Go to main content

PDF

Description

High-speed primitive optical modulation is widely employed across applications in microscopy, material processing, adaptive optics and augmented/virtual reality. Despite this ubiquity, the embodiments of specific optical modulation tools may vary considerably as a result of the specific performance needs of each application. We present here a consolidated modular framework for the systemic design of high-speed (~10 kHz) array-based optical modulation devices requiring limited degrees of freedom (~10-100). The proposed framework combines a semi-custom commercial fabrication process with a comprehensive simulation pipeline in order to optimally reconfigure pixel wiring schemes for the efficient allocation of available degrees of freedom. By decoupling the pixel-level building blocks determining transduction characteristics from the array-scale partitioning geometry determining overall optical functionality, the framework is able to produce tailored array-scale designs that are both robust to process variations and easily reconfigurable for adaptation to alternative specifications. As a demonstration of this framework, phase-shifting piston-motion parallel-plate capacitive micromirrors were designed and fabricated in small array formats for preliminary assessment and characterization under MEMSCAP’s standard PolyMUMPs process. Once a suitable micromirror structure was identified, an axial focusing array with a simulated optical power range of ±2.89 diopters was subsequently designed via an iterative ring partitioning process and a Monte Carlo-based simulation pipeline that accounted for experimentally measured spatial variations in pixel performance.

Details

Files

Statistics

from
to
Export
Download Full History
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS