2 Gaussian Process Regression (GPR)

Gaussian process regression (GPR) is another well-studied ML method that has shown great
promise for wind speed and power prediction. Lee & Baldick (2014) found GPR to excel over
a persistence model at time-series learning for short-term wind power forecasting [96]. Chen
et al. (2014) found similar performance metrics as Lee & Baldick for up to one day-ahead
wind power forecasting using a combined GPR-NWP model [97]. Wind speed, air tempera-
ture, and humidity were found to have a significant influence on power predictions and were
thus used as input training variables. Hu & Wang (2015) developed a hybrid GPR model
with an empirical-wavelet transform with the ability to produce robust wind speed forecasts
at an onshore wind farm [98]. The researchers noted that the predictive distributions and
prediction intervals given by GPR, which are not typical of other common ML approaches,
are extremely useful for wind energy applications. Yu et al. (2013) proposed combinations
of GPR, Support Vector Regression (SVR), and ARIMA with a Gaussian mixture copula
model for wind speed prediction at three U.S. wind energy sites [99]. The combined-GPR



CHAPTER 3. LITERATURE REVIEW 18

model was most effective at characterizing multi-seasonal trends and stochastic variability
in wind speed, demonstrating the strong performance of GPR for making long-term wind
predictions.

3.4.3 Long Short-Term Memory Neural Network (LSTM)

Long Short-Term Memory neural network (LSTM) has more recently gained popularity in the
wind research field and also demonstrates robust wind prediction capabilities. Bethel (2021)
achieved high accuracy hour-ahead forecasts of the wind resource in the Caribbean Basin
using LSTM [83]. The author noted that inclusion of air temperature and pressure surface
variables would likely extend the range of accuracy for the forecasts. Shao et al. (2021)
utilized LSTM with hyperparameter tuning optimized by the firework algorithm and found
greater accuracy of hub-height wind speed prediction when compared to ARIMA, SVR, and
other simpler RNN architectures [11]. Chen et al. (2021) used LSTM in combination with
the back-propagation neural network algorithm to perform short-term wind speed forecasting
at a wind farm in China and found the Pearson correlation between predicted and true values
to be greater than 99% for both test datasets [94]. Banik et al. (2020) utilized LSTM to
generate prediction intervals for one-hour ahead wind power uncertainty forecast, finding
superior performance to benchmark models such as the Elman RNN and ARIMA [100].
More literature of recent LSTM applications to wind resource characterization can be found
in [27], [101]-[103].

3.4.4 Inter-model Comparison

Due to the ubiquity of different ML algorithms in popular use for time series prediction, as
well as the recency of LSTM applications to wind energy research, no wind-related literature
was found to draw direct comparisons between RF, GPR, and LSTM. The reviewed research
most often compared one of these algorithms to simpler methods, as discussed above. In
some other cases, RF and/or GPR were compared against a generic artificial neural network
(ANN) or an ANN class such as a multilayer perceptron (MLP) or recurrent neural network,
which can be thought of as simpler versions of LSTM. Richmond et al. (2020) found RF to
produce the most robust hub-height wind speed predictions for a computer-modeled offshore
wind farm, though the ANN and radial basis function (RBF), which typically serves as the
basis of covariance calculations in GPR, produced the most numerically accurate results on
average [90]. Larger amounts of training data were shown to improve the performance of
GPR and RBF more than the other models. Shi et al. (2018) modified the traditional RF
model with improved feature selection and decision tree reorganization and found that it
outperformed the Support Vector Machine (SVM) and simple neural network architectures
for 15-minute wind power forecasting at a land-based wind farm [104]. Liu et al. (2018)
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found that GPR outperformed both an MLP neural network and SVM model for wind power
forecasting in cases of both missing and complete data [93].

The reviewed literature illustrates a complicated picture of relative advantages and short-
comings of these ML algorithms for wind profiling purposes. RF effectively handles missing
values, non-linear parameters, and outlier data, though its stable nature may limit its effec-
tiveness in capturing stochastic variability in time series data. GPR also handles missing
and nonlinear data well and provides confidence intervals for predictions, but the computa-
tional intensity required by its nonparametric design may limit efficiency for large datasets.
LSTM has demonstrated high accuracy in wind predictions as it was specifically designed
for retaining long-term patterns in time series data, but it requires more hyperparameter
tuning to each specific problem and cannot handle missing values.

To the author’s knowledge, these three ML algorithms have not been compared within
one wind prediction study. Additionally, applications of these algorithms to the Pacific OCS
wind resource are nearly absent, likely due to the historical sparsity of data availability and
previous lack of research motivation. Comparisons of these ML algorithms against a physical
law extrapolation technique will therefore offer new insights into the most suitable method(s)
for Pacific OCS wind prediction.
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Chapter 4
Methods

4.1 Source Data

4.1.1 Loading & Preprocessing

Data from the DOE/PNNL LiDAR buoys is retrieved from the Atmosphere to Electrons
(A2e) Data Archive and Portal, which is supported by the U.S. Department of Energy,
Office of Energy Efficiency and Renewable Energy’s Wind Energy Technologies Office. The
data is publicly available at a2e.energy.gov [105], [106].

The data is available at 1-second and 10-minute average intervals. All analysis performed
in this study uses the 10-minute average data. For the Humboldt WEA, the data included
in this analysis spans from October 2020 to January 2022. Humboldt data is missing from
the end of December 2020 through May 2021 due to instrument failure; thus, to retrieve a
full annual cycle of wind data, the Humboldt buoy is scheduled to remain deployed until
May 2022. The Morro Bay buoy provides mostly continuous data coverage from September
2020 to October 2021.

The motion-corrected Doppler LiDAR data were preliminarily filtered for appropriate
signal-to-noise ratios by PNNL. The remaining values are not expected to fall outside of
instrument technical specification of £0.1 m/s wind speed accuracy [107]. Standard filtering
thresholds were also applied by PNNL to the surface-monitoring and in-situ sea surface
measurement instruments.

4.1.2 Selection Criteria

Selection of predictors is based on analysis of surface variable correlations to wind speed at
100 meters above mean sea level (AMSL). These input features are denoted in Table 4.1.
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Predictor Feature

Unit Measurement Height (m AMSL)

Surface Wind Speed m/s 4
Air Temperature °C 3.7
Sea Surface Temperature  °C 0
Air-Sea Temp. Difference  °C -
Atmospheric Pressure mbar ~ 1
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Time of Day (cosine)
Time of Day (sine) - -

Table 4.1: Input feature variables used for ML training and prediction of 100-meter above
mean sea level (AMSL) wind speed.

Time of day is cyclically encoded into cosine and sine components for use by the machine
learning algorithms. This transformation creates a polar representation of time in order to
reduce the numerical difference in magnitude between different parts of the day, while also
maintaining continuity between consecutive hours of the day. An important drawback of
this transformation is that the sine and cosine components must be considered together to
identify a unique time of day. Thus, algorithms which handle only one input feature at a
time may deflate the overall predictive power of the encoded time features.

Due to the many instances of missing data for periods of one day or longer, train-test
dataset selection is carefully conducted. Selection of each dataset is based on the criteria of:

e Parallel day-of-year data availability at both Humboldt and Morro Bay sites

e Approximately one month-long continuous data, with no longer than 1 continuous day
of missing data for any variable

e No data overlap with other train-test datasets

The data selection based on the above criteria resulted in six datasets, detailed in Ta-
ble 4.2. Because of the erratic data availability, assessment of machine learning algorithm
capabilities of handling long-term seasonal variability is not included in this analysis.

Within the selected datasets, 2.1% of Humboldt and 1.5% of Morro Bay data remain
sporadically missing. Missing values were filled using the mean hourly value within the
month containing the missing value. Though random forest and Gaussian process regression
do not technically require fully-complete datasets, the same filled datasets are used for all
ML methods because of the complete-data requirement of LSTM.
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The first 80% of data in each dataset is used for model training, with the remaining 20%
used for testing. The 80:20 train-test data ratio is a standard practice in the field of machine
learning. The 10-minute data is averaged to hourly data for faster overall computation time.

Dataset Month Range Dates (Month/Day) No. of Days
October 10/01 - 10/31 31
November 11/01 - 11/30 30
December 12/01 - 12/28 28
January 01/01 - 01/23 23
June 06/01 - 06/30 30
July-August 07/12 - 08/04 23

Table 4.2: Train-test dataset ranges, selected for data completion and continuity.

4.1.3 Data Scaling & Reduction

Prior to ML algorithm training, input features are scaled through transformation to a stan-
dardized z-score in order to prevent features with wider ranges from exerting more influence
on the target prediction. This method simply implies subtraction of the data mean and
division by the standard deviation of the training samples. Standardization is performed
using the StandardScaler() function from the scikit-learn preprocessing module in python.

After data is scaled, principal component analysis (PCA) is used to reduce the dimen-
sionality of the input data. PCA is a common statistical practice for reducing the amount
of input data while maintaining the variability within data. It generates a new set of un-
correlated features that maximize the variance of the original dataset, and is thus useful for
optimizing the efficiency of intelligent learning methods on large datasets. PCA is performed
using the python scikit-learn PCA module with a lower variance threshold of 0.95, meaning
at least 95% of original dataset variance is captured by the modified features.

4.2 Physical Law Calculations

4.2.1 Stability-Corrected Logarithmic Law

The physical law extrapolations of wind speed are conducted using the stability-corrected
logarithmic law, denoted as S-C Log Law. The logarithmic profile describes the vertical
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distribution of mean horizontal wind speeds within the surface layer of the ABL, which
typically ranges up to 100 meters above the surface during the day or approximately 10% of
the boundary layer depth [108].

The logarithmic profile method, along with the power law profile, are two of the most
commonly-used vertical wind speed extrapolation techniques for wind energy applications
[72]. However, the version of the power law which considers atmospheric stability conditions
requires two known wind speed measurements at lower and upper heights to calculate the
wind shear coefficient, a [109]. As this study seeks to constrain predictor variables to surface-
level measurements only, the power law is excluded from the analysis.

The stability-corrected logarithmic wind profile can be written as:

U(z) = “; [m (Zio) . (% %)] (4.1)

where U is the horizontal wind speed at height z above the surface, u, is the friction velocity,
K is the von Karman constant (0.4), 2o is the surface roughness, 1, is the universal stability
function for momentum, and L is the Obukhov length, described in detail in the following
subsection.

The friction velocity u, is a dynamic fundamental scaling velocity derived from surface
stress and air density measurements. A sonic anemometer instrument is typically used to
capture fine-scale wind speed fluctuations in order to calculate the friction velocity. However,
the longitudinal and vertical wind speed fluctuation data measured by the 2D ultrasonic
anemometers on the LiDAR buoys are not publicly available. Therefore, the above equation
is reformulated into a modified logarithmic law, in which the wind speeds at the buoy surface-
monitoring height are used as a reference measurement:

(4.2)

where Uy, is the horizontal wind speed at 4 meters above mean sea level and z,,, is equal
to 4 meters. The height of 4 meters AMSL is used here as it is the height above mean sea
level of the buoy’s cup anemometer and wind vane.

The surface roughness zg is typically determined empirically using the friction veloc-
ity. Other methods to estimate zy without empirically-derived friction velocity exist, such
as analytical methods of the COARE model [110], [111] or statistical methods using data
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from multiple vertical wind measurement points [112]. However, the former case involves
computationally-intensive iterative calculations and a large suite of input parameters, some
of which are not publicly available or reliably measured from the Pacific buoy deployments.
In the latter case, there is a need for multiple vertical measurement points throughout the
surface layer, which does not meet the constraint of this study to only use surface-level
measurements as inputs.

With these considerations, calculations for atmospheric stability and logarithmic wind
profiles are simplified and subsequently cross-referenced with COARE 3.6 outputs calculated
by PNNL. Instead of the iterative solving used in the COARE algorithm, surface roughness
is characterized according to the Davenport roughness classification of z; = 0.0002 meters
for sea surface with fetch greater than 3 km. Roughness lengths of this classification scheme
have been well-studied and reassessed [113], and this sea surface roughness parameter is
widely used in related offshore atmospheric stability studies [114]-[116].

4.2.2 Monin-Obukhov Similarity Theory

The logarithmic law is conceptually derived from Monin-Obukhov similarity theory (MOST),
which describes the vertical gradients of wind speed and temperature as a function of a
dimensionless height parameter, z/L [80], [117]. The Obukhov length L represents the lowest
height from the surface where turbulent kinetic energy (TKE) produced from buoyancy
equates to TKE production by mechanical effects such as shear and friction.

.3 2
o O O (4.3)
kg(w'@),  Kgb.

Here 6, represents the mean virtual potential temperature, ¢ is gravitational acceleration,
(w'6')s is a measure of the sensible heat flux, and 6, is the scaled surface layer temperature
[118]. In a neutral atmosphere, buoyancy is theoretically absent and L approaches infinity,
while in buoyancy-forced stable and unstable conditions L is driven toward small positive
and negative values, respectively. The values of L. therefore provide a measure of atmospheric
stability, which can be generalized into the categories in Table 4.3. [119]-[121].

4.2.3 Bulk Richardson Number

Though turbulent fluxes of momentum and heat are not publicly available through the DOE
buoy data, other various empirical methods exist to obtain L [87]. An important value used
in these alternative methods is Richardson number (RI) or bulk Richardson number (RIp),
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Stability Classification Range of L
Very Unstable —-200< L <0
Unstable —500 < L < —200
Neutral |L| > 500

Stable 200 < L < 500
Very Stable 0< L <200

Table 4.3: Surface ABL stability classification scheme based on calculated Obukhov length

(L).

which are metrics that, similarly to the Obukhov length L, represent the ratio of buoyant to
shear production of TKE. The method used in this study to calculate the Obukhov length
relates RIp and L through wind speed and temperature profiles.

The Richardson number (RI) is defined as:

Ry = 92082 (4.4)
0,(Aw)?

When the Richardson number in Equation 4.4 is considered at the sea surface under assump-
tion of a no-slip bottom boundary, the bulk Richardson number (RIg) can be calculated using
only virtual potential temperatures and wind speed at a reference height (4 meters AMSL
in this case), given as:

_ 9Z4m (94m - esurf)
Oag Ul

Rlp (4.5)

The surface eddy flux parameters can be used to relate the bulk Richardson number to
the Obukhov length, as defined in Equation 4.3. The friction velocity u, and the surface
layer temperature scale 6, in this context are given as [119]:

Aur Ab, K
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which, when Equations 4.6 and 4.7 are substituted into Equation 4.3, results in:
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Stability correction functions must be chosen in order to solve for L. These functions
represent universal relationships between the non-dimensionalized variables in MOST, which
are related based on the Buckingham Pi Theorem [122]. A simple RIp-based method for
estimating z/L, derived from Businger et al. (1971) [123], is shown below in Equation
4.9 to illustrate the generalized relationship between RIp and atmospheric stability. It
demonstrates that a positive or negative RIp can be used to binarize atmospheric conditions
into stable and unstable, respectively. This relationship is used in this study solely to
determine which stability functions to use at each timestep in terms of RIp. It is not
included in any numerical calculations because of the singularity at RIp = 0.2, above which
this conversion is not valid and the z/L parameter cannot be accurately calculated [111].

) (4.9)

z_ [i%eE i RIp>0
10RIp if RIp <0

4.2.4 Stability-Correction Functions

Many definitions of the stability correction functions for momentum 1, exist in the literature.
The standard correction functions most commonly used are the Businger and Dyer functions
[123], [124]. Multiple studies have tested the validity of these functions and found that they
do not hold up well under strongly unstable conditions, especially beyond the free convection
limit [125]. Therefore, updated stability correction functions for momentum were proposed
for unstable and stable conditions and are written respectively as [126], [127]:

1 2 2 1
Ui unstable <i> =1.5In (#) — V/3arctan ( Yyt ) + (4.10)

L i)
s (3) =) 3G - oota (-

where in Equation 4.10 y = (1 — ypc (£))"? and ypc = 10 [126] and in Equation 4.11

a=1b= %,c: 5,and d = 0.35 [127].

Temperature stability correction functions are taken from the landmark 1968 Kansas
atmospheric surface layer experiment [128], [129] with a correction for highly stable (z/L > 1)
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conditions, detailed further in Blumel (2000) [130]. For unstable, stable, and highly stable
conditions respectively, these equations are:

Uh,unstable (%) =2In (1 212) (4.12)
Vh,stable <%> =—p (%) (4.13)
Uh,superstable <%> =—fn (%) - p (4.14)

For the unstable case temperature function (Equation 4.12), z = (1 — v (£))*. The
standard empirical constants v and 3 are set to 16 and 5 respectively [124], [129]. L can
be solved for in Equation 4.8 using the RIp calculated in Equation 4.5 along with the
stability correction functions for both momentum (Equations 4.10 and 4.11) and temperature
(Equations 4.12, 4.13, and 4.14). The stability-corrected logarithmic wind profile can then
be obtained from Equation 4.2.

4.3 Machine Learning Techniques

The main ML prediction data considered in this study are generated from training each
algorithm on one buoy location’s data and testing on the other (i.e. Morro Bay predictions
are made from an algorithm trained on Humboldt data and vice versa, unless otherwise
stated). This is to eliminate model bias to the same train-test location and to simulate a
realistic application of the model to a different spatial location.

4.3.1 Random Forest

Random forest (RF) is one of the most commonly-used ML algorithms across the field of
data science. It is a supervised ensemble ML technique, meaning that it uses labeled data
and aggregates multiple submodels to make predictions. In this case, the submodels are
decision trees, which work by finding the optimal ways to make binary splits in input data
to generate the most accurate possible prediction of the output. In the case of continuous
input data, such as the meteorological and oceanic DOE buoy data, the decision trees are
often called “regression trees”. The RF algorithm constructs independent regression trees
to subsets of the training data, then aggregates these weak predictions into a more accurate,
overall prediction [95].

One example regression tree is shown in Figure 4.1, but tens to thousands of these are
used within one RF model. The input feature with the smallest mean squared error (MSE)
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from the split is used to create the division at each node. Figure 4.1 demonstrates how
certain feature variables classify the output more effectively than others and thus appear
more often in the tree. RF calculates feature variable importance based on the relative
influence of each predictor variable on the output prediction.

surf_wind_speed <= 0.571

mse = 26.164

samples = 380

value = 7.486

surf_wind_speed <= -0.313 surf_wind_speed <= 1.242

mse = 8.696 mse = 12.958
samples = 273 samples = 107
value = 4.936 value = 13.859
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\

/
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surf_SST <= -0.289 AStempdiff <= 0.091 surf_airtemp <= 0.295 surf_wind_speed <= 2.101
mse = 3.01 mse = 4.432 mse = 6.651 mse = 6.04
samples = 164 samples = 109 samples = 64 samples = 43
value = 2.969 value = 7.513 value = 11.496 value = 16.647

/
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/

\

mse = 4.172 mse = 1.791 mse = 1.075 mse = 4.654 mse = 1.967 mse = 3.04 mse = 3.964 mse = 2.727
samples =5 samples = 159| |samples = 79 samples = 30 samples = 28| | samples = 36 samples = 30 samples = 13
value = 9.168| |value =2.783 | |value = 6.561| |value =9.997| |value =9.541| |value = 13.629| |value = 15.531| |value = 18.878

Figure 4.1: Example of one regression tree with depth = 3. The regression tree finds
the optimal splits in a subset of normalized training data to reach a prediction (denoted as
“value”) as close as possible to the observed 100-meter AMSL wind speed. Darker coloration
indicates a higher value prediction. The features used for splitting include 4-meter AMSL
wind speed, sea surface temperature, air temperature, and air-sea temperature difference
(denoted as “surf_wind_speed”, “surf SST”, “surf_airtemp”, and “AStempdiff” respectively).

The steps of random forest regression are shown in Figure 4.2.

1. T sample subsets are drawn randomly with replacement from the original training
dataset. Within each training sample subset, a subset of feature variables are randomly
selected. This selection process is based on the random subspace theory, also known as
feature bagging [131], which is a learning method that uses random samples of feature
variables instead of the whole feature set in order to reduce correlation between the
predictions of the models in the ensemble [104].

2. Each regression tree is fit to its training data, wherein each node applies its own split
function to the training data inputs in a process called recursive partitioning. This
generates a unique prediction function for each decision tree, such as the example
regression tree in Figure 4.1 above.
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3. Each regression tree is then applied to the testing data to generate a prediction for
each timestep.

4. By nature of the selection process, approximately one-third of the original training
data are excluded from subsetting. This portion of unused data, called the Out-of-bag

samples, is used as a reference for an unbiased estimate of the generalization error
[132].

5. The predictions from each individual regression tree are averaged to produce the com-
bined forecasted value(s).

Training Dataset (S)

(1) |

Training Data Training Data | ..... Training Data Out-of-Bag
Subset S, Subset S2 Subset ST Data Subset

(randomly-selected subset of feature variables)

€ I S ;

..... Generalization
f Error Estimation

Individual Regression Tree Fitting

(3 o | 1

Prediction on Prediction on Prediction on
Test Data f,(X) Test Data f,(X) Test Data f(X)

Averaged Forecasted Value

-~

Figure 4.2: Schematic representation of random forest regression. The general steps of the
algorithm are labeled in red circles.

Advantages: Random forest is advantageous for its small variance within the model,
as noise in the training dataset ends up being smoothed out through averaging of the non-
correlated trees (given a large enough set of decision trees). It also effectively handles missing
data, requires minimal manual hyperparameter tuning, and because of the randomness in
training subsetting and feature selection, does not overfit to training data. RF also contains
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built-in cross-validation through calculating the Out-of-bag error (OOBE), also called gener-
alization error, which is the average difference between a predicted and actual outcome from
trees that were not trained on each observation. OOBE provides a preliminary example of
model testing performance. Variable importance (VI) is also obtained by calculating OOBE
before and after permuting a feature variable.

Disadvantages: A notable drawback of RF is the high computational cost of building a
larger number of individual decision trees, which is generally a trade-off for increased pre-
diction accuracy. The runtime of the algorithm is relatively high compared to the other
algorithms in this study due to the large number of training subsets and combination of
outputs. Additionally, because of the ensemble averaging, RF works as a “black box” algo-
rithm, in that the calculations made by each tree to produce the prediction are not easily
accessible or interpretable from the final output.

Implementation: Random forest regression is performed using the RandomForestRegres-
sor module from the scikit-learn Python machine learning library. 3-fold grid search cross
validation is used to determine the optimal hyperparameter values of the RF model for each

train-test dataset. The range of values considered for each hyperparameter are shown below
in Table 4.4.

RF Hyperparameter Range of Values
No. of estimators (trees) 10 - 1000
Maximum depth 4 - 40

Max. No. features considered at a node 2 -6

Min. No. samples to split a node 2-10

Min. No. samples at each end node 1-15

Table 4.4: Hyperparameters optimized in each training run of random forest regression.

4.3.2 Gaussian Process Regression

Similarly to RF, Gaussian process regression (GPR) is a supervised ML method used widely
for both regression and classification problems. Unlike the traditional RF model, GPR is
probabilistic in that it calculates a probability distribution over the prediction, lending GPR
the powerful advantage of quantifying empirical uncertainty over all of its predictions [133].

In short, GPR defines a mathematical distribution over all the possible functions that can
fit some observed data points. For visualization purposes, consider the univariate example of
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predicting 100-meter wind speeds only from surface-level wind speeds, shown in Figure 4.3
below. Functions that best map the input to the outputs, called the “posterior distribution”,
are selected from a “prior distribution” of infinite possible functions. The posterior functions
are averaged to create the mean prediction for any input value. Areas with less input data
have larger confidence intervals due to the increased spread of possible underlying functions.
For D input feature variables, this process is conducted in D-dimensional space.

5 Prior Distribution Functions 5 Posterior Distribution Functions
4 Sampled function #1
Sampled function #2
Sampled function #3
Sampled function #4
Sampled function #5
— Mean
95% Cl

Subsample of
®  Observation Points

Normalized 100-meter
AMSL Wind Speed
Normalized 100-meter
AMSL Wind Speed

|
]

—2.0 -15 -1.0 =05 00 05 10 15 20 -20 -1.5 -1.0 -0.5 00 05 10 15 2.0
Normalized Surface Wind Speed Normalized Surface Wind Speed

Figure 4.3: Univariate example of selecting functions from the prior distribution to fit the
input and output observational data, then averaging to get an estimated mean function.
Confidence intervals are determined by the probability distribution over these underlying
functions. Only some sample functions and observational data points are shown for demon-
stration purposes.

The essential mathematical principles of GPR are the Gaussian distribution, multivariate
normal distribution, kernels, and non-parametric models [134]. These concepts and their
implementation into GPR will be briefly reviewed.

The probability density function (PDF) of the Gaussian (normal) distribution of a vari-
able X with mean p and variance o? is defined in Equation 4.15:

1 (z — p)?
P _ _ 4.15
(o) = e (- (4.15)
In the case where more than one correlated feature variable is used to describe the system,
a multivariate normal distribution (MVN) is needed to combine these variables into one
Gaussian model. For D feature variables, the PDF of the D-dimensional MVN is defined in
Equation 4.16:
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1 1
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N(z|p, 2) = 5

where p is the vector of variable means and ¥ is the symmetric DxD covariance matrix that
stores the pairwise covariance of the jointly-modeled feature variables. The diagonal terms of
. are the independent variance of each variable, and off-diagonal terms are the correlations
between the two different feature variables. The purpose of this PDF is to generate smooth
functional relationships between the feature variables (assuming non-identity covariance be-
tween the features). This is used to produce the prior distribution of possible functions, from
which the functions with best fit to observational data are selected. A sample visual of the
PDF of an MVN with 2 input features is given in Figure 4.4.

P(x1,xz)

Figure 4.4: Sample visualization of the PDF of a bivariate (2-dimensional) normal distri-
bution. This relationship can be described by Equation 4.16 with D = 2 and non-identity
covariance between the predictor variables.

Covariance in regression is based on the idea of how similar input data is likely to produce
similar target values. Kernel functions are used to quantify covariance between variables and
generate the smoothed functional relationships between them. The squared exponential ker-
nel function, also known as the radial basis function (RBF), is used as the default smoothing
function for GPR and is defined as follows:
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ki, x;) = cov(x;, ;) = exp (-%) (4.17)

In Equation 4.17, ¢ is the length scale of correlation, an empirical constant that describes
the general smoothness of the function.

It is important to note that the functions generated by the MVN are called “kernelized
prior functions”, as they are generated by the MVN model with kernel functions as prior
knowledge before taking observed data points. When observational data points are inputted,
only select functions that best fit these points are kept from the infinite number of functions
to create the posterior distribution. GPR is nonparametric, meaning that it does not assume
that a limited number of parameters can be defined to form the function over the output.
It therefore obtains predictions from calculating the probability distribution over all of the
posterior functions, then taking the mean of these selected functions. With every input
of new training data, this posterior distribution is updated and averaged to best fit the
observational data.

The above descriptions are to give a sense of the complex MVN and covariance operations
occurring in the background of GPR. Overall, the practical steps of GPR can be summed
up succinctly. Given the training data, GPR uses negative log marginalized likelihood to
fit optimal hyperparameters to the covariance matrix I, employs this covariance matrix to
obtain the predictive distribution (posterior) from the kernelized prior functions, averages
the posterior distribution to obtain prediction results, then uses the covariance matrix and
the prediction results to calculate the confidence interval.

Advantages: The hyperparameters of GPR can be tuned more specifically to an individual
problem than RF, especially within the choice of the kernel/covariance function. Hyperpa-
rameters within the RBF include vertical scale (the values that the averaged function can
span) and horizontal scale (the strength of correlation between two points as distance be-
tween them increases). Other hyperparameter specifications include the mean of the prior
distribution (either zero or the training data mean) and allowable noise level in the targets.
The empirical confidence intervals in areas of interest allow the user to decide if or how the
prediction should be refit.

Disadvantages: The main constraint of GPR is its cubic growth of computational com-
plexity with the number of feature variables (dimensions). Large losses of efficiency occur
when the number of features exceeds a few dozen. Together with quadratic memory consump-
tion [134], GPR can become inefficient for large datasets with numerous feature variables.
This is because it is not sparse, meaning that it requires complete data from each sample
point to perform predictions. Sparse Gaussian processes are a common workaround to this
issue [135]. Similarly to RF, the internal processes of GPR make it a “black box” model,
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meaning that the complex mathematical relationships between the variables are difficult to
extract and interpret.

Implementation: Gaussian process regression is performed using the GaussianProcessRe-
gressor module from the scikit-learn python machine learning library. All inputted values
are normalized by mean removal and scaling to unit variance to ensure the Gaussian assump-
tions of GPR are met. An additive kernel consisting of RBF and noise kernels is used. The
smoothness of the output function, defined by the RBF length scale ¢, is optimized within
the bounds (1e-2, 1e3) with the initialization value = 0.1. The noise level is optimized within
the bounds (1le-15, 1e5) with the initialization value = 0.12.

4.3.3 Long Short-Term Memory Neural Network

Long Short-Term Memory (LSTM) neural networks were introduced in 1997 by Hochreiter
and Schmidhuber [136] as an advanced type of recurrent neural network (RNN) to more
effectively model long-term dependencies. RNNs are still a widely used machine-learning
method for modeling of dynamic temporal data [137]. The basic principles of RNNs and
LSTMs are the same; a short introduction to RNNs is given to contextualize the flow of
information within LSTM.

Figure 4.5: The repeating module of a standard RNN, which contains only a single tanh
layer for transforming input data. (Image adapted from Olah, 2015 [138]).

The linearized flow of information in a traditional RNN is visualized above in Figure 4.5.
In this diagram, A is a cell of the neural network, x; is the input data at time ¢, and h; is the
output data. RNNs and LSTMs have a chain of repeating modules, each of which takes input
from both previous and current timesteps, generates an output, and passes this information
on to the next module. The RNN module contains one tanh layer that transforms values to
[-1, 1] to regulate transformations performed on the data.
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The actual training process of a neural network involves feeding information forward
to make a prediction, then propagating the error of the prediction backward through the
network to calculate the internal weights for the input(s) of each node. The calculated value
to adjust the weights is called the gradient, and this part of the training process is called
back-propagation through time (BPTT).

The main issue with RNNs is that they do not contain architecture that retains memory of
long-term patterns. During BPTT, gradient values of distant modules can become extremely
small, meaning that they exert little or no weight on the current output. This is known as
the “vanishing gradient” problem.
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Figure 4.6: The repeating module of LSTM, which contains four layers that transform
input data and retain long-term relationship patterns between predictors and targets. (Image
adapted from Olah, 2015 [138]).

Long Short-Term Memory neural networks resolve these common issues faced with RNNs.
In LSTM, visualized in Figure 4.6, the h;, output represents the hidden state, which is an
encoded representation of the previous inputs. The hidden state at each timestep feeds
information into a “cell state”, which serves to aggregate the memory of all the previous
weighted time-steps [139]. Additionally, LSTM resolves both the vanishing and exploding
gradient issue by employing a more complex series of logistic layers in each LSTM cell, unlike
the single tanh layer used by traditional RNNs. These layers of an LSTM cell consist of three
logistic sigmoid (o) gates and a tanh gate, which filter the information that determines the
cell output and the next cell state.

The first sigmoid (o) layer is known as the “forget gate”, as it takes in the current
data point and the previous cell’s hidden state, and it outputs a number in [0,1] that is
multiplied with the previous cell state. This output represents a range between rejecting all
of the previous cell’s information (0) versus keeping all of it (1). The second o layer decides
what new information is to be added to the cell, and the coinciding tanh layer outputs new
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candidate values to store in the cell state. Multiplication of these two layers determines the
amount of information added to the cell state. This result is then added with the previous
cell state multiplied with the forget gate output, producing the current cell state. Lastly,
the third o layer decides what part of the cell state to include in the output, and uses a tanh
function to scale the cell state into the range [-1,1]. Multiplication of these two layers’ results
produces the hidden state of the cell h;, which is then carried over to the next timestep along
with the new cell state.

Advantages: LSTM is state-of-the-art neural network architecture that captures patterns
with long-term dependencies within time series data, which RF and GPR are not specifically
designed to handle. The structure of this neural network is designed to handle noise and
distributed representations. It is effective for a wide range of parameter specifications, such
as learning rate and output bias, which allows the user to tune the network for a specific need.
Due to its adaptability and robust handling of data inputs, LSTM is becoming increasingly
popular for sequence-based learning tasks including text generation, speech recognition, and
language translation [140].

Disadvantages: The LSTM neural network requires a high memory-bandwidth because
of linear layers present in each cell. Out of the ML algorithms discussed, LSTM is the most
prone to overfitting and often requires a dropout algorithm to curb this issue. Dropout is a
regularization method where input and recurrent connections to LSTM units are probabilis-
tically excluded from activation and weight updates while training a network. As is the case
with RF and GPR, LSTM is also a “black box” model, in which the learning process of the
algorithm is difficult to elucidate from all of the nonlinear combinations of neurons.

A notable disadvantage of LSTM is the need for complete training and testing datasets
at regular time intervals. Adverse weather conditions and instrument failure make missing
values a common occurrence in wind measurement data, meaning that missing data must
be filled in order to employ LSTM.

Implementation: LSTM is implemented using modules from the Keras Python library
using a Tensorflow backend. A stacked LSTM with four LSTM layers is used to increase
levels of abstraction to the input data, essentially creating representations of the data at
different timescales. A dropout algorithm with rate = 0.2 is applied to randomly omit 20%
of each layer’s information in order to help prevent overfitting. Mean absolute error (MAE) is
used as the loss function, and the Adam optimization algorithm, which is an efficient method
of stochastic gradient descent, is used as the optimizer. 200 epochs and a batch size of 72
are used for iteration over the dataset, which were determined by empirical observations of
the loss function and runtime.
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4.4 Error Metrics

The National Renewable Energy Laboratory (NREL) recommends to use bias, centered
root-mean-square error (cCRMSE), square of correlation coefficient (R?), and Earth-mover’s
distance (EMD) as the performance metrics for offshore wind model validation [66]. The
decomposition of typical error metrics, such as RMSE and MAE, into more distinct com-
ponents is useful for identifying specific aspects of individual model error. RMSE is also
taken into account as a metric of overall prediction quality. Each model’s performance over
the six train-test datasets is averaged to obtain these values. The purpose of using each
performance metric is detailed in Table 4.5.

Error Metric Description Purpose

Indicates if model is generally
overestimating (positive bias) or
underestimating (negative bias) the
forecasted values

Summed difference between
Bias each model prediction and the
actual value

Quantifies the random error (noise) of
model predictions, i.e. the spread of
residuals around the actual values,
without effects of model bias

Differences in model variation
cRMSE around the mean after bias is
removed

Evaluates the general strength of the
relationship between predicted values
and actual values, scaled between

0 - 100%

Measures the “cost” of transforming
one distribution to the other,
considering the integral difference
and distance to “move” data

Proportion of the variance in
R? the predictions explained by
the actual values

Difference between the
EMD probability distributions of the
predicted and actual values

Table 4.5: Error metrics used to assess the performance of the machine learning algorithms
and the stability-corrected logarithmic law.



38

Chapter 5

Results & Analysis

5.1 Hub-height Wind Characteristics

Frequency distributions of hub-height (100 meters AMSL) wind speeds in both WEAs are
shown in Figure 5.1. Wind speeds at hub-height in these areas average around 8-10 m/s,
with strong gusts reaching 25-30 m/s. These wind speed attributes are desirable to wind
energy developers, as the technically viable lower limit for offshore wind speeds is 7 m/s for
the current performance standards of offshore wind turbines [141] and the cut-out speed is
roughly 25 m/s.

Humboldt Morro Bay
0.08 0.08
0.07 _ 0.07
0.06 ‘_—‘ M 0.06 \
>
C'0.05 | \ 0.05 N
S _
§0.04 \- 0.04 \ N
T 0.03 0.03
0.02 - 0.02
0.01 0.01
0.00 t 0.00 - } -
0 10 20 30 0 10 20 30
100-m AMSL Wind Speed [m/s] 100-m AMSL Wind Speed [m/s]

Figure 5.1: 100-meter AMSL wind speed frequency distributions in the Humboldt and
Morro Bay WEAs. The data for Humboldt runs from October 2020 to January 2022 with
data missing February through May. The data for Morro Bay runs from September 2020 to
October 2021.
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The curve over the data in Figure 5.1 is the Weibull distribution, which describes the the-
oretical wind speed probability distribution. Wind energy developers often use the Weibull
distribution to inform the design and projected generation capacity and costs of their tur-
bines. The curve is fit to each location’s data using the maximum likelihood method. In both
locations, the wind speed with highest projected frequency, approximately 6-7 m/s, does not
match the expected distribution shape. This is to demonstrate that more sophisticated
methods are necessary to accurately model even general hub-height wind characteristics in
these areas.
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Figure 5.2: 100-meter AMSL wind direction distributions in the Humboldt and Morro Bay
WEAs. The dates of the source data are the same as Figure 5.1 above. (Satellite imagery
adapted from Google Earth).

Average hub-height wind direction is obtained from the LiDAR data and shown in Figure
5.2. Hub-height winds hail predominantly from the north in the Humboldt WEA and from
the northwest in the Morro Bay WEA. The occurrences of wind direction reversal, visible
in the Humboldt windrose, take place in October through December, though other aspects
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of the seasonal wind direction pattern may be missing due to the data gap from February
through May.

Prediction of hub-height wind direction is excluded from this analysis for two main rea-
sons. The first reason, as shown above, is that hub-height wind directions in both locations
demonstrate a generally unidirectional nature, whereas wind speed appears to be a more dy-
namic dependent variable for evaluating machine learning wind modeling capabilities. The
second reason is the long-term miscalibration of the surface wind vane and surface anemome-
ter on the Morro Bay buoy. Surface wind direction measurements from the Morro Bay buoy
are yet to be corrected in the published data. Therefore, wind direction is not included as
a predictor variable in this study. As surface wind direction would likely be vital predictor
data for estimating hub-height wind direction, wind direction is also not a part of the depen-
dent variable of this study (i.e. predictions are made for wind speed but not wind velocity).
In any case, the exclusion of wind direction does not detract from the value of information
gained in this study, as the yaw system built into wind turbines is designed to orient the
rotor toward these generally unidirectional winds.
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Figure 5.3: Average interseasonal wind speed profiles from 40 to 250 meters AMSL in the
Humboldt and Morro Bay WEAs.

The LiDAR instrument data from 40 to 250 meters AMSL provide surface ABL wind
speed profiles across seasonal timescales. The profiles displayed in Figure 5.3 were created
using a 30-day window rolling average of wind speeds at each elevation. A 30-day window is
chosen to best display the average wind speed trend over a month of data at a time, while
also being short enough to exhibit differences between seasons. The irregular signatures
appearing above 175 meters may be due to a higher ratio of missing data at these heights.
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Less consistent data at higher elevations is an inherent drawback of LiDAR wind monitoring,
as signal-to-noise ratios from these heights are more likely to be of lower quality and result
in data infidelity.

Clear seasonal signatures of increased wind speed occur in springtime months at the
Morro Bay site, with the subsequent profile minima occurring in the summertime months.
The seasonal wind speed profile variation in Humboldt is less clear due to the large volume
of missing data. However, from the available data, the annual wind speed pattern appears
dissimilar between Humboldt and Morro Bay, as the magnitude of wind speeds in Humboldt
are not nearly as low as those in Morro Bay in the summer and fall months.

The differing seasonal wind speed patterns between these two Pacific OCS locations pose
a potential problem for accurate spatial extrapolation of machine learning algorithms from
their training locations. This is because machine learning algorithms used for time-series
forecasting and prediction may pick up on these long-term seasonal patterns and incorrectly
apply these assumptions to the testing location. The ML predictions in this study are likely
less prone to these types of errors, as they are trained on data no longer than a month instead
of across seasonal timescales. This consideration is more important for future studies of the
Pacific OCS wind resource that may use multiseasonal data from one location to perform
wind prediction or forecasting at another location.

5.2 Selection of Predictor Variables

The purpose of this section is to demonstrate the correlations between certain surface vari-
ables and hub-height wind speeds. Establishing correlation is necessary for choosing predictor
variables that will likely exert weight on the predictive decisions made by an ML algorithm.

5.2.1 Surface Wind Speed

For both WEAs in Figure 5.3, the positive vertical gradient of wind speeds present at nearly
all timepoints in the collected data indicates some correlation between surface wind speed
and hub-height wind speed. Basic characteristic surface wind speed frequencies are displayed
in Figure 5.4, where the “surface” is measured at 4 meters above mean sea level. In both
locations, these wind speeds are markedly lower on average than hub-height wind speeds
and rarely exceed 20 m/s.
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Figure 5.4: 4-meter AMSL (“surface”) wind speed frequency distributions in the Humboldt
and Morro Bay WEAs. The dates of the source data are the same as Figure 5.1 above.
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Figure 5.5: Vertical wind shear frequency distributions in the Humboldt and Morro Bay
WEAs. Vertical wind shear quantifies the variation in average horizontal wind speed over
a difference in altitude. Shear is measured between horizontal wind speeds at 4 and 100
meters AMSL. The dates of the source data are the same as Figure 5.1 above.
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The connection between wind speeds at surface and hub-height is explored in Figure
5.5. Vertical wind shear measures the variation in wind speed over a difference in altitude,
which in this case is 96 meters between measurement locations. Vertical wind shear can be
used to characterize the wind profile across the rotor-swept area, and the degree of shear is
important for wind energy developers to estimate average power density and rotor fatigue
loads [142]. Equation 5.1 shows the simple calculation of average vertical wind shear at each
timepoint.

V2 — U1
s =

hy— My

(5.1)

The frequency distributions of vertical wind shear quantify the primarily positive wind
shear in both locations, which ranges generally from -0.03 to 0.1 s~'. The pronounced shear
frequency profile, especially that of Morro Bay, suggests a relationship between surface and
hub-height wind speeds, in which the variation with increasing altitude is most frequently
positive and relatively small. In other words, the primarily positive values and distinct peak
shape of the shear profile indicate that covariance between the two wind speed parameters is
not random. Surface wind speed is thus considered a favorable input variable for training the
ML algorithms to predict hub-height wind speed. The importance of surface wind speed for
hub-height wind speed prediction can also be inferred from historical usage of the power law
and logarithmic profiles, which in their simplest forms only rely on wind speed measurements
from a near-surface reference height.

5.2.2 Air & Sea Surface Temperature

Air-sea temperature difference shows a clear seasonal diurnal signature in both WEAs, as
can be seen in Figure 5.6. The periods from 3:30 to 15:30 UTC (8:30 PM - 8:30 AM PST
during daylight savings time or 7:30 PM - 7:30 AM PST otherwise) are shaded in light blue to
indicate approximate nighttime conditions, and approximate daytime conditions are shaded
in light red from 15:30 to 3:30 UTC (8:30 AM - 8:30 PM PST during daylight savings time
or 7:30 AM - 7:30 PM PST otherwise).

As the heat capacity of air is lower than that of water, air-sea temperature difference
generally drops at nighttime as the air cools faster than the ocean, then increases again as
air heats faster than the water in warmer daytime conditions. Air-sea temperature difference
is primarily negative in wintertime months as the average air temperature generally drops
below the ocean temperature in both offshore locations. Unstable and convective atmo-
spheric conditions commonly occur when the water surface temperature is higher than the
air temperature, though stability is also affected by other factors including wind speed and
humidity [143].
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Figure 5.6: Average diurnal cycles of air-sea temperature difference by month in the Hum-
boldt and Morro Bay WEAs. Red and blue background coloration refers to approximate

local daytime and nighttime conditions.

Humboldt WEA.

Data is missing February through May for the

A weak positive correlation between air-sea temperature difference and 100-meter AMSL
wind speeds can be observed in Figure 5.7. These correlations are generally stronger when
data is separated on a monthly basis due to the different ABL stability and wind speed
patterns occurring throughout the year, but month-by-month scatter plots are omitted for
visual simplicity. This finding underscores the potential predictive power of sea surface
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temperature (SST), air temperature, and difference between them, as well as the best practice
to include time of year as an ML predictor variable if train-test datasets span multiple
months. However, as the ML algorithms in this study are trained and tested on a single
month of data at a time, these three variables are included as predictors of hub-height wind
speed without a requisite month-of-year variable associated.
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Figure 5.7: Correlation between 100-meter AMSL wind speeds and air-sea temperature
difference values in the Humboldt and Morro Bay WEAs. Note that these correlations
smooth over the generally stronger relationships exhibited on a monthly basis.

5.2.3 Surface Atmospheric Pressure

Winds are generated from differences in atmospheric pressure between two locations. Though
the pressure differential between each WEA and nearby locations would be a more ideal
parameter to correlate with wind speed, predictor variables in this study are constrained to
local surface-level measurements. Thus, surface atmospheric pressure at the buoy locations
is correlated to hub-height wind speed. Results are displayed in Figure 5.8.
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Figure 5.8: Correlation between 100-meter AMSL wind speeds and surface atmospheric
pressure values in the Humboldt and Morro Bay WEAs. Note that these correlations smooth
over the generally stronger relationships exhibited on a monthly basis.
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A weak negative correlation between surface atmospheric pressure and 100-meter AMSL
wind speeds can be observed, with near-zero overall correlation exhibited in the Morro
Bay site. However, similar to the air-sea temperature difference patterns discussed above,
in most cases correlation strength increases and sometimes even reverses upon evaluating
month-by-month data. Surface atmospheric pressure is thus considered a potentially valuable
micrometeorological component to include in the suite of predictor variables for ML training
and testing.

5.2.4 Time of Day

Diurnal patterns of wind speeds at 100 meters AMSL in both WEAs are illustrated in Figure
5.9. Hub-height wind speeds exhibit clear diurnal signatures year-round in the Morro Bay
location, while more stochastic variation is present at the Humboldt site between different
months. The day and night coloration corresponds to the same times as Figure 5.6 above.
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Figure 5.9: Average diurnal cycles of 100-meter AMSL wind speed by month in the Hum-
boldt and Morro Bay WEAs. Red and blue background coloration refers to approximate
local daytime and nighttime conditions. Data is missing for February through May for the
Humboldt WEA.
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The different diurnal wind speed patterns during July, August, and September in the
Humboldt data may be due to larger shifts in the relative strengths of land and sea breezes
across seasons. Without complete seasonal data, however, investigation of this phenomenon
and its effects on offshore wind prediction is left for future study. The generally reliable
diurnal patterns of hub-height wind speed across most parts of the year signify that the time
of day is a relevant predictor variable for the ML algorithms.

5.3 Atmospheric Stability Calculations

5.3.1 Stability Classification

The dimensionless height parameter, z/L, was obtained from bulk Richardson number cal-
culations and application of Monin-Obukhov stability theory. This methodology is hereafter
referred to as the “profile method.” z/L approaching zero indicates neutral atmospheric
conditions, while positive and negative values indicate more stable or unstable, respectively.

Figure 5.10 shows the z/L probabilities from each 10-minute average datapoint over the
entire deployment period. Both probability distributions exhibit a slight negative skew, indi-
cating a relatively higher ratio of unstable conditions to stable conditions in both locations.

Humboldt Morro Bay

° 40 40 I
!

30 1 30 1

=

>

S

© 20 20

[=]

2

5 10 10

©

o]

j

=8

0 01— ;

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
z/L zZ/L

Figure 5.10: Probability distributions of calculated z/L using the “profile method”. Cal-
culations are based on all available, complete 10-minute data from October 2020 through
January 2022.

Stability conditions can be labeled by respective Obukhov length L for each timepoint,
as categorized in Table 4.3 in the Methods section. Percentages of data in each atmospheric



CHAPTER 5. RESULTS & ANALYSIS 48

stability class are given in Table 5.1. Both the Humboldt and Morro Bay WEAs primarily
experience unstable atmospheric conditions. The Morro Bay ratios are more meaningful
as they represent a full year of near-complete data, while the Humboldt data may exert
inherent bias toward summertime and autumnal conditions, considering the absence of data
from February through May. These categorizations are important for identifying conditions
which correlate with larger model uncertainty and error.

Study Location % Unstable % Neutral % Stable
Humboldt 46.8 20.1 33.1
Morro Bay 59.4 24.1 16.5

Table 5.1: Percentage classification of atmospheric stability conditions in the Humboldt
and Morro Bay WEAs. The classification scheme, based on the value of Obukhov length L,
is detailed in Table 4.3.

5.3.2 Performance Against COARE 3.6 Algorithm

Calculations of z/L and atmospheric stability are cross-referenced with a more advanced
algorithm to assess the validity of the approach. The more sophisticated method, known as
the COARE 3.6 bulk algorithm, was performed by PNNL on hourly data from 10/01/2020 to
09/30/2021 to calculate z/L and published for public use. The COARE algorithm computes
bulk air-sea fluxes and associated fluxes including wind stresses using an iterative approach
with a large array of ambient physical parameters as inputs. Supplemental input data from
outside the DOE LiDAR buoy project was sourced for application of the COARE algorithm
to the Pacific OCS WEAs. The COARE bulk algorithm is described in further detail in
Fairall et al. (2003) [144].

Direct comparisons between the calculated z /L of this study (obtained through the “pro-
file method”) and the COARE algorithm are shown in Figure 5.11. Comparison is limited
to the hourly time points within the one-year date range of the available COARE algo-
rithm data. There are relatively fewer data points for Humboldt due to the DOE buoy
decommissioning for four months in early 2021.

For the z/L comparison, the Spearman correlation coefficient (p) is used instead of R? or
normal linear regression since the data is highly concentrated around zero and non-normally
distributed. The Spearman coefficient indicates how well a monotonic function can be applied
to the relationship of the variables, ranging from -1 (perfect negative monotone function) to
1 (perfect positive monotone function). p in both cases is significant and p-values are zero,
demonstrating good agreement between the two approaches.
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Figure 5.11: Comparison of z/L calculated using the profile method versus the COARE 3.6
algorithm run by PNNL. Only data with exact matching timestamps between the two result-
ing datasets are compared, which consists of hourly data from 10/01/2020 to 09/30,/2021.
A linear relationship with slope = 1 signifies identical results from the two methods. p is
the Spearman correlation coefficient.

Discrepancies between the approaches are most concentrated under highly stable con-
ditions, in which the profile method appears to slightly underestimate z/L compared to
COARE 3.6. Assuming the COARE method provides a more reliable ground truth than
the profile method, the profile method may have a slight bias of classifying stable conditions
toward neutral.

Overlapping histograms of z/L in Figure 5.12 illustrate the small differences in atmo-
spheric stability classifications between the two methods. The profile method leans slightly
toward unstable classification compared to COARE and, as expected from Figure 5.11,
slightly underestimates occurrences of stable conditions. The large number of inputs and
equations involved in the COARE algorithm render it difficult to trace the main causes of
these numerical discrepancies without more intensive analysis. It is likely that the handling
of temperature data in COARE, which includes adjustments based on air temperature in-
strument height and corrections for interfacial SST, affects the calculated air-sea temperature
difference and thus the predicted stability outcome. Overall, classification is in good agree-
ment between the two methods, but the small skew of the profile method toward unstable
conditions should be noted when analyzing further results.
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Figure 5.12: Probability distributions of z /L calculated using the profile method versus the
COARE 3.6 algorithm run by PNNL. Only data with exact matching timestamps between
the two resulting datasets are compared. Overlap is displayed by purple coloration.

% Unstable % Neutral % Stable

Profile COARE | Profile COARE | Profile COARE
Humboldt | 37.2 33.1 20.5 21.9 42.3 45.0
Morro Bay | 58.7 53.4 24.8 28.1 16.5 18.5

Table 5.2: Percentage classification of atmospheric stability conditions in the Humboldt
and Morro Bay WEAs. Percentages differ slightly from above in Table 5.1 since only data
with corresponding COARE calculations are considered. The classification scheme, based
on the value of Obukhov length L, is detailed in Table 4.3.

5.4 Prediction Performance & Comparison

5.4.1 Variable Importance

Random forest provides a measure of variable importance (VI) by calculating the increase
in mean squared error (MSE) when each input variable is randomly permuted. Figure 5.13
illustrates that the significant majority of prediction power is sourced from the 4-meter wind
speed, exerting over 90% VI. Out of the three temperature parameters, air-sea temperature
difference demonstrates more predictive power than the values of air temperature or SST
alone.

Despite a clear diurnal signature of 100-meter wind speed for most months of the year,
displayed in Figure 5.9, the combined sine and cosine components of the time of day exert
the least predictive power out of all considered features. This result does not mean that time



CHAPTER 5. RESULTS & ANALYSIS o1

of day is insignificant to predicting hub-height wind speed. It is likely that RF inherently
reduces the importance of the time of day sine and cosine components (which encode unique
times of the day only when considered together) since the regression trees split only one
feature at a time. It is also possible that the 100-meter wind speed pattern correlated to
the time of day may be more precisely encoded by the pattern of surface wind speed and/or
air-sea temperature fluctuations.

Variable Importance from Random Forest
Surface Wind Speed &
Air-Sea Temperature Difference

ssT

Air Temperature

Atmospheric Pressure
I Humboldt Training Data
Time of Day Morro Bay Training Data

0 20 40 60 80
Variable Importance [%]

Figure 5.13: Variable importance (VI) of each input feature, calculated automatically via
random forest regression.

The obtained VI implies that the S-C Log Law utilizes the two most important param-
eters (surface wind speed and air-sea temperature difference) for extrapolating hub-height
wind speeds from surface measurements. This importance is relative to the seven predictors
considered in this study and omits an exhaustive search of other possible predictor variables,
such as significant wave height, surface current strength, and wind direction. Assessment
and intercomparison of model performance will determine the sufficiency of using only these
seven features to obtain accurate predictions of 100-meter AMSL wind speeds.

5.4.2 ML Prediction Samples

Figure 5.14 visualizes samples of the three ML algorithms’ performance on the same subset
of testing data. Predictions are shown in separate graphs to improve visual clarity. Across
all three methods’ predictions, the hourly fluctuations and multi-day trends of hub-height
wind speed are well-represented. The relative accuracy of each model over these dates is not
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easily inferrable due to the varying lengths and instances of prediction inaccuracies between
the three methods.
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Figure 5.14: Samples of ML predictions of 100-meter AMSL wind speeds in the Humboldt
WEA from 2021/07/30 - 2021/08/04. Algorithm training was conducted on roughly one
month of preceding data from the Morro Bay WEA. The confidence interval computed by
GPR is shaded around the mean prediction function.

The 95% confidence interval (CI) calculated over the underlying functions of GPR is
displayed in the second graph of Figure 5.14. The CI narrows around higher-confidence
predictions, but is always nonzero due to the multitude of possible underlying functions and
the inclusion of a noise kernel. The reliability of the Gaussian process regression is highly
dependent on the selection of the covariance function, which must be specifically tuned to
the nature of patterns in the target variable.
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The first half of the displayed data in the GPR sample, where some of the observational
data falls outside of the confidence interval, highlights important considerations to make
when using GPR. The likely cause of the large deviation from observational data is a model
limitation around capturing longer-term temporal trends. This is inferred from the superior
performance of LSTM in this particular time span, whose main advantage over the other
algorithms is the “memory” component for long-term chronological patterns. It is possible
that the performance of RF and GPR in this instance could be improved by longer training
time, or for GPR specifically, more trial-and-error fine-tuning of the kernel.

The case-specific needs presented for RF and GPR prediction improvement decrease
confidence in the spatial extrapolation capabilities of both methods for wind speed modeling.
However, a relevant consideration is the vast spatial extrapolation between the training and
testing sites performed in this study, which is 631 km (341 miles) between the Humboldt
and Morro Bay WEAs. It is probable that model performance would improve using a
relatively shorter distance between training and testing sites, which would likely be the case
in practical offshore wind energy applications of these models. Further studies testing these
models across shorter distances of the Pacific OCS would be helpful for understanding the
impact of offshore spatial extrapolation extent on prediction accuracy, but this is currently
not possible with the limited available data.

5.4.3 ML Performance vs. Stability-Corrected Logarithmic Law

A comparison of the ML methods against the S-C Log Law on a slice of hourly Morro Bay
test data from 2020/12/25 - 2020/12/27 is displayed in Figure 5.15. The S-C Log Law
demonstrates similar performance to the ML techniques, and in some instances provides the
most accurate predictions to the LIDAR data. Most similar in performance to the S-C Log
Law are LSTM and GPR, which generally exhibit inaccuracies in conjunction with those of
the S-C Log Law.

Figure 5.15 illustrates one of the speculated shortcomings of employing RF for wind
prediction, which is smoothed predictions of stochastic wind speed extremes. Though the
RF predictions respond to patternal wind speed changes, the mean absolute error is relatively
highest for the majority of time points. This limitation can be attributed to the inherent
process of regression tree averaging in RF, which makes the method robust to outlier data,
but also less capable of extrapolating anomalous wind events unforeseen in the training data.

The discussion thus far has focused only on model performance over small portions of test
data. Generalized model performance is assessed through averaging the performance of each
model across the six testing datasets. Figure 5.16 displays the average hourly 100-meter wind
speeds across the diurnal cycle, with each prediction series normalized to the respective mean.
The generalized offshore wind speed trend is again observable, with reductions induced by
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Figure 5.15: Sample comparison of ML predictions of 100-meter AMSL wind speeds versus
values calculated from the stability-corrected logarithmic law. The testing data subset is from
the Morro Bay WEA from 12/25/2020 to 12/27/2020. ML algorithm training was conducted
on roughly one month of preceding data from the Humboldt WEA.

the more stable nighttime conditions beginning around 5 UTC and increased speeds brought
about by convective daytime conditions beginning around 18 UTC.

The view of normalized wind speed per hour of the day elucidates some important aspects
of model performance. RF demonstrates significant error across all parts of the diurnal cycle.
In both locations, the RF model tends to underestimate hub-height wind speeds in nighttime
conditions and overestimates speeds in the daytime. Besides some distinctions in bias at
certain parts of the diurnal cycle, individual model performance between the two locations
appears to be relatively similar. This result is promising in that it implies model performance
is not hugely dependent on the offshore training location, but rather the inherent proficiency
and applicability of individual model architecture.

The key performance metrics for each model are displayed by the bar graphs in Figure
5.17. The bars correspond to the “MOR-HUM”, “HUM-MOR”, and S-C Log Law columns in
Table 5.3. Table 5.3 also shows the average runtime of training and testing each algorithm
over the six datasets. RF has the longest average runtime due to the computationally-
intensive process of training data subsetting and regression tree fitting. Though the number
and depth of trees could be manually lowered to improve the runtime, prediction accuracy
would likely degrade as a result. GPR delivers a moderate average runtime, likely on partial
account of using only seven predictor variables and conducting dimensionality reduction on
these variables with PCA. Training and testing of LSTM over the six datasets takes the
shortest amount of time, averaging to just over two minutes. Computations were run on a
4-core processor with 1.5 GHz base speed and 32 GB RAM. The speed of the algorithms



CHAPTER 5. RESULTS & ANALYSIS 55

gl.zo Humboldt 120 Morro Bay
5 1.151 1.151
O
2 1.101 1.10
V)]
2 1.05 7204 1.05]
2
£ 1.00 1.00
8 0.951 0.95/
—
§ 0.90 0.90
' 0.85] 0.851
£
S 0.80 : ‘ ’ - 0.80 : ‘ ‘ -
= 0 5 10 15 20 0 5 10 15 20
Hour of Day (UTC) Hour of Day (UTC)
—— Observations —— RF GPR —— LSTM ---- S-C Log Law

Figure 5.16: Comparison of observed and predicted diurnal averages of normalized 100-
meter AMSL wind speed. The ML prediction data are only from runs using different train-
test locations (i.e. the Humboldt predictions are made from algorithm training on Morro
Bay data, and vice versa). All averages are drawn from the times corresponding to the six
sets of testing data, as detailed in Table 4.2. Red and blue background coloration indicates
approximate local daytime and nighttime conditions.

could be augmented by parallelizing computations or running a multinodal application.

Inferences made about RF performance from Figures 5.14, 5.15, and 5.16 are substan-
tiated by the calculated error metrics. c¢cRMSE, which represents unbiased model varia-
tion around the mean, is highest for RF in both locations and descends in the order of
GPR, LSTM, and S-C Log Law. The previously discussed subsamples of testing perfor-
mance demonstrated the relatively large inaccuracies of RF and its insufficiency for deriving
stochastic wind speed variations. The R? values for RF are correspondingly the lowest, in-
dicating the poorest relative fit to the observed data, and values for EMD are the highest,
evidencing a large difference between the predicted and actual probability distributions of
100-meter AMSL wind speed. Moreover, most of these RF error metrics do not substantially
improve even when training and testing are conducted in the same location. Based on its
many aspects of large prediction error, RF is deduced to be the least effective method for
extrapolating Pacific OCS offshore hub-height wind speeds out of the techniques considered.

Relative to the four methods included in the study, GPR demonstrates average perfor-
mance across the board, though its error metrics are much more similar in magnitude to

those of LSTM and S-C Log Law than RF. Though the MSE of GPR is larger than that of
LSTM and S-C Log Law, this facet of prediction error is counterbalanced by comparatively
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Figure 5.17: Site-specific error metrics of the MLL methods” and the S-C Log Law’s pre-
dictions of 100-meter AMSL wind speed. The ML prediction data used are only from runs
using different train-test locations.

similar or lower prediction bias. GPR also demonstrates improvement in almost all perfor-
mance metrics when trained on its same testing location and obtains an RMSE within +0.1
m/s of the S-C Log Law predictions. GPR is considered a promising method for Pacific OCS
wind prediction for offshore energy purposes, especially notable for its inclusion of confidence
intervals for every timestep prediction.

LSTM is the most similar in cRMSE to S-C Log Law and demonstrates smaller magni-
tudes of bias than the S-C Log Law. LSTM attains extremely similar performance metrics
with S-C Log Law in terms of cRMSE, R?, and EMD. The results of LSTM are impressive
when regarding the fact that training and testing took place over 631 kilometers of extrap-
olation distance. When trained and tested in the same location, LSTM produces superior
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performance over the S-C Log Law for almost all error metrics.

The LSTM results illuminate the importance of accounting for chronological wind se-
quence patterns and stochastic wind events within intelligent learning approaches to wind
prediction. The performance of LSTM also highlights that additional training data or input
variables are not necessarily imperative for attaining ML wind prediction results similar or
better than those of the S-C Log Law, which are suppositions that could be drawn if analysis
were limited to RF and GPR alone. LSTM demonstrates overall powerful performance for
Pacific OCS hub-height wind prediction, and it is the best of all considered methods for local
wind speed extrapolations.

5.4.4 ML Train-Test Data Considerations

The data from Table 5.3 indicate that training and testing in the same location generally
improves ML prediction accuracy. A sample of this ML performance improvement is visu-
alized in Figure 5.18. Average RMSE from all six datasets is displayed and correspond to
Table 5.3, but only the slice of December testing data is shown for demonstration purposes.
Training in the same location as test data (i.e. no horizontal spatial extrapolation) improves
model RMSE in all cases except for the RF application to Humboldt data. Average RMSE
decreases by 0.34 m/s for LSTM and by 0.49 m/s for GPR when the train-test location is
the same. Without validation data available at a location between the Humboldt and Morro
Bay sites, there remains uncertainty as to the rate of model performance degradation with
distance from the training location.

In parallel to predictions made using different train-test locations, LSTM produces the
most accurate results out of the three ML algorithms in the same train-test site case. These
conditions produce RMSE of 1.19 and 0.89 for Humboldt and Morro Bay respectively. These
are the lowest RMSE obtained from any extrapolation method used under the standard
procedures of this study, including the S-C Log Law RMSE values of 1.43 and 1.23 for
Humboldt and Morro Bay respectively. It is worth noting that the lowest RMSE obtained
are still nontrivial; an RMSE of 1 m/s represents moderate error by wind energy standards,
and thus it is not valid to treat these LSTM predictions as a validation metric for other
techniques. The main takeaway from these results is that the LSTM architecture has proven
to be capable of making more accurate offshore hub-height wind speed predictions than the
popular and long-established S-C Log Law technique, and in this study demonstrates that
only easily-obtainable surface variables are needed as inputs.

A constraint presented by the DOE buoy data source is the lack of continuous and com-
plete LiDAR and surface variable data. The irregular data availability caused by short and
long-term instrument failures inhibits analysis of each models’ capabilities of incorporating
interseasonal and interannual trends. The longest piece of continuous data in both locations



CHAPTER 5. RESULTS & ANALYSIS 59

runs from the beginning of October to near the end of December. These three months of data
provide one opportunity to test the effect of longer training data length. Figure 5.19 shows
comparisons of approximately one month of training data (as is the case for all train-test
datasets configured for this study) versus the approximate three months of training data,
where both are tested on the same dates at the end of December. The RMSE listed on each
graph are slightly different from those in Table 5.3 as they correspond only to the December
test data.
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Figure 5.18: Differences in ML prediction performance of 100-meter AMSL wind speeds
when using different train-test locations versus same train-test locations. “Avg RMSE”
refers to the RMSE over all six testing datasets, not just the RMSE of the prediction subset
shown.

In all cases except for the GPR-Humboldt predictions, longer training time effectuates
moderate increases in predictive accuracy. Though it was noted earlier that additional
training data is not imperative to obtaining results similar to the S-C Log Law, these results
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demonstrate promise of LSTM’s potential to significantly outperform the S-C Log Law given
longer sequences of continuous training data.
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Figure 5.19: Differences in ML prediction performance of 100-meter AMSL wind speeds
when using approximately one month of preceding training data versus approximately three
months of preceding training data. The ML prediction data used are only from runs using
different train-test locations.

5.4.5 Prediction Dependence on Atmospheric Stability

In Figure 5.20, model error metrics are categorized by the atmospheric stability condition
during which each prediction was made. Across all prediction methods, stable conditions
tend to produce the greatest prediction cRMSE and induce more model bias, especially
evident in the Morro Bay test data. A strong negative bias for stable conditions in Humboldt
and positive biases across all ML algorithms for stable Morro Bay conditions suggests that
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Figure 5.20: Error metrics of the ML methods’ and the S-C Log Law’s predictions of 100-
meter AMSL wind speed, distinguished by the background atmospheric stability condition.
The ML prediction data shown are only from runs using different train-test locations.



CHAPTER 5. RESULTS & ANALYSIS 62

shear profiles between the two locations may diverge under a stable regime. This inference is
corroborated by the significant reduction of bias across all methods in unstable conditions.

An important qualification of the obtained results is the bias in underlying stability
categorization, which was drawn from comparisons between the profile method and COARE
algorithm. Comparisons between the profile method and COARE algorithm demonstrated
a slight bias toward neutral and unstable categorization using the profile method, assuming
COARE data represents ground truth. It is possible that the statistical differences between
unstable, near-neutral, and stable conditions would not be as stark if this bias were corrected.
However, the bias was shown to be small, as only 1-5% of data categorization differs from
the COARE algorithm results, so the trends displayed in Figure 5.20 are considered to be
substantial.

The error magnitudes in RF and GPR lead to similar conclusions as before about the
fidelity of each model’s predictions. RF demonstrates the lowest R? and highest cRMSE
and EMD across all regimes and thus remains the least robust method tested. GPR again
performs between RF and LSTM across most error metrics, with exceptions of similar or
lower bias compared to LSTM under unstable and near-neutral conditions. GPR is consid-
ered especially useful for its confidence estimates but is not recommended as a standalone
model for Pacific OCS hub-height wind prediction.

The differences between Humboldt and Morro Bay metrics in Figure 5.20 present ambi-
guity in determining which method proves most robust to atmospheric stability conditions.
LSTM and S-C Log Law both exhibit their lowest respective cRMSE under near-neutral
conditions, in which both achieve values of less than 1 m/s in Humboldt and less than 0.5
m/s in Morro Bay. The cRMSE increases more for LSTM compared to S-C Log Law in
unstable conditions. Comparative performance in terms of bias is inconclusive, as values do
not show clear trends across the testing sites. S-C Log Law produces lower EMD values than
LSTM (i.e. more similar probability distribution to the actual wind speeds) except for stable
cases in Humboldt. In gross terms of performance metrics, the S-C Log Law demonstrates
a slight advantage over LSTM, but differences are not significant or consistent enough to
substantiate a clear recommendation.

5.4.6 Turbulence Intensity

Intelligent learning methods for wind prediction provide two inherent advantages over clas-
sic physical law extrapolation techniques. Firstly, many of these intelligent methods are
able to provide short-term forecasts. In other words, once trained, learned patterns can
be extrapolated forward in time without additional inputs of training data. Forecasting is
outside of the current scope of this study, but is a pertinent topic of future research for
Pacific OCS wind energy purposes. Secondly, these ML methods are not restricted to pre-
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dicting vertically-extrapolated wind speeds, as are the S-C Log Law and power law. Any
environmental feature of interest can be predicted, with accuracy dependent on the skill of
the model, the selection of predictor variables, and the natural correlation or stochasticity
of the feature compared to the selected predictors.

For example, another important aspect of the wind resource to wind energy developers
is turbulence intensity (TI), which represents the strength of wind velocity fluctuations. TI
is important for assessing potential mechanical fatigue on wind turbines. TI of 100-meter
winds is gathered from the LiDAR data by calculating the ratio of standard deviation of
fluctuating wind velocity to the mean wind velocity. Calculation of T is shown in Equation
5.2, where «' is the root-mean-square of the turbulent velocity fluctuations and U is the
mean velocity.

\/%(u;f + u;f + u’?)

Uz+U;+U?

TT at 100 meters AMSL is predicted using the same inputs and ML model configurations
as for 100-meter wind speed prediction. Results for normalized TI are displayed in Figure
5.21, and performance metrics are listed in Table 5.4. Normalized results are shown instead
of individual predictions to demonstrate whether the models capture the trend in TT over
the diurnal cycle; further input and model tuning would be appropriate before conducting
more detailed assessment of prediction results. The procedures used for modeling TT in this
case were tuned for prediction of wind speed and were not tested for relevance to patterns in
TI. Thus, results are expected to have more prediction error than those for 100-meter wind
speeds. Note that TI is a percentage and the range of values (between 0 and 1) is more
limited than that of wind speed.

TI = (5.2)

Patterns in TI are predicted to varying degrees of success between the ML algorithms
and test locations. However, based on the generally low R? values, none of the ML methods
attain a significant degree of accuracy. This result is expected because of the lack of feature
correlation analysis for TT and demonstrates the importance of examining a wider range of
possibly relevant surface variable predictors.

Despite low prediction accuracy, especially to that of the Morro Bay test data trained
on Humboldt data, similar trends to the 100-meter wind speed predictions emerge. LSTM
predictions achieve the lowest RMSE and cRMSE for both cases of same train-test location
and different train-test location. Using the same train-test location again lowers the majority
of prediction error metrics across all models. The smallest RMSE value attained is from
employing LSTM on the same train-test location data, for which it produces an RMSE
of 6% in both sites. Overall prediction accuracy of the three ML algorithms, akin to the
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wind speed predictions, can be hierarchized as LSTM, GPR, and RF from highest to lowest
proficiency. With further tuning of the models and input features, it is possible that one
or more of these models could be capable of achieving accurate real-time and forecasted
TT estimates at turbine heights. This exploration of TI prediction emphasizes a primary
advantage of using intelligent learning methods: they can be adaptable toward estimating
parameters not otherwise obtainable by conventional physical law approaches.
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Figure 5.21: Comparison of observed and predicted diurnal averages of normalized 100-
meter AMSL turbulence intensity (TT). All averages are drawn from the times corresponding
to the six sets of testing data, as detailed in Table 4.3. Red and blue background coloration
indicates approximate daytime and nighttime conditions.
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Chapter 6

Conclusion

As the offshore wind industry continues to gain momentum in the United States, it is imper-
ative to test new methods for turbine-height wind characterization that are specific to the
unique offshore environment and fit the needs of energy developers. Validation of predictive
models for the U.S. West Coast offshore wind arena has been enabled only recently by the
vertically-profiled wind data collected by the two DOE/PNNL scientific buoys. Physical
law approaches and NWP models are presently the standard techniques for wind prediction
in this region, but novel intelligent learning methods offer potential enhancements in site-
specific adaptability, prediction accuracy, and user accessibility. These improvements are
highly valuable to offshore energy developers, who require accurate, efficient, and flexible
wind forecasting methods to provide dependable energy without incurring extraneous costs.

The three ML methods of random forest, Gaussian process regression, and Long Short-
Term Memory neural network were compared against physical law calculations of the stability-
corrected logarithmic law to assess predictive accuracy of hub-height (100 meters AMSL)
wind speeds in two potential offshore wind sites. The input predictor variables for ML
training were constrained to measurements taken at the surface in each offshore location.
Comparisons against the stability-corrected logarithmic law are primarily focused on ML
predictions made at the opposite location of where the algorithm was trained (i.e. algorithm
training on Morro Bay WEA data and testing at the Humboldt WEA, and vice versa). Using
different training and testing locations ensures that model predictions are not overfit to the
training location. However, in this case, the distance between the two locations (631 km) is
likely much larger than the practical spatial extrapolation needed for model applications in
the wind energy industry. The model predictions using different train-test locations in this
study can thus be contextualized as a relative “lower limit” of ML performance for Pacific
OCS offshore wind prediction.

Training and testing was conducted over six datasets, each containing approximately one
month of 10-minute meteorological and oceanic data. Predictor variables included in these
datasets were analyzed for relevance to hub-height wind speed patterns and decided to be 4-
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meter AMSL wind speed, air temperature, SST, air-sea temperature difference, atmospheric
pressure, and time of day. This study omits an exhaustive search of additional variables
that may improve ML predictive accuracy, such as turbulence [145] and wave characteristics
[102].

Performance metrics for each method’s 100-meter AMSL wind speed predictions were
obtained from average performance across the six train-test datasets. The best performances,
generally evaluated from assessing the error metrics of bias, cRMSE, R?, and EMD, were
exhibited by LSTM and the stability-corrected logarithmic law. Random forest produced
the least accurate results and demonstrated notable insufficiencies in predicting stochastic or
extreme wind speed events, likely due to its inherent prediction smoothing from regression
tree averaging. GPR demonstrated slightly lower accuracy than LSTM and the stability-
corrected logarithmic law across most of the error metrics, though predictions were much
more similar to these two methods than those of random forest. Across all methods, stable
atmospheric conditions tended to induce greater magnitudes of cRMSE and bias compared
to neutral and unstable conditions. This result may be due to atypical shifts in the vertical
wind shear profile influenced by stable stratification in the surface ABL.

It is important to note an advantageous aspect of GPR over the other methods, which
is an empirical confidence interval calculated over all predictions. The wind energy industry
often requires uncertainty estimates to forecast different energy production scenarios. Thus,
GPR is considered an especially promising method for offshore wind prediction but requires
further study and model tuning.

It is worth reiterating that the comparative ML performances discussed above are only
from predictions made over a 631 km train-test extrapolation distance. When trained and
tested in the same location, LSTM surpasses the performance of the stability-corrected
logarithmic law for every error metric, and GPR predictions become relatively similar to the
stability-corrected logarithmic law in terms of general accuracy. Using a three-month-long
training time instead of one month similarly augments prediction accuracy for almost all ML
testing cases. LSTM is evidenced to be the most accurate and adaptable method for offshore
wind prediction out of the techniques considered. Overall, LSTM and GPR present similar
or better wind prediction performance than the stability-corrected logarithmic law, which is
a widely-accepted physical law wind extrapolation technique in use by wind researchers and
energy developers. However, these methods still present low-to-moderate prediction error by
wind energy standards, and thus should not be used as validation data for other methods.

ML offers greater flexibility for wind characterization than conventional physical law
methods, as it can be used for predicting other wind parameters and making short-term
forecasts. To demonstrate the former advantage, the 100-meter AMSL wind speed tar-
get variable was replaced with turbulence intensity (TI) at the same height. LSTM again
demonstrated the highest prediction accuracy and RF the lowest, though overall prediction
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accuracy was poorer than predictions made for hub-height wind speeds. It is probable that
the TI prediction results could be significantly improved if model hyperparameters were
tuned to best capture TI patterns and if more predictor variables with specific relevance to
TT patterns were included, but these methodological refinements are left to future study.

Many possibilities exist for optimization of ML offshore wind speed prediction perfor-
mance in this specific study. To amend the disparities in prediction performance across
different atmospheric stability regimes, relevant predictor variables such as the Obukhov
length L and surface TI could be included and compared against the original model runs.
Other potentially relevant surface variables, including wind direction and relative humidity,
were excluded from this study due to data irregularities or infidelity. Given continued data
availability, more surface variables should be included in the train-test datasets and assessed
for importance to model predictions. Additionally, though many ML hyperparameters were
optimized through grid search tuning, some other hyperparameter values and functions were
default selections and not tested for best suitability to wind speed prediction. A more thor-
ough study of optimal ML hyperparameters in the context of offshore wind characterization
would likely enhance the quality of the wind speed predictions.

The data gathered by LiDAR buoys offer novel opportunities for studying and modeling
Pacific OCS offshore winds, but observational data is still extremely limited compared to
most other wind energy development sites. Future deployment of these scientific buoys on the
Pacific OCS will help to overcome the spatial and temporal constraints of the currently avail-
able data. With longer spans of continuous wind data, the ML techniques could be trained
across longer timescales and tested on their ability to capture seasonal wind patterns. More
spatial availability of observed vertical wind profiles between the Humboldt and Morro Bay
WEAs would provide vital information for assessing the degradation of ML performance
over shorter train-test extrapolation distances. Many more opportunities for wind-related
ML research are available through the possibilities of short-term forecasting and prediction
of other wind parameters, such as wind power density and turbulence properties. Other
continuations of this research could be to draw comparisons with NWP models estimates,
such as WREF, and to potentially combine the individual advantages of each ML technique
through use of hybrid modeling. The research presented here determines that intelligent
learning methods, namely LSTM and GPR, can provide more accurate and adaptable pre-
dictions of offshore winds in comparison to a conventional physical law approach. Thus,
these state-of-the-art ML techniques demonstrate great promise for informing the develop-
ment of Pacific OCS offshore wind energy and supplementing the future research needed for
other potential offshore wind areas.
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