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Abstract

Enclaves in Real-Time Operating Systems

by

Alex Thomas

Master of Science in Electrical Engineering & Computer Science

University of California, Berkeley

Professor Krste Asanovic, Chair

With the growing popularity of edge computing and Internet of Things (IoT) devices, there is
an increased need for secure computation on embedded devices. Typically, embedded devices
have a heterogeneous environment and do not have general security protections compared
to hosts on the cloud. As we see more third-party libraries and applications being run on
embedded devices, we face the risk of system compromise that even the device’s RTOS kernel
cannot protect. There is a need for creating Trusted Execution Environments (TEEs) on
embedded devices; however, many current TEEs have expensive hardware requirements. We
propose using Keystone, a framework for creating customizable TEEs, on RISC-V architec-
tures. The hardware requirement for creating TEEs in Keystone are generally available on
standard RISC-V devices as RISC-V already provides PMP registers, the basis of Keystone’s
isolation. We propose using Keystone with FreeRTOS to implement a module in FreeRTOS
for creating e�cient and dynamic TEEs on embedded devices. We introduce ERTOS, a
new module to FreeRTOS that allows the creation of secure tasks that can be attested and
strongly isolated from other tasks using Keystone’s security monitor. ERTOS exposes an
easy-to-use API that allows developers to create and run enclave-protected tasks. ERTOS
adds negligible performance overhead for computation-intensive tasks inside an enclave and
introduces optimizations to allow inter-task communication to be more e�cient.
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Chapter 1

Introduction

1.1 Security on Embedded Devices

With the rise of Internet of Things (IoT) devices, there is an increased amount of data
being collected, from temperature information to audio input. Because of the ubiquity of
IoT devices, a user will be required to trust more and more devices [18]. Moreover, some of
these devices are critical to the safety of human lives like automobile or medical devices.

Unfortunately, many IoT devices do not put adequate e↵ort into security and have a
wide range of vulnerabilities [13]. We are starting to see attacks targeting embedded devices
today. By using a flying drone, a group of researchers were able to compromise a Tesla vehicle
using a privileged escalation attack on ConnMan, a commonly used embedded application
to manage internet connections [26].

With real-time embedded devices, we are seeing the increased use of third-party applica-
tions like crypto libraries, intrusion-detection software, and more [30]. Large manufacturers
of smart devices like Google [9], Samsung SmartThings [24], and Amazon [1] have all adopted
third-party application support.

To expand in more detail, let us focus on Amazon’s smart devices, Amazon Alexa. Alexa
allows the use of third-party applications using Alexa skills. Alexa Skills extends voice func-
tionalities to specific third-party services. As of 2021, Amazon Alexa has over 100,000 skills
available on their Amazon Marketplace [1]. With over 100,000 third-party applications avail-
able, a strong vetting process is required to protect users from intentional or unintentional
bugs that may be harmful; however, detecting bugs on a third-party application is a di�cult
problem. third-party application with a vulnerability may remain undetected in the vetting
process. In fact, it was found that the vetting process was already insu�cient to detect
developer mistakes for both Google Home and Amazon Alexa for authentication [10].
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1.2 Trusted Execution Environments on Embedded
Devices

With more platforms supporting third-party applications, there is increased need to iso-
late these applications. A general purpose OS would typically use a hardware memory
management unit to provide memory isolation , but in the more resource-constrained envi-
ronment of embedded devices, the memory isolation is ignored for more e�cient performance.

As we move towards a world with more and more edge devices, we must be more cognizant
of the security implications and privacy risks that these devices possess. There is a need for
strong isolation and secure computation on embedded devices. Furthermore, we cannot
rely on the security of the RTOS kernel as previous work found protection measures in place
for the FreeRTOS kernel deficient [19]. Moreover, an application must inherently trust the
large code base of the RTOS kernel. A large privileged code base increases the possibility
of finding a vulnerability in the code. A solution to protect embedded device application
should also isolate the RTOS kernel and should be protected against an adversary kernel.

We also need a method to verify the identity of an application running on an embedded
device. This operation maybe useful to tasks running on an embedded devices to authenticate
each other, or for providing proof to the embedded device manufacturer (i.e. Samsung), that
a device is running the correct software.

We propose using Trusted Execution Environments on embedded devices. This fits our
need for strong isolation and secure computation guarantees. Furthermore, TEEs provide
mechanisms to attest an application to verify that the application running inside a TEE is
not modified and is running on trusted hardware.

1.3 Related Work

There are several hardware back-ends to provide TEEs, but most of them are not suitable
for embedded devices. There are also other memory protection mechanisms that provide
similar security guarantees.

Memory Protection Unit

An existing solution for memory isolation is to use a Memory Protection Unit (MPU)
to protect tasks running on embedded devices. MPUs can be configured to protect the
privileged real-time OS (RTOS) and any non-privileged isolated tasks. MPUs are configured
by the privileged RTOS, so any attack, like privilege escalation attacks, that compromises
the RTOS kernel will render the MPU useless [32]. What we need is a stronger isolation
mechanism where even a compromised RTOS kernel cannot cause harm to our system.
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Software Fault Isolation

Software fault isolation is a form of sandboxing that rewrites an application to perform in
a safe way, ensuring that it only accesses or modifies memory within its own memory space.
The current state of the art solution for SFI, Google’s Native Client (NaCL), reports from a
5% to up to a 9% overhead in performance [31]. One limitation of SFI is that it increases the
code-size of a binary, which can lead to increased instruction cache pressure. Furthermore,
there are other memory overhead issues introduced by guard pages and forced instruction
alignment, which are problematic in a memory-constrained environment [31]. Ideally, we
could run applications with negligible computation overhead while also guaranteeing appli-
cation confinement.

Intel SGX

In the context of embedded devices, Intel SGX is generally not a popular choice for
hardware enforced security due to its significant hardware costs. Intel SGX heavily relies
on virtual memory and its Enclave Page Cache [7]. The Enclave Page Cache holds pages
used specifically for enclaves. The management of these pages are done via the Enclave

Page Cache Map (EPCM), which contains metadata information of an enclave page such
as ownership or page validity. Privacy is guaranteed from the fact that the TLB can only
contain entries of the current enclave. Any address access is protected from the EPCM,
which can detect whether an enclave page lies outside the current enclave’s page range. If
a memory access is to an external enclave page, a modified TLB miss handler will check if
the page can be accessed via the EPCM. This is how SGX rejects memory requests that are
inside an enclave’s memory range.

Intel SGX relies heavily on virtual memory support and any modifications to remove
virtual memory support may result in significant and fundamental changes to the SGX
model. Virtual memory is not a popular choice in real-time operating systems because 1)
the hardware support to allow virtual memory is expensive and 2) having virtual memory
may cause more variability in task completion time, which is simply not suitable in a real-
time context. Because of this, SGX is not suitable to be used in a real-time embedded
systems context.

ARM TrustZone

ARM has their own TEE framework called TrustZone, which partitions memory into a
trusted zone and an untrusted zone. An embedded systems developer can place any privacy
preserving computation inside the Trusted World, thus all components of an application
had to be placed within one zone. Many components are duplicated between the di↵erent
partitions. For example, ARM TrustZone holds two operating systems, one in the Trusted
World and another outside of the Trusted World.
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Figure 1.1: Visualization of ARM TrustZone and Multizone’s IOT framework [21] [22]. Note:
The ARM TrustZone model visualized is specifically Cortex-A

A secure monitor manages switching between the Trusted World and the non-secure
world. The processor uses the non-secure bit in the Secure Configuration Registers to de-
termine whether it is in the secure world or not. Entering from the non-secure world to the
secure world requires a Secure Monitor Call (SMC). Only a privileged mode can execute
a SMC to switch into the secure world [22]. Secure and non-secure isolation is guaranteed
because page table entries have a secure bit, which describes whether the page is accessible
from the non-secure world. Any address translation from the non-secure world will have its
non-secure bit set on, which means any address translation to the secure-world will not be
allowed.

Just like SGX, virtual memory reliance is a limitation to TrustZone and makes it un-
suitable for real-time systems. Furthermore, the design of TrustZone has several limitations.
First, a developer who wishes to modularize their application would find it di�cult to do
so because of the single-zone architecture. A developer would have to put multiple modules
which the application must communicate with in the secure world. This would create a large
TCB that is unnecessary. Furthermore, applications within the same zone cannot isolate
themselves with each other. This is a significant limitation as we may want to use multiple
3rd party applications in our embedded device that may mutually distrust each other. We
provide a diagram of ARM TrustZone’s architecture, specifically Cortex-A, in Figure 1.1 on
the right.
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Multizone’s IOT Framework

There exists a RISC-V based TEE framework called Multizone (created by Hex-5) [21],
which improves upon ARM TrustZone and creates multiple zones for each domain of an
application. Each zone runs with user privilege. Multizone allows developers to create
multiple TEEs that are statically initialized. It introduces a nano kernel, which is responsible
for scheduling zones, accessing IO devices, and handling undelegated interrupts [21]. It allows
modular development and allows mutual distrusting applications to run on the same system.
Di↵erent zones can pass messages to each other securely via the nano kernel.

Multizone does not support dynamic TEE creation; all TEEs must be statically defined
first. This makes Multizone unsuitable for the scenario where an embedded device might
want to download third-party applications from a marketplace like in the case of Amazon
Alexa. We provide a diagram of Multizone’s IOT framework in Figure 1.1 on the left.
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Chapter 2

ERTOS

2.1 Background

Keystone

Keystone is an open-source framework for creating multiple, customized TEEs based
on RISC-V architecture [16]. Keystone uses a privileged Security Monitor (SM), which
is responsible for creating, deleting, and switching into enclaves dynamically. In order to
create TEEs, Keystone utilizes Physical Memory Protection (PMP) registers, which act
as base and bound registers that seal o↵ memory from other entities including the privi-

Figure 2.1: Visualization of Keystone’s Software and Hardware Stack
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leged host OS. These PMP registers are generally available on standard RISC-V machines.
Keystone guarantees the confidentiality and integrity of memory within the enclave. We
provide a visualization of the di↵erent components involved in Keystone in Figure 2.1.
Base Keystone does not protect against physical adversaries as pages aren’t encrypted and
integrity-checked like SGX [7]; however, Keystone does o↵er software-based page encryp-
tion and integrity checks as a module which requires no additional specialized hardware
[Andrade2020SoftwareBasedOM].

RISC-V Privileged ISA

RISC-V provides several privilege levels to provide protection across several layers of the
software stack. Keystone relies on Machine, Supervisor, and User mode [28].

Machine (M) mode is the highest privilege and is responsible for interacting with hard-
ware, which includes setting up and configuring the PMP registers. This is what privilege
the Security Monitor executes on. There is no virtualization on this privilege, thus all
memory accesses in this mode use physical addresses (assuming the default configuration).

Supervisor (S) mode is the privilege the host OS typically executes on. Keystone’s
runtime runs on supervisor privilege.

User (U)mode is what regular applications without any privilege execute on. All enclave
applications run in this mode.

Keystone Components

Security Monitor (SM): This is a small, trusted component, responsible for managing
all the enclaves and for creating verifiable reports to prove that an application is running
inside an enclave.

Runtime (RT): This component runs in S-mode and provides an interface for commu-
nicating with the SM from the user application. The runtime resides inside the enclave and
is responsible for setting up the enclave application’s environment (i.e. page table initializa-
tion).

Enclave Application (EAPP): This is the client’s application that runs inside the
enclave. For any resources the client requires from the host, it must interact with the
runtime, which calls the SM.

Host Operating System: This is the OS of the host that uses the Keystone driver to
interact with the SM to create or interact with the enclaves. This component is untrusted.

Virtual Memory Reliance

In Keystone, page tables are managed and configured by the runtime, which is part
of the enclave. We can completely remove the page table mapping altogether and perform
no address translation. In this case, there is no reason to still have a runtime. This
does not a↵ect the memory isolation of the TEE because the isolation is provided by the
PMP registers, which does not assume anything about the virtual memory of an enclave.
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This makes modifying Keystone to not use virtual memory a far easier task than SGX or
TrustZone as Keystone’s architecture does not rely heavily on virtual memory support.

FreeRTOS

FreeRTOS is an open-source real time operating system owned by Amazon and is a pop-
ular choice for embedded device developers. Amazon provides libraries to assist developers
in connecting their device to use Amazon Web Services [25]. FreeRTOS has a very light
memory footprint; in fact, there are only three source files in the kernel [17]. Furthermore,
it provides user applications with useful data abstractions like queues for message passing
between tasks and synchronization primitives like a semaphore. FreeRTOS also provides
several libraries for creating a TCP/IP stack or for IO support.

Scheduler

FreeRTOS assumes a single core system, thus only one task can be scheduled at a time.
[17]. FreeRTOS uses the term task to refer to a thread. The scheduler is responsible for
context switching the tasks and saving/restoring state upon a context switch. All task
control blocks are stored in a list data structure inside the RTOS kernel.

Each task is assigned a priority as FreeRTOS by default uses a preemptive priority
scheduling. For tasks that require a hard deadline, the user should give it a high prior-
ity. Tasks that have a soft deadline should be given a low priority. In the case of no active
user tasks, the idle task will run with priority 0. Although FreeRTOS uses strict priority
scheduling, it can be modified to support other scheduling policies like earliest deadline first
(EDF).

2.2 Design Overview

In order to create a framework for creating enclaves on embedded devices, we require a
scheduler that can meet real time requirements. Keystone was not designed to be a scheduler.
Its sole purpose is to create, delete, and switch into an enclave context. One can borrow
several components of an RTOS kernel and port it to the SM, but that defeats the original
point of the SM as being a light and trusted component that can be easily verified.

We wanted to keep the SM lightweight as it was originally intended, while also providing
the user with an RTOS kernel to schedule their tasks. Moreover, we wanted to protect all
TEEs even from a compromised RTOS kernel. What we wanted was something similar to the
original Keystone design, where the host OS would be responsible for providing the enclaves
with system resources and scheduling.

Because we removed virtual memory support, we only have Machine and User mode.
This would mean the FreeRTOS kernel, which was originally designed to run in S-mode,
must run in user mode. This guarantees that even though the FreeRTOS kernel might be
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Figure 2.2: Design Overview of ERTOS

compromised, any tasks that are protected by an enclave will continue to be protected.
This will virtually stop all privileged escalation attacks for compromising our framework.
Furthermore, we minimize our total TCB by not having to trust the RTOS kernel.

I present a framework for creating Enclaves in Real-Time Operating Systems (ERTOS).
ERTOS is a module for FreeRTOS that provides an API for creating and running enclaves
dynamically, using Keystone’s SM as a backend. A visual overview of our architecture can
be seen in Figure 2.2.

We place the FreeRTOS kernel inside an enclave so that an embedded device can be
remotely attested by the manufacturer or owner of the device to ensure it is using a correct
and unmodified FreeRTOS kernel. We also have two types of tasks, enclave or unprotected
tasks. Unprotected tasks do not have any hardware protection from other unprotected tasks
and exist inside the FreeRTOS enclave. Enclave tasks live outside the FreeRTOS enclave
and are protected by the SM. Both enclave and unprotected tasks will be scheduled by
the FreeRTOS kernel. We support inter-task enclave communication as each enclave has a
512-byte mailbox that is maintained by the SM. Because message passing is handled by the
SM, the SM can verify which enclave is sending a message and ensures the receiving enclave
that a message it receives from its mailbox is authentic.

2.3 Bootloading

The bootloading process is visualized in Figure 2.3. We use the Berkeley Bootloader,
which is a second-stage bootloader that originally booted Linux, but was modified to boot
FreeRTOS.
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Figure 2.3: Bootloading Process

The only hardware modification Keystone requires is an embedded secret key, Hsk. We
also assume that the hardware has access to a secure source of randomness. Keystone’s
secure boot process involves creating an asymmetric pair of keys, (Ask, Apk), that is later
used for attestation.

  Upon CPU boot or reset, the bootloader initializes the security monitor and generates
H(SM) (hash of the security monitor), using some cryptographic hash function such as
SHA256. SM initialization involves allocating a PMP register and locking access to the SM.
Furthermore, the bootloader puts Ask, the attestation secret key and SIGN(Hsk, Apk), the
signature of the public attestation key, inside the SM. With the hardware secret key, the
bootloader signs the SM hash and the public attestation key. By doing this, the hardware
can later prove the SM was initialized correctly and vouch any future attestation reports.

À After the SM is initialized, the SM hashes the FreeRTOS kernel and signs the hash
with Ask the secret attestation key. The SM then saves the FreeRTOS kernel hash as well
as the signature so that later anyone can verify the SM initialized the FreeRTOS kernel
correctly. Furthermore, the SM isolates the FreeRTOS kernel by allocating a PMP register
and locking the kernel memory region from external memory access. By doing this, we detect
any attacker who may modify the FreeRTOS kernel. Moreover, we prevent any attacker from
accessing the FreeRTOS kernel due to the physical memory protection. Once the FreeRTOS
kernel is initialized, it is free to create and schedule tasks. The enclave that holds the RTOS
kernel is a special enclave that we call the ”Enclave Scheduler”. The Enclave Scheduler has
special privileges over other allocated enclaves. It has the ability to trap into the SM to
create enclaves, to switch into other enclaves, and to enable or disable interrupts. The SM
keeps track of which enclave is currently running and can verify the origin of any SBI call.
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Figure 2.4: Embedded Device Framework Layout

2.4 Enclave Binary Format

Each enclave application binary is compiled separately beforehand with a statically allo-
cated stack and heap segment in ELF format. Any user application must use our provided
linker-script to compile their application. The linker script specifies the size and location of
the heap and stack. Furthermore, any ELF sections in the binary that are marked ’NOBITS’,
most notably the .bss section, must be allocated beforehand. Typically, the OS loader will
expand any ’NOBITS’ section in memory.

Our goal was to have each enclave application be run directly without any OS loader
intervention. This minimized memory usage, as an OS loader would have to copy the contents
of the ELF file and expand any ’NOBITS’ sections to another contiguous memory address.
Having a pre-loaded application binary allow us to directly run the ELF file without wasting
memory to copy the contents to another space.

We combine the boot loader, FreeRTOS kernel and any subsequent enclave applications
into a single binary. Our binary format is visualized in Figure 2.4. We use the RISC-V
proxy kernel [23], which contains the Berkeley Boot Loader and our security monitor. We
modified the proxy kernel to boot up FreeRTOS instead of Linux. Our FreeRTOS kernel
contains all the source files of FreeRTOS, including any unprotected tasks that are not
required to be in a TEE. Lastly, we have the enclave applications, which are all tasks that
will be stored in a TEE. All three of these components are compiled separately (the enclave
applications are further compiled separately) and are appended together to create a single
binary that is uploaded to the embedded device.
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Figure 2.5: Enclave Scheduling Diagram. E-Task and U-Task refer to Enclave Task and
Unprotected Task respectively.

2.5 Task Registration

In order for an enclave task to be scheduled, it must first be registered with the SM.
Registering an enclave task to the SM consists of sending the SM a request to create an
enclave. The request will include the enclave entry point and the base and size of the
enclave application. Using the base and size of the enclave application allows the SM to
allocate a PMP register to lock the enclave application. The SM will assign the enclave
a unique task ID, which will then be returned to the FreeRTOS kernel as a handle to the
enclave task. The task id will be used to schedule the enclave task later and is also used
for sending and receiving messages. Once the enclave task is created, the FreeRTOS kernel
can only switch into the enclave and cannot observe any internal state of the task, such as
the registers. The SM does not handle any scheduling specific information, such as priority
values for each task or the task state. We defer all scheduling policies to the FreeRTOS
kernel.

2.6 Scheduling

The FreeRTOS kernel is responsible for creating and scheduling enclaves. FreeRTOS uses
a task list to keep track of all tasks that can be scheduled. When the kernel wants to switch
to another task, it will choose the task with the highest priority from the task list. We
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modified the FreeRTOS kernel to also schedule tasks protected by an enclave. All scheduling
policies will be completed from the FreeRTOS kernel. By pushing the scheduling decision to
the user-mode kernel, we allow embedded system developers greater confidence in modifying
the scheduling policy to use without compromising the SM and breaking security guarantees
of other applications running on the embedded device. We illustrate the scheduling process
in Figure 2.5.

  The kernel selects a task and does an SBI call to trap into the SM. The kernel passes
the task ID which the SM should switch into.

À The SM will then verify that the enclave scheduler sent the SBI request. Any calls
to switch enclaves that does not originate from the enclave scheduler will cause the SM to
switch back to the enclave scheduler. We chose to only allow the enclave scheduler to switch
to another enclave to preserve the semantics of the FreeRTOS kernel. In a traditional RTOS,
tasks must relinquish control to the kernel. In similar fashion, non-scheduling enclave tasks
can only relinquish control back to the enclave scheduler.

Ã Upon an enclave task switch, the SM will switch the PMP registers to allow access to
the memory region specified in the new enclave. The PMP registers that allow access to the
SM and the enclave scheduler will be locked to guard against potential memory access by
the newly switched in enclave.

We also allow enclave tasks to hint to the SM to allow directly switching to another
enclave that it trusts. This is an optimization to avoid switching back to the FreeRTOS
kernel if the enclave task expects frequent context switching or message passing to another
enclave.

2.7 Interrupt Handling

FreeRTOS uses queues to service interrupts. Specifically for the FreeRTOS port in RISC-
V, interrupts are registered via a vector table and the pointer to the vector table is stored
in register mtevec. Upon an asynchronous interrupt, the mcause register is analyzed and
used to decode how to handle the interrupt. The appropriate entry in the vector table is
then chosen to branch to (given by mtvec). Since the FreeRTOS kernel is delegated to user
mode, the SM handles interrupts and exceptions in similar fashion to the RTOS kernel.
Currently, to mitigate DoS attacks, we setup a machine timer interrupt upon FreeRTOS
kernel scheduler initialization. Any user-mode enclave must handle the timer interrupt and
it cannot be ignored. If a user-mode enclave is running and uses up a lot of resources, the
SM can step in and kill the enclave once the enclave’s time quanta completes. Currently,
the way the SM handles a machine-mode timer interrupt is to always switch into the enclave
scheduler.

Interrupts and exceptions are by default handled in machine mode in RISC-V; however,
interrupts and exceptions can be delegated to lower privileged levels by the mideleg and
medeleg registers respectively [27]. RISC-V also has the proposed N extension, which allows
for user-mode interrupts. With the N extension, since the FreeRTOS kernel runs in user-
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Figure 2.6: Shared memory for enclave to enclave communication

mode, we may delegate interrupts to the FreeRTOS kernel. Currently, our QEMU build
did not support the N-extension, so we were not able to develop support for user-mode
interrupts. With N-extensions, we may receive a favorable performance gain because the
SM will no longer be directly involved in handling specific interrupts and exceptions. At
the same time, by allowing user-mode enclaves to handle timer interrupts, our system is
more vulnerable to DoS attacks. We leave user-level interrupt handling and its security
implications for future work.

2.8 Message Passing

Small Message Passing

FreeRTOS supports inter-task communication via queues. In order to support inter-
enclave communication, we implemented per-enclave mailboxes. Each enclave has a statically
allocated mailbox bu↵er that is managed by the SM. We must have the SM involved when
sending these messages as the SM intervention ensures that if an enclave receives a message
from enclave A, then enclave A actually sent the message. The SM guarantees that the
message is sent from the purported enclave and the message contents are not seen from
anyone other than the sender, recipient, and the SM. The mailbox interface was only meant
for small ( 512 bytes) message passing between enclaves.

Bulk Message Passing

For larger messages, the SM can allocate an enclave bu↵er that is only accessible by the
sender and receiver enclave. If there is no harm in leaving the shared bu↵er unprotected,
the shared bu↵er can also be allocated outside of the enclave. Enclaves will be able to send
messages directly without SM intervention. This is visualized in Figure 2.6 if Enclave 1 were
the producer and Enclave 2 the consumer.
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Figure 2.7: Message Passing Visualization

  The SM creates a shared enclave bu↵er that is only accessible by Enclave 1 and Enclave
2.

À Enclave 1 would write to the shared memory bu↵er
Ã Enclave 2 will read from the bu↵er.
Other then switching enclave contexts, bulk message passing does not require further

intervention from the SM.

2.9 Unprotected Tasks

Not all tasks will require strong isolation guarantees. For example, multiple tasks that
communicate frequently with each other do not require strong isolation guarantees between
them. Message passing between enclaves require SM intervention, which requires trapping
into machine-mode, flipping the PMP registers, and switching in the new enclave registers.
This causes unnecessary overhead if isolation is not required. This is further visualized in
Figure 2.7. For this reason, we also add the notion of unprotected tasks. This allows
embedded device developers greater flexibility in choosing which tasks are necessary to run
in a TEE and which tasks do not.

  Unprotected tasks run in the same enclave as the enclave scheduler, so switching or
sending messages between unprotected tasks do not require communication with the SM.

À Enclave tasks context switching or sending messages between each other must signal
to the SM. Message passing requires copying the message from the enclave’s bu↵er to its
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mailbox stored in the SM.
Even though unprotected tasks run in the same TEE as the FreeRTOS kernel, unpro-

tected tasks are still prevented from gaining any confidential information in an enclave. A
unprotected task may overwrite or modify the initial state of an enclave (i.e. enclave entry
point), but this would be detectable because an enclave’s initial state (enclave entry point,
start address, and size) is hashed as well as each page of the enclave. Furthermore, an un-
protected task cannot access another enclave task’s memory because of the strong isolation
guaranteed by the PMP registers. At worst, the unprotected task may be able to cause
the FreeRTOS kernel to crash and prevent any enclaves from running, but preventing DoS
attacks is beyond the scope of our trust model.

Unprotected tasks use a messaging interface provided by the FreeRTOS kernel. Each
unprotected task is compiled within the FreeRTOS kernel and can be scheduled similar to
enclaves. We focused on providing the same interface to both unprotected tasks and enclave
tasks. We wanted to provide embedded developers an easy-to-use API that allowed them
flexibility in creating TEEs only if they deem it necessary and are not weighed down by a
separate API for enclave tasks and unprotected tasks.

2.10 Implementation

Our implementation added around 1000+ LOC to the FreeRTOS Kernel and over 500+
LOC to Keystone’s Security Monitor. The modifications included porting FreeRTOS to run
in user-mode, creating APIs to create and interact with other enclaves, and modifying the
existing FreeRTOS API to integrate tasks and enclaves. ERTOS can be compiled for RISC-V
32-bit (RV32GC) or 64-bit (RV64GC) machines.

Base Enclave API

We wanted to ensure that our API was familiar to use for embedded application develop-
ers, so we did our best to stick to any naming conventions defined by FreeRTOS. We list out
below FreeRTOS’ function header for creating a task and our function header for creating
an enclave.

Listing 2.1: Enclave Task Creation Function

BaseType t xTaskCreate ( TaskFunction t pxTaskCode ,
const char ∗ const pcName ,
const configSTACK DEPTH TYPE usStackDepth ,
void ∗ const pvParameters ,
UBaseType t uxPr ior i ty ,
TaskHandle t ∗ const pxCreatedTask ) ;

u i n t p t r t xTaskCreateEnclave ( u i n t p t r t s t a r t , u i n t p t r t s i z e ,
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const char ∗const enclaveName ,
UBaseType t uxPr ior i ty ,
void ∗ const pvParameters ,
TaskHandle t ∗const pxCreatedTask ) ;

Furthermore, we wanted to ensure that an enclave task will be treated like any other
task in FreeRTOS. We use the RTOS kernel’s task list, which keeps track of all tasks, to also
track enclaves. By doing this, we can reuse the RTOS scheduler to schedule enclaves. We
had to modify several FreeRTOS functions that dealt with switching task contexts.

We wanted to modify the existing FreeRTOS functions to handle tasks or enclaves dif-
ferently, but still have the developers use the same API. For the implementation, I modified
FreeRTOS to create general wrapper functions for both enclaves and tasks that required
switching task contexts. For example, I created a wrapper function yield general(), which
can be called by either an enclave or task. If the current task is an enclave, it must signal
to the SM to switch contexts back to the FreeRTOS kernel. If it is a regular task, it doesn’t
require signalling to the SM as all unprotected tasks run in the same TEE as the RTOS
kernel.

Message Passing API

The only functions exposed to the user that were di↵erent was message passing. FreeR-
TOS has their own message queue data structure that they provide to users. For enclave
message passing, we use a per-enclave mailbox. Because all untrusted tasks run in the same
enclave as FreeRTOS, all untrusted tasks share a single mailbox. There is performance over-
head when sending a message because it requires copying the message and signaling to the
SM. Because of the performance di↵erence between message passing of enclaves versus tasks,
we decided to keep the functions separate to avoid any confusion to developers.

Listing 2.2: Enclave Message Passing API

//Provided by FreeRTOS
void xQueueSend ( xQueue , pvItemToQueue , xTicksToWait ) ;
BaseType t xQueueReceive ( QueueHandle t xQueue ,

void ∗ const pvBuffer ,
TickType t xTicksToWait ) ;

//Provided by ERTOS
int sb i s end ( int t a sk id , void ∗msg , int s i z e ,

unsigned long xCyclesToWait , u i n t p t r t y i e l d ) ;
int s b i r e c v ( int t a sk id , void ∗msg , int s i z e ,

unsigned long xCyclesToWait , u i n t p t r t y i e l d ) ;
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There are some di↵erences between RTOS’s message passing and ours. First, their queue
only passes the pointer of the message they want to send. They can do this because all
tasks share the same address space. Second, we introduce a yield parameter that signals
to the SM to switch out of the enclave if the message isn’t in the mailbox for sbi recv() or
to always switch upon sending a message for sbi send(). This could be useful if we must
immediately wait for a message from whom we send the message to.
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Chapter 3

Evaluation

For all benchmarks, I simulate a single RV64GC core, out-of-order machine (Berkeley’s
Out of Order Machine [2]) with DDR3 using FireSim [14]. The specific configuration in
FireSim used is firesim-boom-singlecore-no-nic-l2-llc4mb-ddr3.

3.1 MicroBenchmarks

Message Passing Cost

For message passing between two non-enclave tasks, we can simply pass a pointer between
the tasks as the two tasks are not memory isolated. Passing a pointer between enclaves is
not possible due to the strong memory isolation guarantees. Because of this, the message
passing performance linearly scales with message size due to message copying.

Because of the strict memory isolation between enclaves, message passing requires copying
the message multiple times per message. Furthermore, we run on a single-core machine and
FreeRTOS currently only supports a single-core system. For this reason, we cannot take
advantage of switch-less message passing, where two threads share memory through a bu↵er.
Currently, we use asynchronous message passing, where the users must poll the mailbox if
they are waiting on a message.

A study found that inter-task communication accounted for the most frequent type of
task communication (over forward and backward intra-task communication) [15]. Because of
the importance of inter-task communication, we measured the total cycles required to send
a small message between two tasks, using di↵erent configurations. We define our message
passing test as a task sending a message to another task, then waiting for a reply. We will
measure the number of cycles it takes for a full round trip.

For the baseline, both tasks will run within the same enclave domain. We will compared
it to the performance of both tasks in separate enclaves. We get an average roundtrip cost
of 4324 cycles for the baseline. Because varying the size of the message doesn’t matter for
the baseline, we use this average to calculate the slowdown for enclave message passing.
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Message Size (bytes) Cycles Slowdown
32 10244 2.37x
64 10818 2.50x
128 11393 2.63x
256 12689 2.93x
512 15412 3.56x

Table 3.1: Asynchronous Message Passing Benchmarks

In table 3.1, we observe that there is significant overhead and that the overhead increases
as the message size is increased. The performance overhead is due to the fact that we copy
the message twice. Furthermore, upon each send and receive of a message, we must signal
to the SM via an SBI ECALL to retrieve or put a message in the mailbox. Next, we discuss
ways to improve message passing latency.

Message Optimization

Currently, our scheme requires 2 memory copy operations. First, the enclave task must
copy the message to the receiver’s mailbox. Later on in time, the receiver enclave task must
receive the message from its mailbox by performing an SBI ECALL to copy the message
from its mailbox in the SM to its bu↵er in its own memory space. Another limitation is that
if an enclave is waiting for a message, it must loop and poll its mailbox until a message is
received. This could cause more unnecessary signalling to the SM.

Asynchrous Message Passing

To mitigate both issues, I implemented synchronous message passing. The sender of a
message only sends to an enclave who has previously requested a message already. This
would only require a single message copy as the SM can simply copy the message directly to
the receiver’s specified bu↵er. Furthermore, the receiver no longer has to poll for a message.
Upon calling sbi recv, the SM will set a flag to indicate that the enclave is waiting for a
message then immediately switches to the RTOS enclave. When the sender enclave sends
the message to the receiver, the sender will copy the contents directly to the receiver’s bu↵er,
then the receiver will be able to return from its initial call to sbi recv without having to
poll the SM any further.

Shared Bu↵er

We also introduce another form of message passing, which allocates a shared bu↵er
between both enclaves. Both enclaves can directly read/write from the bu↵er. When enclave
A wants to send a message to Enclave B, Enclave A will store the message in the shared
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Size (bytes) SYNC
Cycles

SYNC
Slowdown

SHARED
Cycles

SHARED
Slowdown

32 9310 2.15x 6526 1.51x
64 9457 2.19x 6581 1.52x
128 9946 2.30x 6819 1.58x
256 10517 2.43x 7129 1.65x
512 12616 2.92x 8038 1.86x

Table 3.2: Message Passing Optimization Results

Figure 3.1: Message Passing Results Graph

bu↵er and signal to the SM to switch to Enclave B. If needed, the bu↵er can be protected by
allocating another PMP region and securing the bu↵er in an enclave, but this will consume
a PMP register. To get around the PMP register cost, one solution is to grant a temporary
PMP register to lock a memory space for the sender and receiver enclave. Once message
passing is completed, the SM can revoke access to the bu↵er and relinquish the PMP register.
If it isn’t necessary to protect the data, the bu↵er can be allocated in unprotected memory.
For the test, we allocated the bu↵er in unprotected memory.

Message Passing Results

With synchronous message passing, we lower our average overhead to 2.40x and 1.62x for
the synchronous and shared bu↵er message passing respectively. We observe that both asyn-
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Test Baseline Time (ms) ERTOS Time (ms)
aes 625 600 (1.04x Speedup)

dhrystone 634376 577084 (1.10x Speedup)
norx 326 332 (0.98x Slowdown)
qsort 97 95 (1.02x Speedup)
sha512 373283 373283 (1.00x Speedup)
primes 3166 2735 (1.16x Speedup)

Table 3.3: RV8 Benchmark Results

chronous and shared message passing approach provide a fair improvement to synchronous
message passing. Message passing through the shared bu↵er had the best performance as the
context switching time is minimized. This is due to the SM only having to context switch to
the receiver enclave, whereas for synchronous message passing, the SM has to do additional
processing (i.e. find the correct mailbox) and then copy the message to the corresponding
mailbox. The trade o↵ of using a shared bu↵er is that the bu↵er must be either allocated
in a shared enclave, which consumes a PMP register, or the data on the bu↵er must be
encrypted to avoid leaking secrets to other tasks.

3.2 General Computation Benchmarks

To observe any computational overhead, we ported the RV8 benchmarks, which are
compute-bound workloads, into our RTOS framework [6]. We measure the total time it takes
to run the benchmarks inside an enclave versus running the benchmarks as an unprotected
task in FreeRTOS. I exclude miniz and bigint for our evaluation because miniz had a large
memory requirement and bigint relied on the C++ run-time, which our framework does
not yet support.

Observing table 3.2, we found that the results using ERTOS had slightly better per-
formance compared to the baseline. On average, we get a 1.05x speedup. For enclaves,
we pre-allocate a heap and each enclave runs our version of malloc, so that the enclave
does not have to rely on FreeRTOS for malloc. The malloc inside the enclave has a lower
memory footprint and does not support coalescing heap blocks. The unprotected tasks use
malloc provided by FreeRTOS which does support coalescing, which may cause memory
de-allocation to be slower. This was the main attribute to the slight di↵erence in perfor-
mance. Furthermore, the heap for the baseline is shared with the FreeRTOS kernel, whereas
the enclave application has its own private heap. This could make it more likely that the
baseline could have poor cache locality as the heap might be fragmented due to sharing with
the FreeRTOS kernel. We observe that there are no significant compute slowdowns when
running the RV8 benchmarks on ERTOS.
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Figure 3.2: RV8 Benchmark Graph - Part I

Figure 3.3: RV8 Benchmark Graph - Part II
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3.3 Synthetic Benchmarks

Robotics and Edge Computing

The trend for robotics has been to push several of the computationally expensive tasks
onto the cloud as robotics have to perform real-time tasks. Typically, the on-chip processor
of a robot is not su�cient to run expensive motion planning problems. The problem with this
current trend of pushing computation onto the cloud is the assumed trust that we place onto
the cloud provider in dealing with privacy-sensitive information retrieved from the robot’s
sensors.

Sending privacy-sensitive information to the cloud introduces an expanded TCB as we
now must implicitly trust the cloud provider. One solution is to use TEEs inside these
cloud providers, but there remains the round trip time to first attest the TEE and then
subsequently receive actions from the TEE.

Case Study: Motion Planning

One robotics paper, Motion Planning Lambda (MPLambda), utilized server-less com-
puting to o✏oad the computation cost of running expensive 3D motion planners onto the
cloud [11]. In MPLambda, the workload involves a robot sending a snapshot of its environ-
ment, a starting state, and an end state to the cloud provider [11]. The motion planning is
distributed to several Amazon Lambda hosts that coordinate to find the best action for the
robot to take. The cloud provider will then return an action for the robot to execute. This
process is repeated until the robot reaches its final goal. The 3D motion planning problem
is distributed to several planners and are sent to Amazon’s Lambda [4] service to run the
distributed motion planning computations. Once a planner receives a better path than their
current best path, they will broadcast this path to other planners as well as the robot.

Some of these planners can be scheduled and run as a task inside of a robot. Every time
the robot receive a valid solution path, it broadcast the solution to the other planners to
improve their own e�ciency. By having a hybrid approach, where some planners run directly
on the robot and some on the cloud, we could reduce the average latency to find our first
solution if the solution is found on a local planner running on the robot. I visualize this
hybrid approach in Figure 3.4.

Why would we need to run our local planners in a TEE? In a model where the
robot sends its data over to the cloud provider, we mainly wanted to protect the privacy
sensitive information from the cloud provider hosts or any administrators in charge of the
hosts. The local planners run directly on the robot and do not generally have to worry about
an adversary host; however, another set of issues arise. The planners for MPLambdba relied
on several third-party libraries like the Open Asset Import Library (Assimp), Eigen, and
libccd. With a large code base and a lack of isolation between tasks on embedded devices,
running a planner locally introduces a new set of problems. We want to ensure that the
planners do not modify the RTOS kernel or any other critical tasks.
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Figure 3.4: Illustration of using a hybrid computing approach, where some planners are
executed directly on the robot.

One can use ERTOS to run the planner inside an enclave task. Currently, the libraries
that MPLambda relies on are incompatible with FreeRTOS, but I simulate a similar scenario
, where a robot has a third party application that runs reinforcement learning to calculate
the next action for the robot.

Background: Reinforcement Learning

Reinforcement learning involves an agent and the environment. The agent chooses to
do an action to maximize a reward. Once an action is chosen, the agent observes from the
environment a possible reward. For our evaluation, we had an agent run the Q-Learning
algorithm [12] on a simulated environment. Q-learning is a model-free reinforcement learning
algorithm that will help the agent choose the best action to do given the current environ-
ment. It is considered model-free because the agent does not require transition probability
information or know what actions lead to a specific reward, as the agent will learn this after
taking an action.
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Figure 3.5: Visualization of the Synthetic Benchmark

Episodes Baseline (ns) ASYNC (ns) SYNC (ns) SHARED (ns)
1000 3721 27295 18974 13302
10,000 34776 261157 181617 127806
25,000 86281 651178 452566 318592
50,000 171594 1300583 903482 636099
75,000 256923 1950098 1354477 953661
100,000 342320 2599744 1805575 1271291

Table 3.4: Synthetic Benchmark Results
ASYNC : Asynchronous Message Passing
SYNC : Synchronous Message Passing
SHARED : Message Passing via Shared Bu↵er

Results

For the analysis, I used an existing environment provided by OpenAI Gym [5], where
an agent must navigate a 2D grid to reach a goal state. For this experiment, we have a
task running in the RTOS enclave, sending state information (i.e. x and y coordinates) to
the reinforcement learning (RL) application. The RL application will receive information
from the task, run Q-learning, and generate an optimal action to feedback to the task. The
goal of the agent is to navigate across a Frozen Lake represented by a 2D grid. I provide a
visualization of the communication in Figure 3.5. This benchmark relies heavily on message
passing and context switching between tasks. All messages passed are 12 bytes or less.

The results can be found in Table 3.3. I ran the experiment with varying number of
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Figure 3.6: RL Benchmark Graph

episodes and get around a 7.53x slowdown on average for asynchronous message passing. For
synchronous message passing the overhead drops down to 5.23x. When sending messages
via an allocated, shared bu↵er, we see the overhead drop even more to an average of 3.68x.

The better performance from the shared bu↵er was because of its quicker context switch
time. For both ASYNC and SYNC message passing, the SM must do a linear scan to find
the corresponding task with a specific task id and copy the message to its mailbox ASYNC
or directly to the task’s bu↵er SYNC. In SHARED, the enclave application copies the data
over to the shared bu↵er and signals to the SM to switch to the receiving enclave. Because
of the small message exchanged (12 bytes), context switching became the most critical
component in this benchmark.

While we have improved the performance of message passing, we observe that the over-
head due to message passing is still an obstacle for achieving the baseline performance due
to copying the message and signaling to the SM.

Further Optimizations

Zero Copying: For medium-sized messages, message copying is necessary, but for
smaller messages, one can further improve performance by using zero copying. This is a
technique used in the L4 micro-kernel, which fits a small message into hardware registers
and perform a context switch without modifying the registers [8]. This achieves message



CHAPTER 3. EVALUATION 28

passing without any copying, but can only fit smaller messages.
Switch-less OCALLs: In a multi-core system, multiple threads may interact without

having to perform a context switch. This could save in penalty cost when sending messages,
as messages could be sent in a shared bu↵er between the sender and receiver. There has
been previous work, which shows a clear advantage into using switch-less call that receive
a 13x-17x speedup using SGX [29]. Because FreeRTOS assumed a single-core machine, we
could not take advantage of using switch-less calls to handle message passing.
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Chapter 4

Conclusion

As we face a growing popularity of edge computing and IOT devices, there is an increased
need for strong hardware isolation on embedded devices. We create ERTOS, a module
in FreeRTOS that allows the creation of dynamic, secure tasks that can be attested and
isolated from other tasks using Keystone as an enclave backend. Because of the strong
isolation guarantees between enclaves, the overhead of message passing between enclaves
is significant; however, we achieve negligible performance overhead when running compute
intensive workloads. As we continue to develop ERTOS, we will actively investigate how to
increase the performance of inter-enclave communication.

Figure 4.1: Hardware Agnostic ERTOS
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4.1 Future Work

Open Framework

In our vision, we wanted to create a framework that can easily support enclave creation
on almost all embedded devices that support TEE creation like SGX or TrustZone. E↵ec-
tively, the vision for this project is to be able to provide a generalized API in FreeRTOS to
create secure TEEs similar to OpenEnclave [20] or Asylo [3] that is agnostic of the hard-
ware backend. Some of the challenges of this is that di↵erent hardware architectures provide
somewhat di↵erent security guarantees as covered in Chapter 1. For example, creating a
TEE in ARM TrustZone will not allow for strict isolation between enclaves [22]. We must
be careful to annotate the di↵erent security guarantees, while also providing a generic API
for di↵erent hardware back ends.

We illustrate our vision in Figure 4.1. Our FreeRTOS module will provide a layer between
developers and di↵erent hardware backends for creating TEEs. We will provide a set of APIs
that can create, run, and attest enclaves that can work with several hardware back-ends.
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