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Abstract

Graphical Lasso based Cluster Analysis in Energy-Game Theoretic Frameworks

by

Hari Prasanna Das

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Costas J. Spanos, Chair

Energy game-theoretic frameworks have emerged to be a successful strategy to encourage

energy efficient behavior in large scale by leveraging human-in-the-loop strategy. A num-

ber of such frameworks have been introduced over the years which formulate the energy

saving process as a competitive game with appropriate incentives for energy efficient play-

ers. However, prior works involve an incentive design mechanism which is dependent on

knowledge of utility functions for all the players in the game, which is hard to compute es-

pecially when the number of players is high, common in energy game-theoretic frameworks.

Our research proposes that the utilities of players in such a framework can be grouped

together to a relatively small number of clusters, and the clusters can then be targeted

with tailored incentives. The key to above segmentation analysis is to learn the features

leading to human decision making towards energy usage in competitive environments. We

propose a novel graphical lasso based approach to perform such segmentation, by studying

the feature correlations in a real-world energy social game dataset. To further improve the

explainability of the model, we perform causality study using grangers causality. Proposed

segmentation analysis results in characteristic clusters demonstrating different energy usage

behaviors. We also present avenues to implement intelligent incentive design using proposed

segmentation method.
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1 Introduction

Energy consumption of buildings, both residential and commercial, account for approx-

imately 40% of all energy usage in the U.S. [1]. In efforts to improve energy efficiency

in buildings, researchers and industry leaders have attempted to implement control and

automation approaches alongside techniques like incentive design and price adjustment to

more effectively regulate the energy usage [2]. The heterogeneity of user preferences in

regard to building utilities is considerable in variety and necessitates a system that can

adequately account for differences from one occupant to another. With this in mind, focus

has shifted towards modeling occupant behavior to incorporate their preferences in build-

ing control and automation [3]. The behavior models can then be studied to introduce

initiatives to encourage energy efficient behaviors among the occupants/energy users. Fur-

thermore, the occupants of a building typically lack the independent motivation necessary

to contribute to and play a key role in the control of smart building infrastructure. A

building manager, acting as the connection between energy utilities and the end users, can

encourage participation and energy-efficient behavior among occupants in many ways. One

of the successful methods proposed and improved over the years is a game-theoretic frame-

work, which creates a friendly competition between occupants/users, motivating them to

individually consider their own energy usage and hopefully, seek to improve it to have a

better score/achieve a lucrative incentive in the game [4].

Energy game-theoretic frameworks have proven to be capable of extracting the occupant

behavior and possibly impacting a change in them by engaging the users in the process of

energy management, integrating seamlessly through the use of cyber-physical technology

by leveraging humans-in-the-loop strategy [4]–[6]. Such game-theoretic frameworks can be

thought of as a sensor-actuator system. Through their participation in the game (the sen-

sor), the behavior of users is observed, which then is treated as the input to an incentive

design process (the actuator). The incentives offered can motivate users to improve upon

their energy usage behaviors to achieve better energy efficiency, signifying the importance

of an intelligent incentive design in success of such frameworks. Although all such frame-

works aim to achieve a long term or permanent improvement in the energy usage behaviors

among the users, the aim is seldom achieved after the completion of energy game, mostly

attributed to the lack of an intelligent and adaptive incentive design process. The incentive

design process in prior works is dependent on utility functions of every player in the game,

which is hard to compute as energy game-theoretic frameworks involve participation of a

large number of energy users, and hence often approximated. Instead, the utility/energy

2



usage behavior of the players in such a large scale frameworks can be segmented into a

relatively small number of clusters, and incentives can be designed to tailor each cluster

assuming players in a cluster behave synchronously. Energy utility companies frequently

use such segmentation techniques for optimal planning of demand response, load shedding,

and microgrid applications [7]. We consider the design of a smarter segmentation analysis

as a solution for intelligent incentive design for energy game-theoretic frameworks as the

objective of this research work.

The above goal can be achieved by learning the factors leading to human decision-

making, and using the knowledge to devise a novel agent segmentation method. The

segmentation analysis in an energy game-theoretic framework with high dimensional data

requires powerful yet computationally efficient statistical methods. A possible candidate,

Graphical Lasso algorithm [8], has been widely applied on different scientific studies due to

its sparsity property (`1 penalty term) and efficiency [9], [10]. The potential of Graphical

Lasso can be innovatively combined with player segmentation. Towards this, we enable new

avenues by combining both concepts and applying it on a social game data set [4] to classify

the energy efficiency behaviors among building occupants. We explore the causal relation-

ship between different features of the agents using a versatile tool, Grangers Causality [11],

which leads to a deep understanding of decision-making patterns and helps in integrating

explainable game theory models with adaptive control or online incentive design. With the

advent of explainable Artificial Intelligence (AI), there has been a massive move towards

making statistical models explainable. Thus we propose an explainable, rather than just a

black box model. To summarize, our contributions are threefold:

• Novel segmentation analysis using an explainable statistical model at the core towards

learning agent’s (building occupants) features characterizing their decision-making in

competitive environments.

• Characterization of causal relationship among several contributed features explaining

decision-making patterns in agent’s actions.

• Introduction of possible avenues which can prove beneficial in improving building energy

efficiency by using the proposed segmentation analysis method
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2 Related Work

Energy game theoretic frameworks have enabled an effective platform for incorporating

energy efficient behavior among the building occupants in a smart building. They involve

the important aspect of human participation in building control, otherwise lacking in many

conventional modelling approaches including passive Hidden Markov Models (HMMs) [12].

A number of such frameworks have been introduced over the years [4], [13]–[15], which

have proven to have significant energy conservation during post-game period as compared

to pre-game period.

Incentive designs must be tailored to be suitable for every player, to have an impact on

their behaviors [16]–[20]. For such incentive design, above game-theoretic frameworks rely

on knowledge of utility functions of the players in the game, which is hard to compute in

the scenario of energy game theoretic frameworks due to the complexity and scale. Authors

in [21] propose a nash-equillibrium based approach for utility estimation. In [22], authors

formulate the utility estimation problem as a convex optimization problem by using first-

order necessary conditions for nash equilibria, and then create an affine map along with

energy consumption to derive the utilities. All these methods are hard to scale when the

number of players is high. Instead, we can segment the utilities of players into clusters by

learning features characterizing human decision-making in competitive environments, and

perform an incentive design for the clusters so obtained. We derive inspiration for agent

segmentation owing to the fact that customer segmentation has been successfully utilized

in energy systems [7]. The energy usage behavior exhibited by each player in a cluster is

expected to be similar, which has statistical justification as the number of possible clusters

in the data is computed using clustering algorithms.

Towards this we use high dimensional real-world data. We use the graphical lasso

algorithm as a powerful tool to understand the latent conditional dependence between

variables [8]. This in turn provides insights into how different features interplay among

each other. Historically, Graphical Lasso has been used in various fields of science, ranging

from study of how individual elements of the cell interact with each other [9] and to the

broad area of computer vision for scene labelling [10]. A modified version of the original

algorithm, named time-varying graphical lasso, has been used on financial and automotive

data [23]. However, the novelties of graphical lasso has not been well utilized in the area

of energy cyber-physical systems. We use Granger causality [11] to explain the causal

relationship between the features in energy usage behavior of agents in social game. It
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has been widely used in the energy domain in applications such as deducing the causal

relationship between economic growth and energy consumption [24].

Knitting novel segmentation algorithms and their application to energy game-theoretic

frameworks together, we employ graphical lasso algorithm for customer segmentation on so-

cial game dataset and present an explainable model, helpful both in understanding inherent

factors leading to energy efficiency in buildings and in intelligent incentive design.

3 Methods

3.1 Energy Game-Theoretic Dataset

The dataset used for our work is from an energy social game experiment to encourage

energy efficient resource consumption in a smart residential housing, as introduced in [4].

Authors in [4] designed a social game among occupants of residential student housing

apartments at an university campus. They make use of Internet of Things (IoT) sensors

to allow the occupants to monitor their room’s lighting (desk and ceiling light) and ceiling

fan usage via a personal web-portal account as they participate in the energy social game

for maximizing their incentives. The above game-theoretic framework is modelled under

the umbrella of a multiplayer non-cooperative game. The dataset consists of per-minute

time-stamped reading of each resource’s (desk light, ceiling light and ceiling fan) status,

accumulated resource usage (in minutes) per day, resource baseline, gathered points (both

from game and surveys), occupant rank in the game over time and number of occupant’s

visits to the web portal. It also contains features related to time of day (morning vs.

evening), time of week (weekday vs. weekend) and college schedule feature indicators for

dates related to breaks, holidays, midterm and final exam periods. Additionally, the dataset

incorporates the external weather metrics during the experimental run.

3.2 Trade-off between Supervised/Unsupervised Segmentation

For the purpose of segmentation analysis, both supervised and unsupervised segmenta-

tion methods can be implemented on the social game dataset. Supervised methods require

a label to classify data with similar labels together. For the dataset in hand, the label we

have is the rank of the player in the game, which in turn indicates their energy efficiency

characteristics as compared to other players in the game (i.e. a player with less rank is more

energy efficient). We use rank as the label to classify players into different groups. But,
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such a classification method groups different players together as per their overall rank, and

does not take into account the distribution of their energy efficiency characteristics across

different scenarios such as time. For instance, Figure 1 shows the distribution of cumulative

resource usage (in minutes/day) for a player having low rank (high energy efficiency) and a

player having high rank (low energy efficiency), with some curve smoothing across a dura-

tion of the game period. It can be observed that the high energy efficient player performs

sub-optimally (uses more energy resources) between the times A and B than the low energy

efficient player. In an ideal scenario, for every player, the data samples corresponding to low

energy efficient behavior should be clustered separately than high energy efficient behaviors

so as to have an accurate understanding of the interplay of features governing human deci-

sions for energy efficiency. In this case, unsupervised clustering proves helpful and clusters

together similar behaviors. But in this case, the output of unsupervised clustering is just

a number of clusters with no labelling about the energy efficiency characteristics exhibited

by that cluster. So, to summarize, supervised classification provides insight into an overall

picture of how different classes of energy-efficient players behave, but fails to capture the

distribution of behaviors. On the other hand, unsupervised clustering captures the latter

accurately, but does not provide any information on labels of the clusters generated. This

poses a trade-off between supervised classification and unsupervised clustering methods for

application in energy game datasets.

3.3 Proposed Segmentation Method

The trade-off mentioned in previous section signals to use the novelty of both unsuper-

vised and supervised segmentation together to build an optimal model. Knitting together
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Figure 2: Elbow Plot to choose optimal number of clusters

both the methods via a powerful tool, the graphical lasso algorithm, we present a novel

methodology to perform segmentation in energy game-theoretic frameworks. We employ

the k-means algorithm for unsupervised clustering. First, the optimal number of clusters

in the dataset is derived using elbow method and silhouette scores. An elbow plot is a plot

between the distortion score (a measure of closeness of data points to their assigned cluster

center) vs the number of clusters. The optimal number of clusters is determined to be

corresponding to drastic change in the rate of reduction in distortion score. The elbow plot

for energy social game dataset, obtained in an unsupervied manner is given in Figure 2.

The optimal number of clusters is determined to be 3. We also use another metric, the

silhouette score to confirm the optimal number of clusters. The silhouette score ∈ [−1, 1], is

a measure of how similar an object is to its own cluster compared to other clusters. A high

value indicates that the object is well matched to its own cluster and poorly matched to

neighboring clusters. The silhouette score corresponging to each number of clusters is given

in Table 1. Note that the score is the highest (shaded in blue) for the number of clusters

as 3. Following this, we use Minibatch K-means algorithm with k= 3 (optimal number

No. of Clusters 2 3 4 5

Silhouette Scores 0.684 0.749 0.611 0.540

Table 1: Silhouette Scores for different number of clusters

of clusters in the data) to obtain the clusters. Let the clusters obtained be represented by

C1
unsup, C

2
unsup and C3

unsup. Since the dataset correspond to energy usage behavior of the

players, the three clusters so obtained correspond to high, medium and low energy efficient

behaviors. We then use supervised classification and graphical lasso to label the unsuper-
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Figure 3: Overview of the proposed segmentation method

vised clusters. We divide the players into three classes in a supervised way taking the ranks

of the users as the label.

Let the players be denoted by P1, P2, · · · , Pm and the data points corresponding to

the ith player across time be di1, d
i
2,· · · , dini

. The whole range of ranks were divided into

three equal segments, with the high, medium and low energy efficient rank groups being

RHigh, RMedium and RLow respectively.Let the classes be represented by CHighsup , CMedium
sup

and CLowsup , where the superscripts signify the energy efficiency behavior of each class. We

assign the players to the classes as per the following formula, Pi ∈ CXsup, where,

X = argmax
x∈[low,medium,high]

{ ni∑
j=1

1[rank(dij) ∈ Rx]

}
(0.1)

where 1[ · ] is the indicator function. This allocates each player into one of the three

supervised classes. The behavior of a player in a particular class, e.g. CHighsup represents the

characteristic behavior of players showcasing high energy efficiency. Then the feature corre-

lations in all the supervised classes and unsupervised clusters were studied using graphical

lasso algorithm. Knowledge of feature correlation similarity among members of the super-

vised classes and unsupervised clusters is used to label the unsupervised clusters (C1
unsup,

C2
unsup and C3

unsup) as high/medium/low energy efficient. Finally, the labelled unsupervised

clusters can be further explored for downstream tasks, such as incentive design. The whole

process is illustrated in Figure 3.

4 Graphical Lasso for Energy Social Game

In this section, we formulate a framework towards segmentation analysis that allows us

to understand users decision making model. Specifically, we adopt graphical lasso algorithm

[8], [25] to study the way in which features in a energy game-theoretic framework interplay

among each other.
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Let the features representing the social game data be denoted by the collection Y =

(Y1, Y2, · · · , YS). From a graphical perspective, Y can be associated with the vertex set

V = {1, 2, · · · , S} of some underlying graph. The structure of the graph is utilized to derive

inferences about the relationship between the features. We use the graphical lasso algorithm

[8] to realize the underlying graph structure, under the assumption that the distribution of

the random variables is Gaussian.

Consider the random variable Ys at s ∈ V . We use the Neighbourhood-Based Likelihood

for graphical representation of multivariate Gaussian random variables. Let the edge set of

the graph be given by E ⊂ V × V . The neighbourhood set of Ys is defined by

N (s) = {k ∈ V |(k, s) ∈ E} (0.2)

and the collection of all other random variables be represented by:

YV \{s} = {Yk, k ∈ (V − {s})} (0.3)

For undirected graphical models, node for Ys is conditionally independent of nodes not

directly connected to it given YN (s), i.e.

(Ys|YV \{s}) ∼ (Ys|YN (s)) (0.4)

The problem of constructing the inherent graph out of observations is nothing but finding

the edge set for every node. This problem becomes predicting the value of Ys given YN (s),

or equivalently, predicting the value of Ys given YV \{s}by the conditional independence

property. The conditional distribution of Ys given YV \{s} is also Gaussian, so the best

predictor for Ys can be written as:

Ys = Y T
V \s.β

s +WV \s (0.5)

where WV \s is zero-mean gaussian prediction error. The βs terms dictate the edge set for

node s in the graph. We use l1-regularized likelihood methods for getting a sparse βs. Let

the total number of data samples available be N. The optimization problem is formulated

as: corresponding to each vertex s = 1, 2, · · · , S, solve the following lasso problem:

β̂s ∈ argmin
βs∈RS−1

{
1

2N

N∑
j=1

(yjs − yTj,V \sβ
s)2 + λ‖βs‖1

}
(0.6)

The implementation of Graphical Lasso algorithm is summarized in Appendix.
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5 Results

As has been introduced in Section 3.3, we learn the feature correlations using graphical

lasso algorithm in supervised classes CHighsup , CMedium
sup and CLowsup to obtain the knowledge

about factors governing human decision making towards various (high/medium/low) energy

efficient behaviors.

5.1 Feature correlation learning in supervised segregation

We consider a representative player (selected as the player holding the median rank

in the class) for each of the three classes obtained out of supervised segregation method

described in Section 3.3 to run graphical lasso and study the correlation between the features

for that class. We group the features into different categories so as to study their influence

on energy efficiency behaviors. Specifically, we consider Temporal features like time of the

day, academic schedules and weekday/weekends, External features as outdoor temperature,

humidity, rain rate etc. and Game Engagement features like frequency of visits to game

web portal.

The feature correlations for a low energy efficient player is given in Fig 4. The player tries

to use each resource independently which can be observed in Figure 4(a) with no correlation

between the corresponding resource usage identifiers. There is a positive correlation between

morning and desk light usage indicating heedless behavior towards energy savings. The

absolute energy savings increase during the breaks and finals, given by positive correlation

with total points, but it is not significant as compared to other players during the same

period, thus increasing the rank. External parameters play a significant role in energy usage

behavior of this class. The operation of the ceiling fan is driven by external humidity as

given in Figure 4(b). Figure 4(c) indicates that their frequency of visits to the game web

portal is motivated by sub-optimal performance in the game.

Feature correlations for a medium energy efficient player is given in Fig 5. The player

showcases predictable behaviors with correlations between desk light, ceiling light and ceiling

fan usage (Figure 5(a)). The player co-optimizes the usage by alternating the use of ceiling

and desk light. Different occasions like break, midterm and final are marked by energy

saving patterns. Unlike a low energy efficient player, the player in this class tries to save

energy in a conscious manner shown by reduced fan usage during the morning and reduced

light usage during the afternoon. The fan usage is influenced by the external humidity,
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Figure 4: Feature correlations for a Low Energy Efficient Player (∈ CLowsup )
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Figure 5: Feature correlations for a Medium Energy Efficient Player (∈ CMedium
sup )
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Figure 6: Feature correlations for a High Energy Efficient Player (∈ CHighsup )
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Figure 7: Feature correlations for energy usage behaviors in C3
unsup. The labels ”Total

Points” and ”Rank” are removed for unsupervised clustering.
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Test whether X causes Y Fan ⇒ Ceiling Light Humidity ⇒ Fan Desk Light ⇒ Fan Ceiling Light ⇒ Desk Light Morning ⇒ Desk Light Afternoon ⇒ Fan Evening ⇒ Ceiling Light

Player type p-value F-statistic p-value F-statistic p-value F-statistic p-value F-statistic p-value F-statistic p-value F-statistic p-value F-statistic

Low Energy Efficient 0.54 0.37 0.004 8.12 0.06 3.55 0.81 0.06 0.4 0.71 0.01 6.1 0 25.3

Medium Energy Efficient 0 21.2 0.008 7.06 0 113.6 0 25.8 0.23 1.41 0.46 0.55 0.0007 11.5

High Energy Efficient 0 21.9 0.12 2.36 0.99 0.003 0.93 0.007 0.63 0.22 0.04 4.2 0.52 0.41

Table 2: Causality test results among various potential causal relationships. In bold are the

p-values (shaded in blue) in cases that Granger causality is established through F-statistic

test between features. p-values lower than 0.05 indicate strong causal relationship in 5%

significance level

shown by Fig 5(b). The game engagement patterns for a player in this class (Fig 5(c)) is

similar to that of the low energy efficient class.

Fig 6 shows the feature correlations for a high energy efficient player. This player also

exhibits predictable behavior. Opportunistically, this player saves energy during breaks

and midterms as shown by negative correlation between the corresponding flags and rank

in Figure 6(a). Notice that there exists a negative correlation between midterm flag and

total points, indicating decrease in absolute amount of points. However, the points are

still higher than the points by other players which marks improvement in the rank. This

behavior is completely opposite to what is exhibited by a player in low energy efficient

class. The player is neither affected by the time of the day, nor by the external factors

(Figure 6(b)) showing a dedicated effort to save energy. The game engagement behavior for

this player, given in Figure 6(c) is inconclusive, possibly due to dominance by other energy

saving factors.

5.2 Causal Relationship between features

To ensure the correctness of results in Section 5.1 and to enhance the explainable nature

of our model, we studied the causal relationship between features using Granger causality

test. Granger causality is a statistical test used to determine causal relationship between

two signals. If signal A granger-causes signal B, then past values of A can be used to predict

B for future timesteps beyond what is available for B. The results for causal relationship

study is given in Table 2. Under null hypothesis H0, X does not Granger-cause Y . So, a

p-value lower than 0.05 (5% significance level) indicates a strong causal relationship between

the tested features and implies rejecting the null hypothesis H0.

The p-values (shaded in blue) for which Granger causality is established are highlighted

in the table. Interestingly, for medium and high energy efficient building occupants, ceiling

12



fan usage causes ceiling light usage. This in fact confirms the predictive behavior for them

as mentioned earlier. In both low and medium energy efficient building occupants, external

humidity causes ceiling fan usage. This is an indicator that their energy usage is affected by

external weather conditions. However, for high energy efficient building occupants external

humidity doesn’t cause ceiling fan usage. This shows that they are highly engaged with the

proposed gamification interface and try to minimize their energy usage. Another interesting

result is that the evening label causes ceiling light usage for both low and medium energy

efficient building occupants. But this is not the case for high energy efficient building

occupants, for whom ceiling light usage is better optimized as a result of their strong

engagement with the ongoing social game, eventually leading to exhibition of better energy

efficiency.

5.3 Labelling unsupervised clusters using feature correlation knowledge

from supervised classification

We also learn the feature correlations in clusters obtained from unsupervised clustering

of data in Section 3.3. Based on the feature correlation knowledge gained from different

supervised classes in Section 5.1, we label the clusters as having low, medium or high

energy efficient data. As an illustration, the feature correlations for C3
unsup is shown in

Fig 7. It is evident from Fig 7(a) that data in C3
unsup exhibit predictability in behavior with

correlations between resource usage flags. Also the weekdays are marked by energy savings

in terms of decrease in fan usage minutes. The time of the day is also unrelated to the

performance. Neither do the external factors contribute to the performance (Figure 7(b)).

The engagement in the game also boosts the points (Figure 7(c)). All the above behaviors

are indicative of the similarity between the energy efficiency characteristics manifested by

C3
unsup and the high energy efficient class obtained using supervised segregation (CHighsup ).

So, C3
unsup is labelled as the high energy efficient cluster. Following the same comparison,

C1
unsup and C2

unsup are labelled as the medium and low energy efficient clusters respectively.

To further strengthen our inference, we compute the similarity using Pearson Corre-

lation and RV coefficient [26] between the feature correlation matrices in unsupervised

clusters and supervised classes. Figure 8 showing the result of above operation confirms

our earlier assignment of labels to the unsupervised clusters, i.e. {C1
unsup ∼ Medium En-

ergy Efficient},{C2
unsup ∼ Low Energy Efficient} and {C3

unsup ∼ High Energy Efficient}.
The labelled unsupervised clusters are the final segments that can be used for a number of

downstream tasks as discussed in Section 6.
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CLowsup CMedium
sup CHighsup

C
1 u
n
s
u
p

C
2 u
n
s
u
p

C
3 u
n
s
u
p

0.82 0.88 0.62

0.85 0.81 0.59

0.79 0.86 0.63

Using Pearson Correlation

CLowsup CMedium
sup CHighsup

C
1 u
n
s
u
p

C
2 u
n
s
u
p

C
3 u
n
s
u
p

0.72 0.73 0.62

0.73 0.57 0.53

0.7 0.72 0.7

Using RV Coefficient

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

Figure 8: Similarity between feature correlation matrices. The highest value in each column

is highlighted and corresponds to the matching of supervised classes to the unsupervised

clusters

6 Conclusion and Future Work

A general framework for segmentation analysis in energy game-theoretic frameworks was

presented in this research work. The analysis included clustering of agent behaviors and an

explainable statistical model representing the contributed features motivating their decision-

making. To strengthen our results, we examined several feature correlations using granger

causality test for potential causal relationships. Coupled with the statistical justification and

explainable nature, the proposed method can provide characteristic clusters demonstrating

different energy usage behaviors, following which, specific incentives can be designed for

each cluster.

There are several directions for future research. Our ultimate goal for the segmenta-

tion analysis is to improve the gamification methodology, to simultaneously learn occupant

preferences while also opening avenues for feedback, as static programs for encouraging

energy efficiency are less efficient with passing of time [27]. So, an improved version of

energy social game, similar in structure to that of [4] but with intelligent incentive de-

sign and privacy preserving techniques [28] can be implemented, with building occupants

and managers interaction modeled as a reverse stackelberg game (leader-follower) in which

there are multiple followers that play in a non-cooperative game setting [22]. By leveraging

proposed segmentation analysis, an adaptive model can be formulated that learns how user

preferences change over time, and thus generate the appropriate incentives. Furthermore,

the learned preferences can be adjusted through incentive mechanisms [29] and a tailored

mean-field game approach [30] to enact improved energy efficiency. Above two operations

can be carried out in a tree structure, with segmentation carried out in regular intervals in
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each of the tree branches, as depicted in Figure 9. This can be coherently designed with

other smart building systems [31]–[36], using state-of-the-art ML models for smart build-

ings [5], [37]–[39]. Summing up, this would result in a novel mechanism design, effectively

enabling variation in occupant’s behaviors, in order to meet, for instance, the requirements

of a demand response program. Another line of future work can be to study the delayed im-

pacts of energy social game and design it accordingly to achieve long term energy efficiency,

like a research in same line [40].

Graphical 
Lasso based

Segmentation

Graphical 
Lasso based

Segmentation

Graphical 
Lasso based

Segmentation

t0 t1 t2
Game Period

Pool of 
players

Cluster1 (C1)

Cluster2 (C2)

Treated 
with 

Incentive 
𝓲C1,1

Treated 
with 

Incentive 
𝓲C2,1

Cluster1 (C1)
Treated 

with 
Incentive 

𝓲C1,2

Cluster2 (C2)
Treated 

with 
Incentive 

𝓲C2,2

Cluster3 (C3)
Treated 

with 
Incentive 

𝓲C3,2

Cluster4 (C4)
Treated 

with 
Incentive 

𝓲C4,2

Figure 9: Tree based incentive design mechanism employing proposed graphical lasso based

segmentation method. Clusters are treated with incentives specifically tailored for them.
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